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Abstract. Snow-layer segmentation and classification is an essential diagnostic task for a wide variety of cryospheric appli-

cations. The SnowMicroPen (SMP) measures the snowpack’s penetration force at submillimetre resolution against the snow

depth. The resulting depth-force profile can be parameterized for density and specific surface area. However, no information

on traditional snow types is currently extracted automatically. The labeling of snow types is a time-intensive task that requires

practice and becomes infeasible for large datasets. Previous work showed that automated segmentation and classification is in5

theory possible, but can either not be applied to data straight from the field or needs additional time-costly information, such as

from classified snow pits. To address this gap, we evaluate how well machine learning models can automatically segment and

classify SMP profiles. We trained fourteen different models, among them semi-supervised models and artificial neural networks

(ANNs), on the MOSAiC SMP dataset, a large collection of snow profiles on Arctic sea ice. We found that SMP profiles can be

successfully segmented and classified into snow classes, based solely on the SMP’s signal. The model comparison provided in10

this study enables practitioners to choose a model that is suitable for their task and dataset. The findings presented will facili-

tate and accelerate snow type identification through SMP profiles. Overall, snowdragon creates a link between traditional snow

classification and high-resolution force-depth profiles. With such a tool, traditional snow profile observations can be compared

to SMP profiles.

1 Introduction15

The cryosphere covers around 10 % percent of our earth and plays a significant role in stabilizing earth’s climate (Pörtner et al.,

2019). Snow cover plays a role in optics, heat, and mass balance and is one of the largest uncertainties in global climate models

(Sturm and Massom, 2017; Steger et al., 2013; Douville et al., 1995). Snow layer segmentation and classification put forth

knowledge about the atmospheric conditions a snowpack has experienced (Colbeck, 1987; Fierz et al., 2009). This knowledge

helps to discern fundamental snow and climate mechanisms in the Arctic and to analyze polar tipping points. Classification of20

snow types is essential to assess the state of our cryosphere and is thus of interest for polar, cryospheric, and climate change

research.
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Traditionally, snow stratigraphy measurements are made in snow pits. These pits are dug manually, vertically into snowpacks

and require trained operators and a substantial time commitment. To accelerate these measurements, the SnowMicroPen (SMP),

a portable high-resolution snow penetrometer, can be used (Johnson and Schneebeli, 1998). Schneebeli and Johnson (1998)25

have demonstrated the SMP as a capable tool for rapid snow type classification and layer segmentation. The measurement

results are stored in an SMP profile that consists of the penetration force signal of the measurement tip in Newton and the depth

signal indicating how far the tip moved. Afterwards, the SMP profiles must be manually labeled, which requires time, practice,

and becomes infeasible for large datasets. Machine learning (ML) algorithms could be used to automate this process. As a

consequence this would (1) immensely accelerate the SMP analysis, (2) enable the analysis of large datasets, and (3) make the30

training of interdisciplinary scientists in snow type categorization obsolete.

The nearest neighbor method of Satyawali et al. (2009) was the first model that automated both segmentation and classi-

fication of SMP profiles without being dependent on snowpit information. Their algorithm could predict five different snow

types, however, their testing dataset was too small to be representative and they excluded data points with uncertain snow

classes. Furthermore, Satyawali et al. (2009) achieved only a high classification performance by including knowledge-based35

rules which do not generalize on datasets from other regions or seasons.

Havens et al. (2012) used previously segmented SMP profiles and classified the snow type of each layer with the help of

a random forest model. Their work builds upon their previous work with single decision trees (Havens et al., 2010). Their

model could be improved further by adding more than three snow types, allowing also for layers thinner than 100 mm and

most importantly, by automating the segmentation step as well.40

The support vector machine (SVM) approach by King et al. (2020) automated both the segmentation and classification, and

achieved good accuracy scores for three different snow types. However, they are relying on additional snowpit information to

achieve these results.

While all these works put forward the task of automated SMP analysis, SMP practitioners still lack a method that can be

used in practice. Practitioners need a model that fully automates their SMP analysis: (1) without the need of digging a snow45

pit, (2) picking layers manually or (3) constructing specific knowledge rules. Furthermore, SMP practitioners need models that

can deal with SMP profiles coming straight from the field. This implies that (4) the profiles have multiple snow types (more

than three) and that (5) no layers are excluded. The aim of this study is to provide models that fully automate SMP analysis

and can directly be used in the field, addressing all five mentioned needs.

To this end, we implemented fourteen different machine learning (ML) models and compared their performance on the50

MOSAiC SMP dataset, consisting of 164 labeled profiles (see Fig. 1). Thereby, we provide the first comparable performance

overview of different models classifying and segmenting SMP profiles. Moreover, we used – to the best of our knowledge –

for the first time semi-supervised methods and artificial neural networks (ANNs) for SMP classification and segmentation.

Results show that especially the artificial neural networks (ANNs), such as the long short-term memory (LSTM) and the

Encoder-Decoder, can produce predictions that are similar to profiles labeled by experts and achieve the best results among55

all models. However, the choice of the model depends mostly on the individual needs of an SMP user because factors such as

explainability, desired sensitivity to rare classes, available time, and computational resources must be taken into consideration.
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Figure 1. All 164 labeled SnowMicroPen (SMP) profiles used for training, validation (80%), and testing (20%). Each bar represents one

SMP profile. The colors encode the different snow grain types. The top of each bar is the air-snow interface and the bottom of each bar is

the snow-ground interface of the profile. The in-picture figure illustrates the force signal (grey) and mean force signal (blue) of a single SMP

profile (S31H0368). The snow-air interface is on the left, and the bottom of the profile is on the right. The background shading represents the

ground-truth labeling of the profile.

The main contributions of this study are:

– Demonstration that SMP profiles straight from the field can be automatically segmented and classified; without manual

preparation of the profiles or additional snow-pit data60

– Evaluation of semi-supervised models and ANNs for SMP classification and segmentation

– Detailed comparison of different ML models for SMP classification and segmentation

In the following section (Sect. 2) the data and the classification task are described, as well as the fourteen different models

that were used in this study. In Sect. 3, the models’ performances are presented. Subsequently, the results, their limitations,

and future work are discussed in section 4. The impact of this work is addressed in the conclusion (Sect. 5). The code and data65

availability is outlined directly after the conclusion.

2 Methods

2.1 Data

All experiments throughout this study used SnowMicroPen profiles from snow on Arctic sea ice. 3680 profiles were collected

during the MOSAiC expedition between October 2019 and September 2020 (Nicolaus et al., 2022). 164 profiles from the70
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cold season (January – May 2020) were labeled and evaluated for this study (see Fig. 1). This study focuses only on profiles

of cold snow, as there exists no standardized interpretation of SMP force profiles for wet snow. All profiles collected in the

cold season are referred to as “MOSAiC winter data” in the following. The labels indicate which snow type is found at the

respective position of the profile. Refer to Fierz et al. (2009) for descriptions of the different snow types referenced here and a

classification guideline for snow particles visually observed. The labeling was conducted by a snow expert and is solely based75

on the properties of the force signal (magnitude, frequency, and gradient) and the signature of the SMP-signal (Schneebeli

et al., 1999). After one labeling phase, all profiles were revisited by the same expert to ensure consistent and correct labeling.

The surface and the ground of the profiles were detected automatically by the pyngui application of the snowmicropyn package
1. The labeled profiles were used during training, testing, and validation, while some of the unlabeled profiles were used for

semi-supervised models and during generalization tests.80

We preprocessed each SMP profile as well as the complete labeled dataset. For each SMP profile we replaced negative force

values with 0, summarized the signal into bins (1 mm), and added additional features. During binning we determined mean,

variance, maximum, and minimum force signal values. When adding features, time-dependent and location-dependent infor-

mation is especially relevant: 4 mm and 12 mm sliding windows were applied to extract additional time-dependent information,

including variables from the Poisson shot noise model from Löwe and Van Herwijnen (2012). For location-dependent infor-85

mation, we included distance from the ground and the position within the snowpack. We preprocessed the complete labeled

dataset by normalizing it, removing profiles from the melting season, and merging snow classes. For example, “Decomposed

and Fragmented Precipitation Particles” are merged with the class “Precipitation Particles” since they represent a similar type

of snow. The few occurring “Ice Formations” and “Surface Hoar” instances are summarized in the class “Rare”. The data pre-

processing ensures that the dataset is clean and that all necessary information, such as time-dependent information, is available90

during classification.

The resulting dataset has the following properties: (1) There are multiple, noisy, and overlapping classes. (2) There is a

between-class imbalance. (3) There is a within-class imbalance, i.e. sub-groups within one class are imbalanced. (4) The

labeling of classes is afflicted with uncertainty, i.e. snow experts themselves are not sure to which class exactly some data

points belong. The complexity of the data set complicates classification and lowers the maximum achievable accuracy.95

2.2 Task description

We compare the capabilities of different models to classify and segment the profiles of the MOSAiC winter SMP dataset. To

this end, the models first classify each data point of the signal and then summarize the classified points into distinct snow layers

(“first-classify-then-segment”). This task can be solved with different learning and classification techniques.

The task can be addressed via independent classification or sequence labeling. In independent classification, each individ-100

ual point is classified independently, without looking at other data points. The underlying assumption is that each individual

data point carries enough information to be classified solely on that basis. In contrast, sequence labeling assumes that the data

1https://snowmicropyn.readthedocs.io/en/latest/
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is an intra-dependent sequence, where the label of each data point also depends on the preceding labels (Nguyen and Guo,

2007).

The models can follow either the supervised, unsupervised, or semi-supervised learning regime. In supervised learning,105

labels are provided to learn an input-output mapping function (Russell and Norvig, 2002). In unsupervised learning, patterns

and structure are found in unlabeled data (Ghahramani, 2004), however, no classification is possible, which is why no unsu-

pervised models are employed here. Instead, semi-supervised models are used, which are able to find structures in sparsely

labeled data and leverage this information during classification. In the following, all models employed in this work are shortly

presented and put in the context of their learning and task type.110

2.3 Models

The majority vote classifier is used as the baseline for the performance comparison and simply predicts always the majority

class (“Rounded Grains Wind Packed”). It satisfies the criteria that a baseline should not require much expertise, should be

easy to build, and fast to evaluate (Li et al., 2020).

The cluster-then-predict models employed in this study, can be separated into three different semi-supervised and inde-115

pendent classification models. Unsupervised methods are used to find clusters in the dataset and subsequently, a supervised

model is used to assign labels to the cluster (Soni and Mathai, 2015; Trivedi et al., 2015). As unsupervised model, k-means

clustering (Forgy, 1965; Lloyd, 1982), mixture model clustering (GMM) (Bishop, 2006) and Bayesian Gaussian mixture mod-

els (BGMM) (Bishop, 2006) were used. The supervised part of the model is a simple majority vote within the clusters, in order

to see if the unsupervised model adds enough information to beat the majority vote baseline.120

Label propagation is a graph-based, semi-supervised, independent classification algorithm. It propagates the labels of

labeled data points to unlabeled ones (Zhu and Ghahramani, 2002). Here, a modified version of this algorithm by Zhou et al.

(2004) is used (also known as “label spreading”) (Bengio et al., 2006; Pedregosa et al., 2011).

Self-trained classifiers turn a given supervised classifier into a semi-supervised independent classifier. It follows an iterative

approach of training a supervised model on labeled data, predicting more data with the model, and retraining the model with125

the most confident predictions (Yarowsky, 1995).

Random forests (RFs) are ensembles of diversified decision trees (supervised and independent classification). The diversifi-

cation happens via tree and feature bagging, where only subsets of data or features are used during training (Ho, 1995; Breiman,

2001). Decision trees are simple to build, explainable, white-box classifiers and for these reasons among the most popular ma-

chine learning algorithms (Wu et al., 2008). Additionally, a balanced random forest was used with random under-sampling to130

balance the data (Chen et al., 2004).

Support vector machines (SVMs) construct a hyperplane in a high-dimensional space to solve binary classification tasks

(Cortes and Vapnik, 1995; Han et al., 2012) (supervised and independently). When a problem is non-linearly separable, the

input data can be projected into a higher-dimensional space until the problem becomes linearly separable. The kernel trick

can be used to circumvent the computationally expensive data transformation involved here. It directly extracts a non-linear135

optimal hyperplane (Schölkopf et al., 2002).
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K-nearest neighbours (KNN) is a local, non-parametric classification method that compares samples and classifies new

samples based on their k nearest training data points (supervised and independently). The class of the prediction sample is

determined via majority vote. (Fix and Hodges Jr, 1952; Cover and Hart, 1967)

Easy ensemble classifiers are ensembles of balanced adaptive boosting classifiers (supervised and independent). The140

method is especially helpful for imbalanced datasets since the learners are trained on different bootstrap samples, which are

balanced via random under-sampling. (Liu et al., 2008)

Long short-term memories (LSTMs) are a form of artificial neural networks (ANNs) and can perform supervised sequence

labeling tasks. ANNs incrementally update their decision function that describes the decision boundary between classes. ANNs

have different nodes, which can be seen as representing different parts of the functions which are weighted differently. During145

training, the weights of the ANN are optimized by minimizing a loss function via gradient descent. A long short-term memory

can handle time-series data. It consists of different memory cells so the LSTM can forget information that is no longer needed,

remember information that is required for future decisions, and retrieve information that is required for current decisions.

(Hochreiter and Schmidhuber, 1997; Jurafsky and Martin, 2021)

Bidirectional LSTMs (BLSTMs) connect two independent LSTMs where the first LSTM processes the inputs forward and150

the second one backward. The outputs of both LSTMs are connected to one output. This architecture is helpful when the

dependencies of a time series go in both time directions, which is the case for snow profiles. (Schuster and Paliwal, 1997;

Jurafsky and Martin, 2021)

Encoder-decoder networks consist of an ANN encoder that compresses the time-dependent information into a vector and

a decoder that uses this information to solve a supervised sequence labeling task. Additionally, the attention mechanism can155

be used to strengthen the ability to learn long-term dependencies by focusing only on the parts of the input sequence that are

relevant for the current time step. (Bahdanau et al., 2014; Jurafsky and Martin, 2021)

2.4 Evaluation

In this work, (1) the performance of different models is compared, (2) differences in the classification of different snow types

are analyzed, and (3) the generalization capability of the best-performing model is examined. (1) The performance comparison160

is done by looking at the metrics of each model and the specific predictions on the test data set. The metrics used here are

accuracy, balanced accuracy, weighted precision, AUROC, log loss, fitting, and scoring time. (2) The label-wise performance

is analyzed with the help of label-wise accuracy plots and ROC curves. ROC is the receiver operating characteristic and plots

the true positive rate versus the false positive rate. The higher the area under the ROC curve (ROC AUC / AUROC), the clearer

can the model separate between positive and negative samples. (3) The generalization capability is tested by running the best-165

performing model on 100 random profiles from different parts of MOSAiC winter data. This data is outside of the distribution

of the training, validation, and testing data, however, it contains the same classes as the training data, i.e. the model still has

a chance to predict the correct labels. Evaluating these three aspects ensures that practitioners can choose a model and know

(1) how it performs compared to other models, (2) what to expect from the snow type specific predictions, and (3) how robust

their model will be.170
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Category Model Absolute

Accu-

racy

Balanced

Accu-

racy

Prec-

ision

F1

Score

ROC

AUC

Log

Loss

Fitting

Time

Scoring

Time

Baseline Majority Vote 0.39 0.14 0.15 0.22 nan nan < 1 < 10−3

Semi-
Supervised

K-means 0.62 0.44 0.60 0.61 nan nan 385 0.01

GMM 0.65 0.36 0.57 0.61 nan nan 151 0.008

BGMM 0.65 0.38 0.63 0.63 nan nan 225 0.009

Self trainer 0.69 0.67 0.74 0.71 0.92 0.84 19 0.29

Label propagation 0.71 0.54 0.72 0.71 0.92 1.5 10 3.35

Supervised

Random Forest 0.73 0.60 0.73 0.73 0.93 0.70 72 0.97

Balanced RF 0.70 0.67 0.74 0.71 0.92 0.84 9.9 0.58

SVM 0.71 0.66 0.73 0.71 0.93 0.67 19 7.45

KNN 0.71 0.54 0.71 0.71 0.89 3.58 < 1 1.84

Easy Ensemble 0.62 0.59 0.70 0.64 0.88 1.66 46 42.5

ANNs

LSTM 0.75 0.58 0.75 0.75 0.94 0.63 349 2.3

BLSTM 0.74 0.58 0.74 0.73 0.93 0.79 975 3.4

Encoder-Decoder 0.78 0.54 0.78 0.77 0.94 0.64 2911 5.8

Table 1. Results of different models from the categories baseline, semi-supervised, supervised and ANNs. The best values among all models

are bold. Second-best values among all models are italic. The best values among one category are underlined. ROC AUC and logistic loss

(log loss) could not be determined for the baseline and some of the semi-supervised models due to the design of these models.

2.5 Experimental setup

The experimental setup includes a training, validation, and testing framework: roughly 80% of the labeled dataset is used for

training and validation, while the other 20% is set aside for testing. Validation is realized as a 5-fold cross-validation (Stone,

1974). The hyperparameters were tuned on the validation data and the best found hyperparameters were used during testing.

Hyperparameter tuning is performed on the validation data. The best found hyperparameters are used for testing. Moderate175

hyperparameter tuning was applied and all tuning results can be found in the GitHub repository. Specifications of the machine

on which the experiments were run can be found in Appendix A and descriptions of the model setup can be found in Appendix

B.
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3 Results

3.1 Classification performance of models180

Overall, the results show that an automatic classification and segmentation of SMP profiles with ML algorithms is possible,

even if no further information such as snow-pit data or manual segmentation is provided. Category-wise all semi-supervised

models were not performing particularly well (see Table 1). Only the self trainer could compete with models from other

categories, but this might be the case because the self trainer is based on the balanced random forest. The supervised models

achieved mixed performances: Some models such as the random forests and the SVM are clearly performing well, whereas185

other models such as the KNN and the easy ensemble are underperforming. Overall, the random forest was the best model in

the supervised category since it achieves the highest absolute accuracy (0.73) and F1-Score (0.73). However, considering rare

classes, the balanced random forest outperformed the plain random forest. All three ANNs did exceptionally well and their

category was clearly the most successful among all three categories. The encoder-decoder showed the best scores among all

models in terms of absolute accuracy, precision, and F1-Score, closely followed by the LSTM. We consider the LSTM the best190

model within that category since the encoder-decoder only reached its high performance after extensive hyperparameter tuning

and underperformed significantly when not tuned well. In contrast, the LSTM achieved its performance more consistently and

even under moderate hyper-parameter tuning, and is thus more suitable for practitioners. The subsequent analyses compare

those three models that performed best within their category: the LSTM performed best among the ANNs, the random forest

among the supervised models, and the self trainer among the semi-supervised models.195

Different ML models exhibited different prediction styles in terms of smoothness and ability to predict rare classes. In Fig.

2 it becomes visible that the models’ predictions are not far off from the ground truth. In general, the predictions are somewhat

similar to the ground truth but the models often had difficulties in determining the precise start and end of a segment. Looking

at three random exemplary profiles of the test data in Fig. 3, one can see that the three main models seem not only to generate

similar predictions, but make also similar mistakes. In the medium-deep profile (middle column), all three models predicted a200

longer segment of “Depth Hoar” that was actually not present in the ground truth profile. In the shallow profile all three models

predicted some intermediate “Depth Hoar Wind Packed” layers in the first third that did not exist. And in the deep profile, all

three models miss the narrow intermediate “Depth Hoar” layer. In summary, it becomes apparent that the different models are

producing consistent predictions to a certain degree. Of course, there are significant differences among the models, too. First

of all, the LSTM is closest to the ground truth (see Fig. 3). Secondly, the LSTM provided much smoother and less fragmented205

predictions than the other two models. And thirdly, the self trainer clearly overestimates rare classes, which hurts the overall

performance. To summarize, the LSTM, random forest, and self trainer show certain prediction similarities among each other,

however, the LSTM is closest to the ground truth and imitates expert labeling best.

3.2 Classification difficulty of snow types

Fig. 4 shows that some snow types are easier and others are harder to classify. The label-wise accuracy seems to be influenced210

by the following factors: (1) choice of model, (2) frequency of snow type in the dataset, (3) snow type itself. Within one snow
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Figure 2. Predictions on the test dataset of the LSTM, random forest, and self trainer. The upper left panel shows the ground truth data. In the

other panels, the correct predictions are shown with more intense colors and the wrong predictions with less intense colors. The LSTM has

the highest rate of correct predictions and imitates the smoothness of the ground truth very well. The random forest does well but provides

more segmented predictions. The self trainer immensely overestimates rare classes.
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Figure 3. Model predictions for three randomly chosen SMP profiles. The first row represents the ground truth labels (with force signal). The

subsequent rows represent the LSTM’s, random forest’s, and self trainer’s predictions, with the red bar indicating wrong predictions. Each

column shows a different profile randomly chosen from the test data (shallow profile: S31H0276; medium profile: S31H0206; deep profile:

S49M1918). All three models seem to make similar mistakes, e.g. they predict a larger portion of “Depth Hoar” at the end of the medium

SMP profile. The predictions of the LSTM are closest to the ground truth data.
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type category, the models perform differently well, however, some snow types seem to be easier, and other more difficult to

classify for all models. For example, “Rounded Grains Wind Packed” achieved a high accuracy among all models, whereas

“Depth Hoar Wind Packed” achieved a low accuracy among all models. This could be partially attributed to the fact that

there are fewer samples available for “Depth Hoar Wind Packed”. However, the snow types themselves seem to influence the215

classification difficulty as well: the class “Precipitation Particles” achieves high accuracy values among some models, despite

the fact that it is the rarest class in the dataset. For some snow types, some models are able to access certain information

enabling a high performance on that particular snow type – independent of its frequency. This means that the classification

difficulty does not only depend on the number of available samples, instead, some other underlying characteristics determine

the classification difficulty of the snow types as well.220

Depending on the model, a higher accuracy score could lead to a lower precision score for a label (accuracy-precision trade-

off). The ROC curve in Fig.5 illustrates this relation between the true positive and false positive rate for the different snow

types and their averaged performances. It becomes apparent that both the snow type and the choice of model influence the

accuracy-precision trade-off. The class “Rare” for example seems to be difficult to classify both accurately and precisely for all

models, whereas “Precipitation Particles” are showing an almost perfect ROC curve. If one is interested in choosing a model225

that performs well for a particular snow type, these ROC curves can reveal which model is most suitable. To get even more

detailed label- and model-wise insights, refer to the confusion matrices in Appendix E. Both the LSTM and the random forest

achieve an area under the ROC curve of 0.96. However, on average (see Fig. 5, pink dotted line), the LSTM outperforms the

self trainer and random forest and is thus most suitable for general classification tasks.

3.3 Generalizability230

The prediction of the LSTM for 100 random profiles outside of the training and testing distribution is shown in Fig. 6. Since

the ground truth profiles are not yet available for these predictions, the generalization capabilities can only be evaluated on

the basis of what seems “reasonable”. “Melted Form Depth Hoar” appears only at the ground of the profiles, “Precipitation

Particles” only at the top, “Rounded Grains Wind Packed” are mostly at the top and rather deep – these are all “reasonable”

predictions. However, there are also some predictions that are not reasonable or at least unexpected: the left profile consists235

almost entirely of “Depth Hoar Wind Packed”, sometimes “Depth Hoar Wind Packed” appears right before “Melted Form of

Depth Hoar”, and “Rounded Grains Wind Packed” sometimes appear briefly in the “middle” of a profile (and not at the top).

Overall, the LSTM seems to make mostly reasonable predictions, however, an in-depth expert analysis of the predictions is

necessary to validate that further.

4 Discussion240

The results showed that automatic classification and segmentation of SMP profiles is possible with up to 78% accuracy. In the

following the nature, impact, and limits of these results are discussed.
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Figure 4. Label-wise accuracy of all models. each model is encoded with a different color. The most frequent label is on the left of the x-axis

(“Rounded Grains Wind Packed”), and the least frequent on the right (“Precipitation Particles”). The class “Rare” was dropped. Each bar

represents the accuracy for a single snow type. The dotted lines show the overall accuracy performance of each model. The encoder-decoder,

the BLSTM, and the LSTM achieved the highest accuracy values. For all models, some classes are more difficult to classify than others: e.g.

“Depth Hoar Indurated” and “Depth Hoar Wind Packed”. Some classes are easier to classify than others, such as “Rounded Grains Wind

Packed”. Some classes can only be classified well by a subset of the models, such as “Precipitation Particles” and “Melted Form Depth

Hoar”.

The metrical results presented are in line with previous findings: King et al. (2020) reported an overall accuracy score of

0.76 when using SVMs and additional snowpit information to classify three snow types. Satyawali et al. (2009) achieved an

average accuracy of 0.81 when using the nearest neighbor approach and knowledge rules to classify five snow types. However,245

these results stem from only three profiles and are not representative. Havens et al. (2012) achieved an accuracy of maximal

0.76 (global dataset) when using random forests and time-intensive manual layer segmentation to classify three snow types.

The major difference from these previous results is that the accuracy results of this study were achieved for seven snow types,

without time-intensive layer picking, snowpit digging, or additional knowledge rules. This means that in contrast to previous

work, the models here can be directly employed by practitioners for their own SMP datasets in the field: simply retrain and250

predict. For this, they only need to provide a set of training samples for their specific dataset and classification style. The work

presented here enables scientists for the first time to rely on fully automated ML SMP profile segmentation and classification.

The results were also satisfying to domain experts since the predictions were in themselves consistent and followed the

patterns of the training data. In general, the snowpack on sea ice is extremely variable, and the traditional snow types are very

often a mixture of different features. This becomes visible when comparing the SMP-profiles to the micro-CT samples. In255

the view of the authors, a temporally consistent classification is more relevant to the interpretation of the development of the

snowpack, even if there is a certain, but unknown, bias to an expert interpretation. Hence, the models were also in practice

helpful to analyse Arctic snowpack development.
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Figure 5. ROC curves of the LSTM, random forest, and self trainer for each class. The dotted lines are the micro- and macro-averaged

ROC curves. The macro-average calculates the ROC for each class and averages the performances afterward. The micro-average weights the

performance according to class contribution (balanced performance results). The LSTM achieves the highest ROC performance overall. The

order of the best-performing snow types is similar among all models. The classes “Rare” and “Depth Hoar Indurated” have the lowest ROC

areas, whereas “Precipitation Particles” has the highest ROC area for all models.
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Figure 6. LSTM SMP profile predictions on out-of-distribution data. The SMP profiles used here come from different legs of the MOSAiC

expedition than the training, validation, and test data. The profiles used here still stem from the winter season to ensure that the same set of

snow types can be used as in the training dataset. The distribution of the predicted profiles looks convincing, with only a few profiles standing

out as certainly wrong predictions (e.g. most right profile with ∼ 90% “Depth Hoar Wind Packed”).

4.1 Classification performance of models

Each model category are performs differently because each model takes different aspects of the data into account. Semi-260

supervised models try to take unlabeled data into account to improve their predictions, however, this did not work well in

our context. The most likely reason for the overall underperformance of this category is that the unlabeled data contained

out-of-distribution data, i.e. the unlabeled data had different underlying mechanisms than the labeled data (different parts of

the winter season). Another reason might be that only a small subset of unlabeled data was included in order to limit running

times. Moreover, the poor performance of the cluster-then-predict-models is most likely also a result of the classifier used after265

clustering: a more sophisticated method than a majority vote classifier is needed here.

The simple supervised models take one data point after the other into account and do not consider time-series structures

within the data. The algorithms used in all previous SMP automation studies fall into this category. In contrast, ANNs are
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supervised models that take the underlying time sequence of the data into account. While the supervised model in general

performed well, they were still clearly outperformed by the ANNs. A likely reason why the ANNs outperformed all the other270

models is precisely the ANNs’ ability to process time-dependent information. ANNs are tackling the classification task as a

sequence labeling task which enables them to include information from the order and position of snow layers. The supervised

models still have access to time-relevant information (time-window features), however, they do not have any ability to learn

time-based information (what should be remembered and forgotten). Besides, the ANNs learn to imitate the training set, leading

to smooth and expert-simile predictions. In comparison, taking the time component of SMP signals into account has not been275

done in previous methods and we argue that it adds a major information piece and boosts the overall prediction performance

significantly.

Each model exhibits a different prediction style due to the models’ intrinsic differences and thus might be suitable for specific

tasks. In the following some aspects are listed for consideration (practitioner’s guide):

A Time and resources for hyperparameter tuning. The LSTM and the encoder-decoder network are recommended when280

plenty of tuning time is available. Especially, the encoder-decoder network performs badly if not tuned well. The SVM

and the balanced random forest need little tuning time, whereas the random forest is the go-to-model in case (almost) no

tuning time can be provided.

B Need for a simple to handle, off-the-shelf algorithm. Among the high-performing models, the random forest and the

SVM are the easiest to handle off-the-shelf algorithms. The self-supervised algorithms and especially the ANNs require285

a somewhat deeper understanding of the models and the ability to implement them.

C Desired level of explainability. The random forests are most explainable since the decision trees can be directly visual-

ized (Appendix D). The ANNs are the least explainable models (without further modifications).

D Importance of minority classes. When deciding on a model, the underlying task must be examined as well: In the case

of avalanche prediction it might be essential to predict a buried layer of “Surface Hoar”, a very rare class, which needs290

to be detected no matter the costs. In such a case of “minority class prediction” the balanced RF or the SVM should be

employed. The ANNs and the random forest, in contrast, are more suitable to achieve an overall good classification.

E Availability of unlabeled data that is from the same distribution as the labeled data. In case a lot of unlabeled

data from the same distribution and time is available, the self-trained classifier can be considered. The weak learner of

the self-trained classifier can be chosen according to the criteria listed above. Since in this work we only had a small295

subset of unlabeled data stemming from the same distribution as the labeled data, further evaluations on the self-trained

classifier and label propagation remain open.

This highlights that there is not a single best model, but instead, practitioners can deliberately choose a model that suits their

needs, such as overall accuracy, ability to predict rare classes, explainability, training, and deployment time.
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Figure 7. 2-dimensional t-distributed stochastic neighbor embedding (t-SNE) of SnowMicroPen (SMP) dataset. The colors encode the snow

types. The figure shows that (1) “Depth Hoar" and “Depth Hoar Indurated” are hardly separable, (2) “Depth Hoar Wind Packed” is similar

to several other snow types, and (3) “Precipitation Particles”, “Melted Form of Depth Hoar” and “Rounded Grains Wind Packed” can each

be separated more clearly from the other snow types.

4.2 Classification difficulty of snow types300

Snow types are differently difficult to classify since their categories are rather continuous than discrete. This was also observed

in previous work and in all previous works performances were reported label-wise to account for those differences (Satyawali

et al., 2009; Havens et al., 2012; King et al., 2020). We performed t-distributed stochastic neighbor embedding (t-SNE) on the

SMP dataset to visualize how separable the different classes are (see Fig. 7). “Precipitation Particles”, for example, appears

as a singled-out green island, which is in line with our and other findings (Satyawali et al., 2009) that it is easier to classify305

than other snow types. We conclude from this, that some classes have features that distinguish themselves stronger from other

snow types. The class “Rounded Grain Wind Packed” behaves similarly (Satyawali et al., 2009). However, some classes, such

as “Depth Hoar” and “Depth Hoar Indurated” are completely overlapping in Fig. 7, and indeed our models had problems

with differentiating between those two classes. Similarly, “Depth Hoar Wind Packed” seems to overlap largely with “Rounded

Grains Wind Packed” and “Melted Form of Depth Hoar”. We theorize that the reason for their non-separability is that those310

snow types transform into each other during snow metamorphosis. This means many data points can not be discretized into

one single category since they are on a continuous spectrum. Satyawali et al. (2009) pointed out, as well, that they often found

data points being in transition between snow classes and attributed it to the fact that the snow is changing continuously. In
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conclusion, it is virtually impossible to reach 100% classification accuracy on every snow type since some snow types will

always lie between two categories.315

The classification difficulty of the different snow types extends also to the expert labeling process itself. The continuous

natures of the labels and additional challenges such as between-class imbalances, make it particularly difficult for domain

experts to label the SMP profiles consistently among each other. The uncertainty during labeling is an intrinsic problem of

SMP analysis and cannot be circumvented: The annotation of SMP profiles stays always subjective, meaning that two different

snow experts may produce two different labeled and segmented profiles for the exact same measurements (Herla et al., 2021).320

However, both experts might agree that both labeled profiles are valid analyses of the same profile. Hence, the model’s perfor-

mances cannot only be measured in terms of accuracy because models with low accuracy might still produce sensible, directly

usable predictions. Throughout our experiments, some of the models’ predictions –to our surprise –already helped domain

experts to detect mistakes and inconsistencies in their ground truth labeling. Due to the experts’ individual classification styles,

the models must adapt to those styles to truly satisfy the needs of practitioners. This means the models must be re-trained on325

a data set of the particular practitioner. Alternatively, the models could be used to support and speed up the manual labeling

process by making label suggestions that are then checked by a snow expert.

4.3 Generalizability

The LSTM can generalize to other winter profiles with the same snow types since the underlying classification and segmen-

tation rules stay the same. However, the LSTM’s generalization capability does not extend to other seasons or regions when330

/ where other snow types are found, such as melted forms or regional snow types. As mentioned before, the models do not

generalize on different classification styles of experts. The models used in this work are still generalizable in that they can be

used on any desired dataset as long as they are re-trained on the chosen dataset. This would not have been possible in previous

works such as Satyawali et al. (2009) since knowledge rules for one snow region and season do not transfer to other regions or

seasons. For greater generalization capability the LSTM – or any other model — must be either trained with a more general335

dataset or must be specifically re-trained for an individual data set.

4.4 Limitations and Future Work

This work does not address the task setting of first-segment-then-classify because this would require a completely different

set of methods. In a first-segment-then-classify setting, the SMP signal could first be segmented with techniques used in

audio-segmentation (Theodorou et al., 2014). The resulting time-series pieces could subsequently be classified as a whole340

(Ismail Fawaz et al., 2019). Future work could experiment with this problem formulation and analyze if performance further

increases in this setting.

The ANNs used here are off-the-shelve and are not adapted to the specific underlying task in order to ensure a fair comparison

between the different models. However, one could look into adapting the loss functions to include similarity measurements

between snow samples. Results from clustering, performed on t-SNE data, could then be leveraged during classification to345
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increase classification performance. Adapting the loss function of the ANNs could increase prediction performance greatly,

however, such a loss function must be carefully constructed and evaluated on different datasets.

As mentioned in Sect. 4.3, the models cannot generalize to completely different settings in terms of seasons and regions. To

ensure generalization capability one could train a large model on a dataset that includes snow types from different regions and

seasons. Such a data set would need to be newly compiled because common SMP datasets are usually limited to one region350

(Ménard et al., 2019; Calonne et al., 2020). However, it is completely unclear if classification on such a large dataset would

actually yield better performances. The classification task does become significantly harder with more classes and different

data distributions. However, a large enough model trained on a large enough dataset could in theory be able to produce direct

predictions for any SMP user. Alternatively, SMP users can simply re-train a chosen model for their particular dataset. They

would need to provide a set of SMP profiles for their region, season, and classification style, but the overall time savings are355

still immense. To summarize, the generalization capabilities may be enhanced by using a more general dataset or one bypasses

this problem by re-training to specific datasets – the snowdragon repository addresses the needs of the latter.

An immediate consequence of this study is the further analysis of the unlabeled part of the MOSAiC dataset. Domain experts

can use the LSTM, or other models, to create predictions for the remaining 3516 profiles. A previously almost impossible task

to classify and segment those thousands of profiles, became feasible by providing just a set of 164 labeled profiles. The results360

of these predictions and their impacts on the cryospheric analysis of snow coverage in the Arctic will become apparent in future

publications.

5 Conclusions

This study showed for the first time that SMP profiles can be automatically segmented and classified (up to 0.78 accuracy).

Fourteen different models were trained here to classify seven snow types without providing any additional manual information.365

It also showed for the first time how ANNs and semi-supervised models can be used for the task of SMP classification and

segmentation. Among all models, the LSTM and the encoder-decoder are performing the best. The resulting predicted profiles

show smooth segmentations and expert-simile classification patterns that were satisfying to domain experts.

These findings will enable SMP practitioners to automatically analyze their SMP measurements. To that end, an SMP user

must simply decide on one of the fourteen models provided by the snowdragon repository, given the considerations listed in370

this paper, and retrain the model for their particular dataset. Afterward, the SMP user can simply predict SMP classifications

and segmentations for the remaining unlabeled profiles.

Snowdragon could be extended further, made more user-friendly, and in particular, it could be integrated into the snowmi-

cropyn package. The resulting tool would make knowledge about snowpacks easier and faster accessible for all scientists. This

is of particular interest (1) for interdisciplinary scientists who rely on snow type but do not have the tools to classify them375

themselves (remote sensing), (2) for scientists that require fast analysis of SMP profiles, such as in avalanche prediction and

(3) for SMP users facing large datasets.
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Snowdragon enables already today the analysis of the SMP MOSAiC dataset with a large amount of detailed data about

the Arctic’s condition. The ML-driven approach used here to analyze SMP profiles will be one of many methods to make the

knowledge behind the data accessible – knowledge that is essential to understanding and mitigating climate change impacts.380

Code and data availability. The current version of snowdragon is available on GitHub: https://github.com/liellnima/snowdragon under the

MIT licence. To run the code version used in this paper, please refer v1.0.0 on GitHub or Zenodo: https://doi.org/10.5281/zenodo.7335813.

The exact version of the models used to produce the results used in this paper is also archived on Zenodo: https://doi.org/10.5281/zenodo.

7063520 (Kaltenborn et al., 2022). The MOSAiC SMP data used as input and training data is available on PANGAEA: https://doi.pangaea.

de/10.1594/PANGAEA.935554 (Macfarlane et al., 2021).385

Appendix A: Machine specifications

The evaluation and hyperparameter tuning experiments were run on two different machines. The complete evaluation was

conducted on a 64-bit system with an Ubuntu 18.04.5 (Bionic Beaver) operating system. The machine has 16 GB RAM and an

Intel® Core™ i7-6700HQ CPU @ 2.60GHz × 8 (and the GPU was not used). The machine on which the first hyperparameter

tuning, training, and validation experiments have been run has the following specifications: 64-bit system with an Ubuntu390

20.04.1 (Focal Fossal) operating system, an Intel® Core™ i7-4510U CPU @ 2.00GHz x 4 CPU, and 12 GB RAM (and the

GPU was not used). Final hyperparameter tuning, training, and validation (results presented here) were run on an Azure virtual

machine of the Dsv3-series, namely on a Standard_D4s_v3 2 machine with Ubuntu 18.04 (Bionic Beaver) as an operating

system, 16 GB RAM and 4 vCPUs.

Appendix B: Model setup395

The project was executed in Python 3.6 and all used packages can be found on GitHub in the “requirements.txt” file. Prin-

ciple component analysis, t-SNE, k-means clustering, Gaussian Mixture Models, Bayesian Gaussian Mixture Models, ran-

dom forests, SVMs, and the k-nearest neighbor algorithm were used as made available through scikit-learn by Pedregosa

et al. (2011). 3 The easy ensemble for imbalanced datasets and a balanced variant of the random forest are imported from

imbalanced-learn by Lemaître et al. (2017). 4 All ANN architectures were created with the help of TensorFlow (Abadi et al.,400

2015) 5 and Keras (Chollet et al., 2015) 6. The attention model within the encoder-decoder network was used as provided in

the keras-attention-mechanism package by CyberZHG (2020).

2https://docs.microsoft.com/en-us/azure/virtual-machines/dv3-dsv3-series
3https://scikit-learn.org/stable/
4https://imbalanced-learn.org/stable/
5https://www.tensorflow.org/
6https://keras.io/
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Table C1. Label-Feature correlation between snow types and aggregated features of the SMP profiles. The numbers in the feature names

stand for the window size used during aggregation. “Depth Hoar” (dh), “Depth Hoar Indurated” (dhid), and “Rounded Grains Wind Packed”

(rgwp) show some negative correlations with a subset of the features. “Melted Form of Depth Hoar” (mfdh), “Depth Hoar Wind Packed”

(dhwp) and “Rounded Grains Wind Packed” (rgwp) show a strong positive correlation with at least one feature. “Precipitation Particles” (pp)

does not show strong correlations with any feature, however, a correlation with distance (dist), variance, and force features was expected by

experts. The low correlations could be caused by the data-preprocessing step when “Decomposed and Fragmented Precipitation Particles”

were categorizes as “Precipitation Particles” as well. The class “Rare” shows no correlations with the features since it consists of very

different sub-classes (“Ice Formation” and “Surface Hoar”).

Appendix C: Label-wise feature correlation

Table C1 shows why classification for this dataset is so hard. Some labels have lower correlations among all features, making

it unclear how the right predictions can be achieved on this basis. Other more predictive features are missing, i.e. if a feature405

is discovered that shows a high correlation within this plot, it might boost the overall classification capabilities of the models.

The figure also shows that there might be interaction effects arising since some snow types show very similar correlations

(for example “Melted Form of Depth Hoar” and “Depth Hoard Wind Packed”). In summary, the label-wise feature correlation

reveals the classification difficulty of the dataset and can be used to discover new predictive features.

Appendix D: Pruned decision tree410
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Figure D1. Pruned decision tree extracted from the random forest. Decision trees encode the decision rules for predicting snow type labels.

This approach helps to explain the model’s decisions, a property that is often asked for by domain experts. At each leaf node, a labeling

decision is made. All the other nodes encode the labeling rules that are used to classify each point. Take the root node as an example: If the

variance of the force is smaller or equal to zero, the point is labeled as “Precipitation Particles”. Else it has to be one of the other labels. The

Gini index encodes how well separable the subsets of data points are (the bigger the number the better), and the sample’s number shows how

much percent of the complete data can be found in this subset.
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Appendix E: Confusion matrices
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Table E1. Confusion matrices of all models displaying the predicted and the observed snow types. The number in each cell is the relative

prediction frequency of a label within the observed class. The numbers of the diagonal (upper left to lower right) represent the prediction

accuracy of each label. The stronger pronounced the diagonal and the less pronounced the upper and the lower triangles are, the better are the

predictions. The confusion matrices help for an in-depth analysis of the label-specific performances. This is useful when practitioners want

to choose a model that is suitable for a specific snow classification task.
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