Preprints
https://doi.org/10.5194/egusphere-2022-938
https://doi.org/10.5194/egusphere-2022-938
06 Dec 2022
 | 06 Dec 2022

Automatic classification and segmentation of Snow Micro Penetrometer profiles with machine learning algorithms

Julia Kaltenborn, Amy R. Macfarlane, Viviane Clay, and Martin Schneebeli

Abstract. Snow-layer segmentation and classification is an essential diagnostic task for a wide variety of cryospheric applications. The SnowMicroPen (SMP) measures the snowpack's penetration force at submillimetre resolution against the snow depth. The resulting depth-force profile can be parameterized for density and specific surface area. However, no information on traditional snow types is currently extracted automatically. The labeling of snow types is a time-intensive task that requires practice and becomes infeasible for large datasets. Previous work showed that automated segmentation and classification is in theory possible, but can either not be applied to data straight from the field or needs additional time-costly information, such as from classified snow pits. To address this gap, we evaluate how well machine learning models can automatically segment and classify SMP profiles. We trained fourteen different models, among them semi-supervised models and artificial neural networks (ANNs), on the MOSAiC SMP dataset, a large collection of snow profiles on Arctic sea ice. We found that SMP profiles can be successfully segmented and classified into snow classes, based solely on the SMP's signal. The model comparison provided in this study enables practitioners to choose a model that is suitable for their task and dataset. The findings presented will facilitate and accelerate snow type identification through SMP profiles. Overall, snowdragon creates a link between traditional snow classification and high-resolution force-depth profiles. With such a tool, traditional snow profile observations can be compared to SMP profiles.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

10 Aug 2023
Automatic snow type classification of snow micropenetrometer profiles with machine learning algorithms
Julia Kaltenborn, Amy R. Macfarlane, Viviane Clay, and Martin Schneebeli
Geosci. Model Dev., 16, 4521–4550, https://doi.org/10.5194/gmd-16-4521-2023,https://doi.org/10.5194/gmd-16-4521-2023, 2023
Short summary
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
Snow-layer segmentation and classification is an essential diagnostic task for cryospheric...
Share