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Abstract. Snow-layer segmentation and classification is an essential diagnostic task for a wide variety of
::
are

:::::::
essential

:::::::::
diagnostic

::::
tasks

:::
for

::::::
various

:
cryospheric applications. The SnowMicroPen (SMP) measures the snowpack’s penetration force at submil-

limetre resolution against the
:::::::
intervals

::
in

:
snow depth. The resulting depth-force profile can be parameterized for density and

specific surface area. However, no information on traditional snow types is currently extracted automatically. The labeling

:::::::
labelling

:
of snow types is a time-intensive task that requires practice and becomes infeasible for large datasets. Previous work5

showed that automated segmentation and classification isin theory possible,
:
,
::
in

::::::
theory,

:::::::
possible

:
but can either not be applied

to data straight from the field or needs additional time-costly information, such as from classified snow pits. To address this

gap, we
::
We

:
evaluate how well machine learning models can automatically segment and classify SMP profiles

::
to

::::::
address

::::
this

:::
gap. We trained fourteen different models, among them semi-supervised models and artificial neural networks (ANNs), on the

MOSAiC SMP dataset, a large
::
an

::::::::
extensive

:
collection of snow profiles on Arctic sea ice. We found that SMP profiles can be10

successfully segmented and classified into snow classes , based solely on the SMP’s signal. The model comparison provided in

this study enables practitioners
::::
SMP

:::::
users to choose a model that is suitable for their task and dataset. The findings presented

will facilitate and accelerate snow type identification through SMP profiles.
::::::
Anyone

:::
can

::::::
access

:::
the

:::::
tools

:::
and

::::::
models

:::::::
needed

::
to

::::::::
automate

::::
snow

::::
type

::::::::::::
identification

:::
via

:::
the

:::::::
software

:::::::::
repository

:::::::::::::
“snowdragon”. Overall, snowdragon creates a link between

traditional snow classification and high-resolution force-depth profiles. With such a tool, traditional snow profile observations15

can be compared to SMP profiles.

1 Introduction

The cryosphere covers around 10% percent of our earth and plays a significant role in stabilizing
::
the

:
earth’s climate (Pörtner

et al., 2019). Snow cover plays a role in optics, heat, and mass balance and is one of the largest
::::
most

:::::::::
significant

:
uncertainties

in global climate models (Sturm and Massom, 2017; Steger et al., 2013; Douville et al., 1995). Snow layer segmentation and20

classification put forth knowledge about the atmospheric conditions a snowpack has experienced (Colbeck, 1987; Fierz et al.,

2009). This knowledge helps to discern fundamental snow and climate mechanisms in the Arctic and to analyze polar tipping
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points. Classification of snow types is essential to assess the state of our cryosphere and is thus of interest for polar, cryospheric,

and climate change research.

Traditionally, snow stratigraphy measurements are made in snow pits. These pits are dug manually , vertically into snowpacks25

and require trained operators and a substantial time commitment. To accelerate these measurements, the SnowMicroPen (SMP),

a portable high-resolution snow penetrometer, can be used (Johnson and Schneebeli, 1998). Schneebeli and Johnson (1998)

::::
They

:
have demonstrated the SMP as a capable tool for rapid snow type classification and layer segmentation. The measurement

results are stored in an SMP profile that consists of the penetration force signal of the measurement tip in Newton and the depth

signal indicating how far the tip moved. Afterwards, the SMP profiles must be manually labeled
::::::
labelled

:::
by

::
an

::::::
expert, which30

requires time , practice, and becomes infeasible for large datasets.
:::
and

:::::::
practice.

:

::
To

:::::::
address

:::::
these

::::::::::::
shortcomings, Machine learning (ML) algorithms could be used to automate this process.

::
the

::::::::
labelling

::::::
process.

:::::::
Instead

::
of

:::::::::
manually

:::::::
labelling

:::::
each

:::::
SMP

::::::
profile,

:::
an

:::
ML

::::::
model

::::
can

::
be

:::::::
trained

::
on

::
a
::::
few

:::::::
labelled

:::::::
profiles

:::
and

::::
can

::::::::::
subsequently

:::::::::
reproduce

:::
the

::::::::
labelling

:::::::
patterns

:::
on

::::
other

:::::::
profiles.

:
As a consequence,

:
this would (1) immensely accelerate the

SMP analysis, (2) enable the analysis of large datasets, and (3) make the training of interdisciplinary scientists in
::::::
support35

:::::::::::::
interdisciplinary

::::::::
scientists

::::
who

:::
are

:::::::::
unfamiliar

::::
with snow type categorizationobsolete.

:

::::
Such

:::
an

::::::::
automatic

:::::::::::
classification

:::
of

::::
SMP

:::::::
profiles

:::::
helps

::
to

::::
find

:::::
layers

:::::
with

::::::
shared

::::::::
properties

::::::
within

::
a

::::
large

:::::
SMP

:::::::
dataset.

::
By

:::::::::::
reproducing

:
a
::::::
trained

::::::::
labelling

::::::
pattern

:::
on

::::
new

::::::
profiles

:::::
with

::::
ML,

::::
SMP

:::::::::::
classification

::
is
:::::::::

up-scaled.
::::::
While

:
it
::

is
::::::::::

impossible

::
to

::::::::
manually

::::
label

::::
and

:::::::
analyse

:
a
::::::
dataset

:::
of

:::::::::
thousands

::
of

:::::
SMP

:::::::
profiles,

::
an

:::::::::::
ML-assisted

:::::::::::
classification

:::::::
enables

::
us

:::
to

:::::::
conduct

:::::::::
completely

::::
new

:::::::
analyses.

:::::::::
Questions

:::
like

:::::
“How

:::::
does

:
a
::::::
typical

::::
snow

:::::
layer

::
in

:::
the

:::::
Arctic

::::
look

:::::
like?”

::::::::
suddenly

:::::
move

:::::
within

::::::
reach.40

::::::::
Statistical

:::::::
analyses

::
of

::::::
signal

:::
and

::::
layer

:::::
types

::::
rely

::
on

:::::::::
consistent,

:::::
large,

::::
and

::::
fully

:::::::
labelled

::::
SMP

:::::::
datasets.

The nearest neighbor
::::::
Several

:::::::
previous

::::::
works

::::
have

:::::::::
addressed

:::
the

::::
task

::
of

::::::::::::
automatically

:::::::::
classifying

:::::
snow

:::::
grain

:::::
types

::::
with

::::::::::::::
machine-learning

::::::::::
algorithms.

:::
The

::::::
nearest

:::::::::
neighbour method of Satyawali et al. (2009) was the first model that automated both

::
the

:
segmentation and classification of SMP profiles without being dependent on snowpit information. Their algorithm could

predict
:::::::
needing

::::::::
additional

:::::
snow

:::
pit

::::::::::
information.

:::
To

::::::
assign

:
a
:::::
grain

::::
type

::
to

:::
an

:::::::::
unlabelled

::::
data

:::::
point,

:::
the

:::::::
method

:::::::
chooses

:::
the45

::::
most

:::::::
frequent

:::::
class

::::::::
occurring

::
in

:::
the

:::::::::::::
neighbourhood

:::
of

:::
this

::::
data

:::::
point.

::::
The

:::::::::::::
neighbourhood

:::::::
contains

:::
the

:::::
most

::::::
similar

::::::
points

::
to

:::
the

:::::::::
unlabelled

::::
data

:::::
point.

:::::
Their

::::::::
algorithm

:::::::
predicts

:
five different snow types , however, their testing dataset was too small

to be representative and they excluded data points with uncertain snow classes. Furthermore, Satyawali et al. (2009) achieved

only a high classification performance by including knowledge-based ruleswhich do not generalize on datasetsfrom other

regions or seasons.
:::::
(“New

:::::::
Snow”,

:::::::
“Faceted

:::::::
Snow”,

:::::::
“Depth

::::::
Hoar”,

:::::::::
“Rounded

:::::::
Grains”,

::::::::::::::
“Melt-Freeze”),

::::
with

:::
an

::::::::
accuracy50

::::::
ranging

:::::
from

::::
0.68

::
to
:::::

0.94.
:::::::::

However,
:::
this

:::::
high

:::::::::::
performance

::
is

::::
only

::::::::
achieved

:::
by

:::::::::
integrating

:::::::
specific

::::
and

::::::::
inflexible

::::::
expert

::::
rules.

::::
For

::::::::
example,

:::
one

::::
rule

:::::::
ensures

:::
that

:::
no

::::::::
“Faceted

::::::
Snow”,

:::::::
“Depth

::::::
Hoar”,

::
or

:::::::::
“Rounded

:::::::
Grains”

:::::
occur

:::::::
between

:::::
layers

:::
of

:::::
“New

::::::
Snow”,

:::
but

::::::::
precisely

::::
this

:::::::
happens

:::::
under

::::::
certain

:::::::::::::
circumstances,

::
as

::::
they

:::::
point

:::
out

::::::::::
themselves.

::::::::::
Hard-coded

::::
rules

::::::
might

:::::::
improve

:::
the

::::::::::
performance

::
of

::::
one

::::::
dataset,

:::
but

::::
they

::::::
cannot

:::::::
capture

::
all

::::::::::
phenomena

:::
and

::::
will

:::
not

:::::::::
generalize

::::
well

::
to

::::
other

::::::::
datasets.

:::
The

:::::::::::
performance

:::::
results

:::
are

::::
also

::::::
limited

:::
by

:::
the

:::
fact

::::
that

::::
their

::::::
testing

:::
set

::::::
consists

:::
of

::::
only

::::
three

:::::
SMP

:::::::
profiles,

:::
i.e.

:
it
::
is
:::
not

:::::
clear55

:::
how

::::::::::::
representative

::::
their

::::::
results

:::
are.

::
In

::::::::
addition,

::::
their

:::::
results

::::
can

:::::
hardly

:::::::
transfer

::
to

:::
the

::::::::
real-world

::::::
setting

:::::::
because

::::
they

::::::::
explicitly

::::::
exclude

::::
any

:::::
mixed

:::::
grain

:::
type

::::::
layers.

::::::::
Suppose

::
an

::::::::
automatic

:::::::::::
segmentation

::::
and

:::::::::::
classification

::::::::
algorithm

::
is

:::::::
intended

::
to

:::::
work

::::
with
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::::::
profiles

::::::
straight

:::::
from

:::
the

::::
field.

::
In

::::
that

::::
case,

::::
this

::::::::
algorithm

::::::
should

::
be

::::
able

::
to

:::::
handle

::::::
mixed

::::::
classes

:::
and

::::::
diverse

:::::
snow

::::::::::
phenomena

:::
and

::
be

::::::::::
thoroughly

:::::
tested.

:

Havens et al. (2012)
::::::::::::::::
Havens et al. (2012)

::::::
worked

::::
with

:::::::
random

::::::
forests

::::
and

:::::
SVMs

::
to
:::::::

classify
:::::
SMP

:::::::
profiles.

:::::
They used pre-60

viously segmented SMP profiles and classified the snow
::::
grain

:
type of each layer with the help of a random forest model.

Their work builds
::::
They

:::::
build

:
upon their previous work with single decision trees (Havens et al., 2010). Their model could

be improved further by adding more than three snow types , allowing also for layers thinner
::::
They

::::::
trained

:::
the

::::::
model

::
on

:::::
three

:::::::
different

:::::
grain

::::
types

::::::
(“New

:::::::
Snow”,

:::::::::
“Rounded

:::::::
Grains”,

::::::::
“Faceted

::::::::
Grains”),

::::::::
achieving

:::::
error

::::
rates

::::::::
between

:::::
16.4%

::::
and

::::::
44.4%

:::::::::
(depending

:::
on

:::
the

:::::::
dataset).

::::::::
Notably,

:::::::::::::::::
Havens et al. (2012)

:::::::
requires

::::::
profiles

::::
that

:::::
have

::::
been

::::::::
manually

::::::::::
segmented

::::::::::
beforehand.65

::::
Since

::::
this

::
is

::::
done

:::::::::
manually,

:::
this

:::::
takes

:
a
:::::::::::
considerable

::::::
amount

::
of

:::::
time,

::::::
raising

:::
the

:::::::
question

:::
of

::
to

::::
what

:::::
extent

:::
the

::::
task

:::
has

:::::
been

:::::::::::
“automated”.

::::
Only

:::::
layers

:::::
larger

:
than 100 mm and most importantly, by automating the segmentation step as well

:::::::::
(sometimes

:::
20

::::
mm)

:::::
could

::
be

:::::::::
considered

:::
due

::
to

:::::::
manual

:::::::::::
segmentation.

::
In

:::
the

:::::
field,

:::::::::
particularly

:::
for

::::::::
avalanche

::::
risk

:::::::::
assessment

:::::::::::::::
(Lutz et al., 2007)

:
,
:
it
::
is

::::::::
important

::
to

:::::
detect

:::::
layers

::::
only

::
a
:::
few

::::::::::
millimetres

:::::
thick.

:::::::::
Improving

::
on

:::
the

::::
work

:::
of

:::::::::::::::::
Havens et al. (2010)

:::::
would

:::
thus

:::::::
include

::::
more

:::::
grain

:::::
types,

::::::
thinner

::::::
layers,

:::
and

:::
no

::::
need

:::
for

::::::
manual

:::::::::::
segmentation.70

The support vector machine (SVM) approach by King et al. (2020) automated both the

::::
More

::::::::
recently,

:::::::::::::::
King et al. (2020)

:::::
trained

:::::::
Support

::::::
Vector

::::::::
Machines

:::::::
(SVMs)

:::
on

::::
SMP

:::::
force

::::::
signals

:::
and

::::::
manual

:::::::
density

:::::
cutter

:::::::::::
measurement.

:::::
Both segmentation and classification ,

::
are

:::::::::
conducted

:::::::::::
automatically.

:::::
They

:::::::::
distinguish

:::::
three

:::::
types

::
of

::::
snow

::::::
grains

::::::::::
(“Rounded”,

:::::::::
“Faceted”

:::
and

:::::::
“Hoar”)

::::
and

:::::::
achieve

:::::::::::
classification

:::::::::
accuracies

:::::::
between

::::
0.76

:
and achieved good accuracy scores

for three different snow types. However, they are relying on additional snowpit information to achieve these results
::::
0.83.

::::
The75

::::::
profiles

:::::
were

:::::::
collected

:::
on

::::::
Arctic

:::
ice

::
in

:::
the

::::
same

:::::::
region,

:::::
which

::::::
means

::::
that

:::
the

::::::
profiles

::::::
might

::
be

:::::
more

:::::::::::
homogeneous

:::::
than

::
in

::::
other

::::::::
datasets.

:::
The

:::::::
model’s

:::::::::::::
generalisability

::::::
could,

::
in

::::::
theory,

::
be

::::::::
enhanced

:::
by

:::::::
training

:
it
:::
on

:::::::::
additional,

:::::::
broader

:::::::
datasets.

:::::
Most

::::::::::
importantly,

:::
the

:::::
SVM

:::::::
method

::
by

::::::::::::::::
King et al. (2020)

::::
relies

:::
on

::::::::
additional

:::::::
manual

:::::::
density

:::::
cutter

::::::::::::
measurement,

::::::::::::
time-intensive

::::
snow

:::
pit

::::::::::::
measurements

:::
that

:::
are

:::
not

::::::
always

::::::::
available.

:::::
Thus,

::::::::
similarly

::
as

:::
for

::::::::::::::::
Havens et al. (2012)

:
,
::::
more

:::::
snow

:::::
grain

::::
types

::::::
would

::::
make

:::
the

:::::
work

::::
more

:::::::::
applicable

::
in

:::
the

::::
field,

::
as

::::
well

::
as

::::::::
eliminate

:::
the

:::::::
necessity

:::
of

::::::::
additional

::::::
manual

::::::
density

:::::
cutter

:::::::::::::
measurements.80

::
In

::::::::
summary,

:::::::
previous

:::::
work

:::::::
showed

:::
that

:::::::::
supervised

::::::::
machine

:::::::
learning

:::::::::
algorithms

:::
are

:
a
:::::::::
promising

:::::::
pathway

:::
to

::::::::
automatic

:::::
snow

::::
grain

::::::::::::
categorization.

While all these works put forward the task of automated SMP analysis, SMP practitioners
::::
users still lack a method that can

be used in practice. Practitioners
:::::
Users need a model that fully automates their SMP analysis: (1) without the need of digging a

snow pit, (2) picking layers manually,
:
or (3) constructing specific knowledge rules. Furthermore, SMP practitioners

::::
users

:
need85

models that can deal with SMP profiles coming straight from the field. This implies that (4) the profiles have multiple snow

types (more than three) and that (5) no layers are excluded. The aim of this study is to provide models that fully automate SMP

analysis and can directly be used in the field, addressing all five mentioned needs.

To this end, we implemented fourteen different machine learning (ML) models and compared their performance on the

MOSAiC SMP dataset, consisting of 164 labeled
::::::
labelled

:
profiles (see Fig. 1). Thereby, we provide the first comparable90

performance overview of different models classifying and segmenting SMP profiles. Moreover, we used – to the best of our
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knowledge – for the first time semi-supervised methods and artificial neural networks (ANNs) for SMP classificationand

segmentation.

Results show that especially the artificial neural networks (ANNs), such as the long short-term memory (LSTM) and the

Encoder-Decoder, can produce predictions that are similar to profiles labeled
::::::
labelled

:
by experts and achieve the best results95

among all models. However, the choice of the model depends mostly on the individual needs of an SMP user because fac-

tors such as explainability, desired sensitivity to rare classes, available time, and computational resources must be taken into

consideration.

The main
::::
work

::::::::
presented

::::
here

::
is

:
a
:::::::::::::
methodological

:::::::::::
contribution.

:::
We

:::::::
provide

::::::
insights

::::
into

:::::
which

::::
ML

:::::::::
algorithms

:::
can

:::
be

::::
used

::
for

:::
the

:::::::::
automatic

:::
and

:::::::::
consistent

:::::::::::
classification

::
of

::::
large

:::::
SMP

:::::::
datasets.

::::
Our

:::::::
findings

:::
can

::
be

:::::::
applied

::
to

:::::::
different

:::::
SMP

:::::::
datasets

::
or100

::::::
similar

::::
data.

:::
The

:::::
more

::::::::::
fine-grained

:
contributions of this study are:

– Demonstration that SMP profiles straight from the field can be automatically segmented and classified; without manual

preparation of the profiles or additional snow-pit data
::::
after

:::::::
training

::
on

:
a
:::::::
smaller

:::
set

::
of

::::
SMP

:::::::
profiles,

:

– Evaluation of semi-supervised models and ANNs for SMP classificationand segmentation
:
,

– Detailed comparison of different ML models for SMP classificationand segmentation ,
:

105

–
:::
The

::::::::::
snowdragon

:::::::::
repository

:::::
which

::::::::
provides

:::
the

::::
tools

::
to

::::::::
automate

::::
SMP

::::::::
labelling.

:

In the following section (Sect. 2) the data and the classification task are described, as well as the fourteen different models

that were used in this study. In Sect. 3, the models’ performances are presented. Subsequently, the results, their limitations,

and future work are discussed in section 4. The impact of this work is addressed in the conclusion (Sect. 5). The code and data

availability is outlined directly after the conclusion.110

2 Methods

2.1 Data

All experiments throughout this study used SnowMicroPen profiles from snow on Arctic sea ice. 3680 profiles were collected

during the MOSAiC expedition between October 2019 and September 2020 (Nicolaus et al., 2022). 164 profiles from the cold

season (January – May 2020) were labeled and evaluated for this study
::::::
labelled

::::
and

::::::::
evaluated

::::
here

:
(see Fig. 1). This study115

focuses only on profiles of cold snow, as there exists no standardized interpretation of SMP force profiles
::::
exists

:
for wet snow.

All profiles collected in the cold season are referred to as “MOSAiC winter data” in the following. The labels indicate which

snow type is found at the respective position of the profile. Refer to Fierz et al. (2009) for descriptions of the different snow

types referenced here and a classification guideline for snow particles visually observed.The labeling 1

:::
The

:::::
main

::::::::::::
measurements

::::::::
collected

::::
were

::::::
signals

:::::
from

:::
the

:::::
Snow

:::::
Micro

::::::::::::
Penetrometer

::
to

::::::
reduce

:::::::
operator

::::
bias

::
in

:::
the

:::::::
dataset.120

:::::::::
Throughout

:::
the

:::::::::
MOSAiC

:::::::::
expedition,

::::::::
different

:::::::
operators

:::::
were

:::::::::
conducting

:::
the

:::::
snow

:::
pit

::::::::::::
measurements.

:::
As

:
a
::::::

result,
:::::::::
traditional

1
::::::::::::
Fierz et al. (2009)

:::
refers

::::
only

:
to
::::::
visually

::::::
observed

::::
snow

::::
grains;

:::
not

:
to
::::

SMP
:::::
signals.
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Figure 1. All 164 labeled
:::::
labelled

:
SnowMicroPen (SMP) profiles used for training, validation (80%), and testing (20%). Each bar represents

one SMP profile. The colors
:::::
colours

:
encode the different snow grain types. The top of each bar is the air-snow interface and the bottom of

each bar is the
::::::
profile’s snow-ground interfaceof the profile. The in-picture figure illustrates the force signal (grey) and

:::
the mean force signal

(blue) of a single SMP profile (S31H0368). The snow-air interface is on the left, and the bottom of the profile is on the right. The background

shading represents the ground-truth labeling
:::::::
labelling of the profile.

::::::::::
stratigraphy

::::::
analysis

::::
and

:::::
in-situ

:::::
snow

:::::
grain

:::::::::::
classification

::::
from

:::::
snow

:::
pits

:::::
would

:::
not

:::
be

:::::::::
continuous

:::::
since

::::
they

::::
vary

::::
from

::::::
person

::
to

::::::
person.

:::
In

:::::::
contrast,

::::
the

::::
SMP

::::
can

:::::::
provide

:::::::
profiles

::::
fast,

::::
with

:::::
little

:::::::
physical

:::::::
labour,

:::
and

:::::::::::::
independently

::::
from

::::
the

::::::
person

:::
who

:::::::::
measures

:::::
them.

:::::::::::::::::::::
Merkouriadi et al. (2017)

:::::
could

:::::::
measure

::::
only

:::
27

:::::
snow

::::
pits

::::
with

::::::::::
stratigraphy

:::::
under

:::::::
similar

:::::::::
conditions

::::::::
compared

::
to

::::::
several

:::::::::
thousands

::::::
(3680)

:::::
during

:::::::::
MOSAiC.

::::::
Under

:::::
Arctic

::::::::::
conditions,

::::
with

::::::::
changing

::::::::
personnel,

:::
the

:::::
SMP

:::::::
reduces125

:::::::
operator

::::
bias

:::
and

::::
can

::::::
provide

:::
us

::::
with

:::::
many

:::::::::
consistent

:::::::
profiles.

:::
In

::::
turn,

:::::::::
up-scaling

:::::::::
consistent

::::::::
labelling

::
of

:::::
those

:::::::
profiles

::
is

::::::
exactly

:::
the

::::
type

::
of

::::
task

:::
that

::::
ML

:::::::::
algorithms

:::
can

::::::
tackle.

::
In

:::::::
addition

::
to

:::
the

::::
SMP

:::::::
signals,

::::::::
Micro-CT

:::
and

::::
NIR

:::::::::::
photographs

::::
were

::::::::
recorded

::::::::
whenever

:::::::
possible

::
to

::::::
validate

:::
the

::::::::::
subsequent

:::::::
labelling

::
of

::::
the

::::
SMP

:::::::
profiles.

:::::::::
However,

:::::
these

::::::::
additional

::::::::::::
measurements

::::
are

:::
not

::::::::
available

:::
for

::::
each

:::::
SMP

::::::
profile

:::
due

::
to
:::::

time

:::::::::
constraints

:::
and

:::
the

:::::
harsh

::::::
Arctic

:::
sea

:::
ice

:::::::::
conditions.

:::::
Only

:
a
::::
few

:::::
hours

::::
were

::::::::
available

::
to

:::::::
perform

:::
all

::::::::::::
measurements

:::::
within

::::
one130

::::
snow

:::
pit.

::::::
These

:::::::::::
measurements

:::::::
become

::::
very

::::::::::
challenging

::::
with

:::::
wind

::::::::
velocities

::
up

::
to

:::
25

:::
m/s

:::
and

:::::::::::
temperatures

::
of

:::::
−30◦

:::::::
Celsius.

:

:::
The

::::::::
labelling

::
of

:::
the

::::
SMP

::::::
profiles

:
was conducted by a snow expert and is solely

:::
two

:::::
snow

::::::
experts

:::
and

::
is

:
based on the proper-

ties of the force signal (magnitude, frequency, and gradient) and the signature of the SMP-signal (Schneebeli et al., 1999). After

one labeling phase, all profiles were revisited by the same expert
::::
SMP

::::::
signal.

::::
The

:::::::
labelling

:::::::::
procedure

:
is
:::::::::
described

::
in

:::::
detail

::
in

::::::::
Appendix

::
B,

::::::::
building

::::
upon

:::
the

::::::
notion

:::
and

:::::::::::
observations

::
of

::::::::::::::::::::
(Schneebeli et al., 1999)

:
.
::::
The

:::
first

::::::::
labelling

:::::
phase

::::
was

:::::::::
conducted135

::
by

:::
one

::::::
expert,

::::
and

::
in

:::
the

::::::
second

:::::
phase,

::::
two

::::::
experts

:::::::
revisited

:::
the

:::::::
profiles to ensure consistent and correct labeling. The surface

and the ground of the profiles were detected automatically by the pyngui application of the snowmicropyn package 2. The

2
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labeled
::::::::
labelling.

::::
The

:::::::
labelling

:::::::
process

:::::::
involves

:::::
using

:::::::::
Micro-CT

:::::::
samples

::::
and

::::
NIR

:::::::::::
photography

::
to

:::::::
validate

:::
the

:::::
grain

:::::
types

::::::::
identified

::::
from

:::
the

::::
force

::::::
signal

:::::
where

:::::::
possible.

::::::
When

::::::::
assigning

:::
the

:::::
labels

::
to

:::
the

::::
SMP

:::::::
profiles,

:::
we

::::
lean

::
to

::
the

:::::::::::::::
above-mentioned

::::::::::
international

:::::::::::
classification

::::::::
guideline

::
of

:::::::
seasonal

:::::
snow

::
on

:::
the

::::::
ground

:::::::::::::::
Fierz et al. (2009).

::::::::
However,

:::
we

:::::
regard

:::
the

:::::
labels

::::::::
assigned140

::
to

:::
the

::::
SMP

::::::
signals

::
as

:::::
mere

::::::::::::
approximators

:
.
::::::
During

:::
the

:::::::
labelling

:::::::
process,

:::::
signal

:::::
types

:::
are

:::::::
grouped

::::::::
together,

:::
and

:::
we

::::
infer

:::::
from

:::::::::
Micro-CTs

:::::
which

:::::
grain

::::
type

:::::::
matches

::::
each

:::::
group

::::
best.

:::::
Since

::
we

::::
seek

::
a

:::::::
language

::::
that

:
is
::::::::
common

::
to

:::
the

::::
snow

::::::::::
community,

:::
we

:::
are

::::
using

:::
the

:::::
labels

::::::::
provided

::
by

::::::::::::::::
(Fierz et al., 2009)

:::::
where

::::::::
possible.

::::
Since

::::::::::::::::
(Fierz et al., 2009)

::::::
focuses

:::
on

::::::
Alpine

::::
snow

::::
and

::::
does

:::
not

::::
cover

:::
all

:::::
snow

::::
types

:::
on

:::::
Arctic

::::
sea

:::
ice,

::::
such

::
as

::::::::
different

:::::
forms

::
of

::::::
“Depth

::::::
Hoar”,

:::
we

::::::
extend

:::::
those

:::::
labels

:::::
where

:::::::::
necessary.

::::
The

:::::::
resulting

:::::::
labelled

:
profiles were used during training, testing, and validation, while some of the unlabeled

::::::::
unlabelled

:
profiles145

were used for semi-supervised models and during generalization
:::::::::::::::
out-of-distribution tests.

We preprocessed each SMP profile as well as the complete labeled dataset.
::::::
labelled

:::::::
dataset.

:::
The

:::::::
surface

:::
and

:::
the

::::::
ground

::
of

:::
the

::::::
profiles

::::
were

::::::::
detected

:::::::::::
automatically

::
by

:::
the

:::::::::::::
snowmicropyn

:::::::
package 2.

:
For each SMP profile,

:
we replaced negative force values

with 0, summarized the signal into bins (1 mm), and added additional features. During binning we determined mean, variance,

maximum, and minimum force signal values . When adding features, time-dependent and location-dependent information is150

especially relevant:
:::::
values

:::
for

:::::
those

::::
bins.

::::::
Those

::::::
values

::::
were

::::
also

::::::::::
determined

:::
for

:
a
:
4 mm and 12 mm sliding windows were

applied to extract additional time-dependent information, including variables from the
::::::
moving

:::::::
window.

:::::::::
Moreover,

:::::::::::::::::::::::::::
Löwe and Van Herwijnen (2012)

:
’ Poisson shot noise model from Löwe and Van Herwijnen (2012). For location-dependent information, we included

::::
was

::::
used

::
to

::::::
extract

::
δ,

::
f ,

::
L
::::
and

:::
the

:::::::
median

::::
force

:::::
value

:::
for

::
a
::
4

:::
and

:::
12

::::
mm

:::::::
window.

:::
We

::::::
added

::::::
further

::::::::::::::
depth-dependent

:::::::::::
information,

::::::::
including

:::
the

:
distance from the ground and the position within the snowpack .

:::
for

::::
each

::::
data

::::::
point.

:::::
Refer

::
to

:::::
Table

:::
C1

:::
in155

::::::::
Appendix

::
C

:::
for

::
an

::::::::
overview

::
of

:::
all

:::::::
features

::::
used

:::
for

::::
each

::::
SMP

:::::::
profile,

:::
and

::
to

:::::
Table

:::
C2

::
to

:::
see

:::
the

::::::
feature

::::::::::
importance

:::
for

::::
each

::::
grain

:::::
type.

We preprocessed the complete labeled
::::::
labelled

:
dataset by normalizing it, removing profiles from the melting season, and

merging snow classes. For example, “Decomposed and Fragmented Precipitation Particles” are merged with the class “Precipi-

tation Particles” since they represent a similar type of snow. The few occurring “Ice Formations” and “Surface Hoar” instances160

::
in

::
the

:::::::::
MOSAiC

::::::
dataset are summarized in the class “Rare”.

:::::
While

:
a
::::
high

:::::::::::
classification

::::::::::
performance

::::::
cannot

:::
be

:::::::
expected

:::
for

:::
the

:::
rare

:::::::
classes,

::
we

::::
still

::::::
include

::::
them

::
to
:::::
show

::::
how

:::
the

::::::
models

:::::::
perform

::
on

:
a
::::::::::
“real-world

:::::::
dataset”

:::
that

::
in

:::::
most

::::
cases

::::
will

:::
also

:::::::
include

::::::
classes

::::
with

:::
few

:::::::::::
occurrences. The data preprocessing ensures that the dataset is clean and that all necessary information, such

as time-dependent
:::::::::::::
depth-dependent

:
information, is available during classification.

The resulting dataset has the following properties: (1) There are multiple, noisy, and overlapping classes. (2) There is a165

between-class imbalance,
:::
i.e.

:::::
some

:::::
grain

::::
types

:::::
occur

:::::
much

:::::
more

::::::::
frequently

::::
than

::::::
others. (3) There is a within-class imbalance,

i.e. sub-groups within one class are imbalanced
::::
some

:::::
grain

::::::
classes

::::::
contain

::::::::
different

:::::::::::::::
sub-grain-classes,

:::
but

:::::
some

::
of

:::::
them

:::
are

::::
more

:::::::
frequent

::::
than

::::::
others. (4) The labeling

:::::::
labelling of classes is afflicted with uncertainty, i.e. snow experts themselves are

not sure to which class exactly some data points belong. The complexity of the data set complicates classification and lowers

the maximum achievable accuracy.170

2https://snowmicropyn.readthedocs.io/en/latest/
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2.2 Task description

We compare the capabilities of different models to classify and segment the profiles of the MOSAiC winter SMP dataset. To

this end, the models first classify each data point of the signal and then summarize the classified points into distinct snow layers

(“first-classify-then-segment”). This task can be solved with different learning and classification techniques.

The task can be addressed via independent classification or sequence labeling
::::::::
labelling. In independent classification,175

each individual point is classified independently, without looking at other data points. The underlying assumption is that each

individual data point carries enough information to be classified solely on that basis. In contrast, sequence labeling
:::::::
labelling

assumes that the data is an intra-dependent sequence, where the label of each data point also depends on the preceding labels

(Nguyen and Guo, 2007).

The models can follow either the supervised, unsupervised, or semi-supervised learning regime. In supervised learning,180

labels are provided to learn an input-output mapping function (Russell and Norvig, 2002). In unsupervised learning, patterns

and structure are found in unlabeled
:::::::::
unlabelled data (Ghahramani, 2004), however, no classification is possible, which is why

no unsupervised models are employed here. Instead, semi-supervised models are used, which are able to find structures in

sparsely labeled
:::::::
labelled data and leverage this information during classification. In the following, all models employed in this

work are shortly presented and put in the context of their learning and task type.185

2.3 Models

The majority vote classifier is used as the baseline for the performance comparison and simply predicts always the majority

class (“Rounded Grains Wind Packed”). It satisfies the criteria that a baseline should not require much expertise, should be

easy to build, and fast to evaluate (Li et al., 2020).

The cluster-then-predict models employed in this study, can be separated into three different semi-supervised and indepen-190

dent classification models. Unsupervised methods are used to find clusters in the dataset and subsequently, a supervised model

is used to assign labels to the cluster (Soni and Mathai, 2015; Trivedi et al., 2015). As
::
an unsupervised model, k-means clus-

tering (Forgy, 1965; Lloyd, 1982), mixture model clustering (GMM) (Bishop, 2006) and Bayesian Gaussian mixture models

(BGMM) (Bishop, 2006) were used. The supervised part of the model is a simple majority vote within the clusters, in order to

see if the unsupervised model adds enough information to beat the majority vote baseline.195

Label propagation is a graph-based, semi-supervised, independent classification algorithm. It propagates the labels of

labeled
:::::::
labelled data points to unlabeled

::::::::
unlabelled

:
ones (Zhu and Ghahramani, 2002). Here, a modified version of this algo-

rithm by Zhou et al. (2004) is used (also known as “label spreading”) (Bengio et al., 2006; Pedregosa et al., 2011).

Self-trained classifiers turn a given supervised classifier into a semi-supervised independent classifier. It follows an iterative

approach of training a supervised model on labeled
::::::
labelled

:
data, predicting more data with the model, and retraining the model200

with the most confident predictions (Yarowsky, 1995).

Random forests (RFs) are ensembles of diversified decision trees (supervised and independent classification). The diversifi-

cation happens via tree and feature bagging, where only subsets of data or features are used during training (Ho, 1995; Breiman,
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2001). Decision trees are simple to build, explainable, white-box classifiers and for these reasons among the most popular ma-

chine learning algorithms (Wu et al., 2008). Additionally, a balanced random forest was used with random under-sampling to205

balance the data (Chen et al., 2004).

Support vector machines (SVMs) construct a hyperplane in a high-dimensional space to solve binary classification tasks

(Cortes and Vapnik, 1995; Han et al., 2012) (supervised and independently). When a problem is non-linearly separable, the

input data can be projected into a higher-dimensional space until the problem becomes linearly separable. The kernel trick

can be used to circumvent the computationally expensive data transformation involved here. It directly extracts a non-linear210

optimal hyperplane (Schölkopf et al., 2002).

K-nearest neighbours (KNN) is a local, non-parametric classification method that compares samples and classifies new

samples based on their k nearest training data points (supervised and independently). The class of the prediction sample is

determined via
:
a
:
majority vote. (Fix and Hodges Jr, 1952; Cover and Hart, 1967)

Easy ensemble classifiers are ensembles of balanced adaptive boosting classifiers (supervised and independent). The215

method is especially helpful for imbalanced datasets since the learners are trained on different bootstrap samples, which are

balanced via random under-sampling. (Liu et al., 2008)

Long short-term memories (LSTMs) are a form of artificial neural networks (ANNs) and can perform supervised sequence

labeling
:::::::
labelling

:
tasks. ANNs incrementally update their decision function that describes the decision boundary between

classes. ANNs have different nodes, which can be seen as representing different parts of the functions which are weighted220

differently. During training, the weights of the ANN are optimized by minimizing a loss function via gradient descent. A long

short-term memory can handle time-series data. It consists of different memory cells so the LSTM can forget information that

is no longer needed, remember information that is required for future decisions, and retrieve information that is required for

current decisions. (Hochreiter and Schmidhuber, 1997; Jurafsky and Martin, 2021)

Bidirectional LSTMs (BLSTMs) connect two independent LSTMs where the first LSTM processes the inputs forward and225

the second one backward
::::::::
backwards. The outputs of both LSTMs are connected to one output. This architecture is helpful when

the dependencies of a time series go in both time directions, which is the case for snow profiles. (Schuster and Paliwal, 1997;

Jurafsky and Martin, 2021)

Encoder-decoder networks consist of an ANN encoder that compresses the time-dependent information into a vector and a

decoder that uses this information to solve a supervised sequence labeling
:::::::
labelling task. Additionally, the attention mechanism230

can be used to strengthen the ability to learn long-term dependencies by focusing only on the parts of the input sequence that

are relevant for the current time step. (Bahdanau et al., 2014; Jurafsky and Martin, 2021)

2.4 Evaluation

In this work, (1) the performance of different models is compared, (2) differences in the classification of different snow types

are analyzed, and (3) the generalization capability of the best-performing model is examined. (1) The performance comparison235

is done by looking at the metrics of each model and the specific predictions on the test data set. The metrics used here are

accuracy, balanced accuracy, weighted precision, AUROC
:::
F1

:::::
score,

::::
area

:::::
under

:::
the

::::::
receiver

::::::::
operating

::::::::::::
characteristic

::::::::
(AUROC),
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log loss, fitting, and scoring time
:::
(see

:::::::::
Appendix

::
D

::
for

::::::
further

::::::::::::
explanations). (2) The label-wise performance is analyzed with

the help of label-wise accuracy plots and ROC
:::::::
receiver

::::::::
operating

:::::::::::
characteristic

::::::
(ROC) curves. ROC is the receiver operating

characteristic and plots
:::::
curves

::::
plot the true positive rate versus the false positive rate. The higher the area under the ROC240

curve(ROC AUC / AUROC), the clearer can the model
::
the

::::::
model

::::
can separate between positive and negative samples. (3)

The generalization capability is tested by running the best-performing model on 100 random profiles from different parts of

MOSAiC winter data. This data is
::::
These

:::::::
profiles

:::
are

:
outside of the distribution of the training, validation, and testing data ,

however, it contains
:::
and

::
we

:::::
refer

::
to

::::
them

:::
as

::::::::::::::::
“out-of-distribution

::::::::
profiles“.

:::::
Here,

:::
the

:::::::::::::::::
“out-of-distribution”

::::::
profiles

:::::::
contain the

same classes as the training data, i.e.
:
so

:
the model still has a chance to predict the correct labels. Evaluating these three aspects245

ensures that practitioners
::::
users

:
can choose a model and know (1) how it performs compared to other models, (2) what to expect

from the snow type specific
:::::::::::::::
snow-type-specific predictions, and (3) how robust their

:
a

::::::
chosen model will be.

2.5 Experimental setup

The experimental setup includes a training, validation, and testing framework: roughly 80% of the labeled
:::::::
labelled dataset is

used for training and validation, while the other 20% is set aside for testing. Validation is realized as a 5-fold cross-validation250

(Stone, 1974). The hyperparameters were tuned on the validation data and the best found
::::::::
best-found

:
hyperparameters were

used during testing.

Hyperparameter tuning is
::
the

:::::::
process

::
of

::::::::
searching

:::
the

:::::::
optimal

:::::::
internal

:::::::
learning

::::::
settings

::
of
:::
an

:::
ML

::::::
model.

:::::::::::::::
Hyperparameters

::::::
control

:::
the

:::::::
learning

:::::::
process

:::
of

:::
the

:::::::
models,

:::::::
whereas

::::::::::
parameters

:::
are

:::::
learnt

:::
by

:::
the

:::::::
model.

::::
The

:::::
tuning

:::
is performed on the

validation data . The best found hyperparameters are used for testing. Moderate hyperparameter
:::
and

:::
the

::::::::::::::
hyperparameters

::::
that255

::::::
achieve

:::
the

:::::::
highest

::::::::::
performance

:::
for

:::::
their

:::::
model

:::::::
chosen

:::
for

:::::::::
subsequent

::::::
model

:::::::::
evaluation.

:::::
Here,

:
tuning was applied and all

:::::::::
moderately

::::
and

::::
with

::
a

::::::
simple

::::
grid

::::::
search.

:::
All

:
tuning results can be found in the GitHub repository. Specifications of the

machine on which the experiments were run can be found in Appendix E and descriptions of the model setup can be found in

Appendix F.

3 Results260

3.1 Classification performance of models

Overall, the results show that an automatic classification and segmentation of SMP profiles with ML algorithms is possible,

even if no further information such as snow-pit data or manual segmentation is provided. Category-wise all semi-supervised

models were not performing particularly well (see Table 1). Only the self trainer
:::::::::
self-trainer could compete with models from

other categories, but this might be the case because the self trainer
:::::::::
self-trainer

:
is based on the

:
a
:
balanced random forest. The265

supervised models achieved mixed performances: Some models such as the random forests and the SVM are clearly performing

well, whereas other models such as the KNN and the easy ensemble are underperforming. Overall, the random forest was the

best model in the supervised category since it achieves the highest absolute accuracy (0.73) and F1-Score (0.73). However,
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Category Model Absolute

Accu-

racy

Balanced

Accu-

racy

Prec-

ision

F1

Score

ROC

AUC

Log

Loss

Fitting

Time

Scoring

Time

Baseline Majority Vote 0.39 0.14 0.15 0.22 nan nan < 1 < 10−3

Semi-
Supervised

K-means 0.62 0.44 0.60 0.61 nan nan 385 0.01

GMM 0.65 0.36 0.57 0.61 nan nan 151 0.008

BGMM 0.65 0.38 0.63 0.63 nan nan 225 0.009

Self trainer
::::::::
Self-trainer 0.69 0.67 0.74 0.71 0.92 0.84 19 0.29

Label propagation 0.71 0.54 0.72 0.71 0.92 1.5 10 3.35

Supervised

Random Forest 0.73 0.60 0.73 0.73 0.93 0.70 72 0.97

Balanced RF 0.70 0.67 0.74 0.71 0.92 0.84 9.9 0.58

SVM 0.71 0.66 0.73 0.71 0.93 0.67 19 7.45

KNN 0.71 0.54 0.71 0.71 0.89 3.58 < 1 1.84

Easy Ensemble 0.62 0.59 0.70 0.64 0.88 1.66 46 42.5

ANNs

LSTM 0.75 0.58 0.75 0.75 0.94 0.63 349 2.3

BLSTM 0.74 0.58 0.74 0.73 0.93 0.79 975 3.4

Encoder-Decoder 0.78 0.54 0.78 0.77 0.94 0.64 2911 5.8

Table 1. Results of different models from the categories baseline, semi-supervised, supervised and ANNs. The best values among all models

are bold. Second-best values among all models are italic. The best values among one category are underlined. ROC AUC and logistic loss

(log loss) could not be determined for the baseline and some of the semi-supervised models due to the design of these models.

considering rare classes, the balanced random forest outperformed the plain random forest. All three ANNs did exceptionally

well and their category was clearly the most successful among all three categories. The encoder-decoder showed the best270

scores among all models in terms of absolute accuracy, precision, and F1-Score, closely followed by the LSTM. We consider

the LSTM the best model within that category since the encoder-decoder only reached its high performance after extensive

hyperparameter tuning and underperformed significantly when not tuned well. In contrast, the LSTM achieved its performance

more consistently and even under moderate hyper-parameter tuning, and is thus more suitable for practitioners
::::
users. The

subsequent analyses compare those three models that performed best within their category: the LSTM performed best among275

the ANNs, the random forest among the supervised models, and the self trainer
:::::::::
self-trainer among the semi-supervised models.

Different ML models exhibited different prediction styles in terms of smoothness and ability to predict rare classes. In Fig.

2 it becomes visible that the models’ predictions are not far off from the ground truth
:::::
labels. In general, the predictions are

somewhat similar to the ground truth
::::::
labelled

:::::::
profiles but the models often had difficulties in determining the precise start and

end of a segment. Looking at three random exemplary profiles of the test data in Fig. 3, one can see that the three main models280
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Figure 2. Predictions on the test dataset of the LSTM, random forest, and self trainer
::::::::
self-trainer. The upper left panel shows the ground truth

::::::
labelled data. In the other panels, the correct predictions are shown with more intense colors

:::::
colours

:
and the wrong predictions with less

intense colors
:::::
colours. The LSTM has the highest rate of correct predictions and imitates the smoothness of the ground truth

::::::
labelled

::::
data

very well. The random forest does well but provides more segmented predictions. The self trainer
::::::::
self-trainer immensely overestimates rare

classes.
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seem not only to generate similar predictions , but make also similar mistakes. In the medium-deep profile (middle column),

all three models predicted a longer segment of “Depth Hoar” that was actually not present in the ground truth
::::::
labelled

:
profile.

In the shallow profile,
:
all three models predicted some intermediate “Depth Hoar Wind Packed” layers in the first third that did

not exist. And in the deep profile, all three models miss the narrow intermediate “Depth Hoar” layer. In summary, it becomes

apparent that the different models are producing consistent predictions to a certain degree. Of course, there are significant285

differences among the models, too. First of all, the LSTM is closest to the ground truth
::::::
labelled

::::::
profiles

:
(see Fig. 3). Secondly,

the LSTM provided much smoother and less fragmented predictions than the other two models. And thirdly, the self trainer

:::::::::
self-trainer clearly overestimates rare classes, which hurts the overall performance. To summarize, the LSTM, random forest,

and self trainer
::::::::
self-trainer

:
show certain prediction similarities among each other, however, the LSTM is closest to the ground

truth and imitates expert labeling
::::::
imitates

::::::
expert

:::::::
labelling

:
best.290

3.2 Classification difficulty of snow types

Fig. 4 shows that some snow types are easier and others are harder to classify. The label-wise accuracy seems to be influenced by

the following factors: (1) choice of model, (2) frequency of snow type in the dataset, (3) snow type itself. Within one snow type

category, the models perform differently well, however, some snow types seem to be easier, and other
::::
others

:::
are

:
more difficult

to classify for all models. For example, “Rounded Grains Wind Packed” achieved a high accuracy among all models, whereas295

“Depth Hoar Wind Packed” achieved a low accuracy among all models. This could be partially attributed to the fact that

there are fewer samples available for “Depth Hoar Wind Packed”. However, the snow types themselves seem to influence the

classification difficulty as well: the class “Precipitation Particles” achieves high accuracy values among some models, despite

the fact that it is the rarest class in the dataset. For some snow types, some models are able to access certain information enabling

a high performance on that particular snow type – independent of its frequency. This means that the classification difficulty300

does not only depend on the number of available samples, instead, some .
:::::::
Instead,

::::::
several

:
other underlying characteristics

determine the classification difficulty of the snow types as well
::
of

::::::::
difficulty

::
of

::::
each

:::::
snow

::::
type

::
as

:::::
well,

::::
most

:::::::
notably:

:::
(1)

::::
The

:::::
initial

:::::::::::
classification,

:::::
which

::
is

:::
not

::::::
always

:::::::::
completely

:::::::::
consistent;

:::
(2)

:::
the

:::::::::
underlying

:::::::::::::::
micro-mechanical

:::::::::
properties,

:::
i.e.

::::
some

:::::
snow

::::
types

:::::
have

:::::::::::
characteristic

:::::
force

::::::
signals

:::
that

:::::::
separate

:::::
them

:::::
more

::::::
clearly

::::
from

::::::
others;

:::
(3)

:::
the

:::::::
training

::::
data

:::
set

:::::
since

:
it
:::::
does

:::
not

::::
cover

:::
all

:::::
types

::
of

::::
force

::::::
signals.305

Depending on the model, a higher accuracy score could lead to a lower precision score for a label (accuracy-precision trade-

off). The ROC curve in Fig.5 illustrates this relation
::::::::::
relationship between the true positive and false positive rate

::::
rates for the

different snow types and their averaged performances. It becomes apparent that both the snow type and the choice of model

influence the accuracy-precision trade-off. The class “Rare” for example seems to be difficult to classify both accurately and

precisely for all models, whereas “Precipitation Particles” are showing an almost perfect ROC curve. If one is interested in310

choosing a model that performs well for a particular snow type, these ROC curves can reveal which model is most suitable.

To get even more detailed label- and model-wise insights, refer to the confusion matrices in Appendix H. Both the LSTM and

the random forest achieve an area under the ROC curve of 0.96. However, on average (see Fig. 5, pink dotted line), the LSTM

outperforms the self trainer
:::::::::
self-trainer

:
and random forest and is thus most suitable for general classification tasks.
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Figure 3. Model predictions for three randomly chosen SMP profiles. The first row represents the ground truth labels
::::::
labelled

::::::
profiles

(with force signal). The subsequent rows represent the LSTM’s, random forest’s, and self trainer
::::::::
self-trainer’s predictions, with the red bar

indicating wrong predictions. Each column shows a different profile randomly chosen from the test data (shallow profile: S31H0276; medium

profile: S31H0206; deep profile: S49M1918). All three models seem to make similar mistakes, e.g. they predict a larger portion of “Depth

Hoar” at the end of the medium SMP profile. The predictions of the LSTM are closest to the ground truth data
::::::
labelled

::::::
profiles.
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Figure 4. Label-wise accuracy of all models. each model is encoded with a different color
:::::
colour. The most frequent label is on the left of

the x-axis (“Rounded Grains Wind Packed”), and the least frequent
:
is on the right (“Precipitation Particles”). The class “Rare” was dropped.

Each bar represents the accuracy for a single snow type. The dotted lines show the overall accuracy performance of each model. The encoder-

decoder, the BLSTM, and the LSTM achieved the highest accuracy values. For all models, some classes are more difficult to classify than

others: e.g. “Depth Hoar Indurated” and “Depth Hoar Wind Packed”. Some classes are easier to classify than others, such as “Rounded

Grains Wind Packed”. Some classes can only be classified well by a subset of the models, such as “Precipitation Particles” and “Melted Form

Depth Hoar”.

3.3 Generalizability315

The prediction of the LSTM for 100 random profiles outside of the training and testing distribution is shown in Fig. 6. Since the

ground truth
::::::
labelled

:
profiles are not yet available for these predictions, the generalization capabilities can only be evaluated

on the basis of what seems “reasonable”. “Melted Form Depth Hoar” appears only at the ground of the profiles, “Precipitation

Particles” only at the top, “Rounded Grains Wind Packed” are mostly at the top and rather deep – these are all “reasonable”

predictions. However, there are also some predictions that are not reasonable or at least unexpected: the left profile consists320

almost entirely of “Depth Hoar Wind Packed”, sometimes “Depth Hoar Wind Packed” appears right before “Melted Form of

Depth Hoar”, and “Rounded Grains Wind Packed” sometimes appear briefly in the “middle” of a profile (and not at the top).

Overall, the LSTM seems to make mostly reasonable predictions, however, an in-depth expert analysis of the predictions is

necessary to validate that further.

4 Discussion325

The results showed that automatic classification and segmentation
::
the

:::::::::
automatic

:::::::::::
classification of SMP profiles is possible with

up to 78% accuracy. In the following the nature, impact, and limits of these results are discussed.
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Figure 5. ROC curves of the LSTM, random forest, and self trainer
::::::::
self-trainer for each class. The dotted lines are the micro- and macro-

averaged ROC curves. The macro-average calculates the ROC for each class and averages the performances afterward
::::::::
afterwards. The micro-

average weights the performance according to class contribution (balanced performance results). The LSTM achieves the highest ROC

performance overall. The order of the best-performing snow types is similar among all models. The classes “Rare” and “Depth Hoar In-

durated” have the lowest ROC areas, whereas “Precipitation Particles” has the highest ROC area for all models.
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Figure 6. LSTM SMP profile predictions on out-of-distribution data. The SMP profiles used here come from different legs of the MOSAiC

expedition than the training, validation, and test data. The profiles used here still stem from the winter season to ensure that the same set of

snow types can be used as in the training dataset. The distribution of the predicted profiles looks convincing, with only a few profiles standing

out as certainly wrong predictions (e.g. most right profile with ∼ 90% “Depth Hoar Wind Packed”).

The metrical results presented are in line with previous findings: King et al. (2020) reported an overall accuracy score of 0.76

when using SVMs and additional snowpit
:::::
snow

::
pit

:
information to classify three snow types. Satyawali et al. (2009) achieved an

average accuracy of 0.81 when using the nearest neighbor
::::::::
neighbour

:
approach and knowledge rules to classify five snow types.330

However, these results stem from only three profiles and are not representative. Havens et al. (2012) achieved an accuracy

of maximal 0.76 (global dataset) when using random forests and time-intensive manual layer segmentation to classify three

snow types. The major difference from these previous results is that the accuracy results of this study were achieved for seven

snow types, without time-intensive layer picking, snowpit
::::
snow

:::
pit digging, or additional knowledge rules. This means that

in contrast to previous work, the models here can be directly employed by practitioners
::::
users for their own SMP datasets in335

the field: simply retrain and predict. For this, they only need to provide a set of training samples for their specific dataset and
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classification style. The work presented here enables scientists for the first time to rely on fully automated ML SMP profile

segmentation and classification
:::::::::::
classification

:::
and

:::::::::::
segmentation.

The results were also satisfying to domain experts since the predictions were in themselves consistent and followed the

patterns of the training data. In general, the snowpack on sea ice is extremely variable, and the traditional snow types are very340

often a mixture of different features. This becomes visible when comparing the SMP-profiles to the micro-CT samples. In

the view of the authors, a temporally consistent classification is more relevant to the interpretation of the development of the

snowpack, even if there is a certain, but unknown, bias to an expert interpretation. Hence, the models were also in practice

helpful to analyse Arctic snowpack development.

4.1 Classification performance of models345

Each model category are performs differently because each model takes different aspects of the data into account. Semi-

supervised models try to take unlabeled
:::::::::
unlabelled data into account to improve their predictions, however, this did not

work well in our context. The most likely reason for the overall underperformance of this category is that the unlabeled

::::::::
unlabelled

:
data contained out-of-distribution data, i.e. the unlabeled

:::::::::
unlabelled data had different underlying mechanisms than

the labeled
:::::::
labelled data (different parts of the winter season). Another reason might be that only a small subset of unlabeled350

::::::::
unlabelled

:
data was included in order to limit running times. Moreover, the poor performance of the cluster-then-predict-models

::::::::::::::::
cluster-then-predict

::::::
models is most likely also a result of the classifier used after clustering: a more sophisticated method than

a majority vote classifier is needed here.

The simple supervised models take one data point after the other into account and do not consider time-series structures

within the data. The algorithms used in all previous SMP automation studies fall into this category. In contrast, ANNs are355

supervised models that take the underlying time sequence of the data into account. While the supervised model in general

performed well, they were still clearly outperformed by the ANNs. A likely reason why the ANNs outperformed all the

other models is precisely the ANNs’ ability to process time-dependent
:
–
:::

or
::
in

:::
the

::::
case

:::
of

::::
snow

:::::::
profiles

::::::::::::::
depth-dependent

::
–

information. ANNs are tackling the classification task as a sequence labeling
:::::::
labelling

:
task which enables them to include

information from the order and position of snow layers. The supervised models still have access to time-relevant information360

(time-window features), however, they do not have any ability to learn time-based information (what should be remembered and

forgotten). Besides, the ANNs learn to imitate the training set, leading to smooth and expert-simile predictions. In comparison,

taking the time component of SMP signals into account has not been done in previous methods and we argue that it adds a

major information piece and boosts the overall prediction performance significantly.

Each model exhibits a different prediction style due to the models’ intrinsic differences and thus might be suitable for specific365

tasks. In the following some
:::
The

::::::::
following

:
aspects are listed for consideration (practitioner

:::
user’s guide):

A Time and resources for hyperparameter tuning. The LSTM and the encoder-decoder network are recommended when

plenty of tuning time is available. Especially, the encoder-decoder network performs badly if not tuned well. The SVM
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and the balanced random forest need little tuning time, whereas the random forest is the go-to-model
::::
go-to

::::::
model in case

(almost) no tuning time can be provided.370

B Need for a simple to handle, off-the-shelf algorithm. Among the high-performing models, the random forest and the

SVM are the easiest to handle off-the-shelf algorithms. The self-supervised algorithms and especially the ANNs require

a somewhat deeper understanding of the models and the ability to implement them.

C Desired level of explainability. The random forests are most explainable since the decision trees can be directly visual-

ized (Appendix G). The ANNs are the least explainable models (without further modifications).375

D Importance of minority classes. When deciding on a model, the underlying task must be examined as well: In the case

of avalanche prediction,
:
it might be essential to predict a buried layer of “Surface Hoar”, a very rare class, which needs

to be detected no matter the costs. In such a case of “minority class prediction,” the balanced RF or the SVM should be

employed. The ANNs and the random forest, in contrast, are more suitable to achieve an overall good classification.

E Availability of unlabeled
:::::::::
unlabelled data that is from the same distribution as the labeled

::::::
labelled

:
data. In case380

a lot of unlabeled
:::::::::
unlabelled data from the same distribution and time is available, the self-trained classifier can be

considered. The weak learner of the self-trained classifier can be chosen according to the criteria listed above. Since in

this work we only had a small subset of unlabeled
:::::::::
unlabelled data stemming from the same distribution as the labeled

::::::
labelled

:
data, further evaluations on the self-trained classifier and label propagation remain open.

This highlights that there is not a single best model, but instead, practitioners
::::
users can deliberately choose a model that suits385

their needs, such as overall accuracy, ability to predict rare classes, explainability, training, and deployment time.

4.2 Classification difficulty of snow types

Snow types are differently difficult to classify since their categories are rather continuous than discrete. This was also observed

in previous work and in all previous works performances were reported label-wise to account for those differences (Satyawali

et al., 2009; Havens et al., 2012; King et al., 2020). We performed t-distributed stochastic neighbor
::::::::
neighbour embedding (t-390

SNE) on the SMP dataset to visualize how separable the different classes are (see Fig. 7). “Precipitation Particles”, for example,

appears as a singled-out green island
:::::::
grouping, which is in line with our and other findings (Satyawali et al., 2009) that it is

easier to classify than other snow types. We conclude from this, that some classes have features that distinguish themselves

stronger
:::::::::::
distinguishing

:::::
them

::::
more

:::::::
strongly

:
from other snow types. The class “Rounded Grain Wind Packed” behaves similarly

(Satyawali et al., 2009). However, some classes, such as “Depth Hoar” and “Depth Hoar Indurated” are completely overlapping395

in Fig. 7, and indeed our models had problems with differentiating between those two classes. Similarly, “Depth Hoar Wind

Packed” seems to overlap largely with “Rounded Grains Wind Packed” and “Melted Form of Depth Hoar”. We theorize that the

reason for their non-separability is that those snow types transform into each other during snow metamorphosis. This means

many data points can not be discretized into one single category since they are on a continuous spectrum. Satyawali et al.

(2009) pointed out, as well, that they often found data points being in transition between snow classes and attributed it to the400
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Figure 7. 2-dimensional t-distributed stochastic neighbor
:::::::
neighbour

:
embedding (t-SNE) of SnowMicroPen (SMP) dataset. The colors

::::::
colours

encode the snow types. The figure shows that (1) “Depth Hoar" and “Depth Hoar Indurated” are hardly separable, (2) “Depth Hoar Wind

Packed” is similar to several other snow types, and (3) “Precipitation Particles”, “Melted Form of Depth Hoar” and “Rounded Grains Wind

Packed” can each be separated more clearly from the other snow types.

fact that the snow is changing continuously. In conclusion, it is virtually
::::::::
currently impossible to reach 100% classification

accuracy on every snow type since some snow types will always lie between two categories.

The classification difficulty of the different snow types extends also
::::::
Despite

:::::
these

::::::::::
difficulties,

:::
the

:::::::::
underlying

:::::
SMP

::::::
signals

::
are

::::
still

::::::::::::
characteristic

::::::
enough

::::
for

:::::::
specific

:::::
snow

::::
grain

::::::
types

::
to

:::
be

::::::::
classified

:::::::::::
successfully.

::::
The

:::::::
different

::::::::::::::::
micro-mechanical

::::::::
properties

::
of

:::
the

:::::
grain

:::::
types

:::
are

:::::::
reflected

::
in
:::

the
:::::

SMP
:::::
signal

::::
and

:::
are

::::
thus

:::
the

:::::
driver

:::
for

:::
the

::::::::::::
classification.

:::::
Some

::::::
classes,

:::::
such405

::
as

:::::::::::
“Precipitation

:::::::::
Particles”,

::::
can

:::
be

::::::
clearly

::::::::
separated

::::
from

::::::
others

:::::
since

:::
the

:::::::
bonding

::::::::
between

:::
the

:::::
grains

::
is
:::

so
:::::
weak

::::
that

:::
the

::::
force

:::::
signal

::
is
::::
very

::::
low.

:::
As

::::
long

::
as

::::::::::::
“Precipitation

::::::::
Particles”

:::
are

:::
not

::::::
sharing

::::
this

:::::::::::
characteristic

::::
with

:::::
other

::::
grain

::::::
types,

:::
they

::::
can

::
be

:::::
easily

:::::::::
classified.

:::::
Refer

::
to

::::::::
Appendix

::
B
:::

to
::::
learn

:::::
more

:::::
about

:::
the

:::::::
relation

:::::::
between

:::::
grain

:::::
types

:::
and

:::::
SMP

::::::
signal,

:::
and

:::::
refer

::
to

::::::::
Appendix

::
G

::
to

:::
see

:::::
which

::::::
classes

:::::
have

::::::
unique

:::
and

:::::
which

::::::
classes

:::::
have

:::::
shared

::::::
signal

::::::::::::
characteristics.

:

:::
The

:::::::::::
classification

:::::::::
difficulties

::::
also

::::::
extend to the expert labeling

:::::::
labelling process itself. The continuous natures of the labels410

and additional challenges such as between-class imbalances, make
:::::
nature

::
of

:::
the

:::::
grain

:::::
types

::::::
makes

:
it particularly difficult

for domain experts to label the SMP profiles consistently among each other. The uncertainty during labeling is an intrinsic

problem of SMP analysis and cannot be circumvented: The annotation of SMP profiles stays always subjective, meaning that

::::
agree

:::
on

::::::::
labelling,

:::
i.e.

:
two different snow experts may

::::
will produce two different labeled

:::::::
labelled and segmented profiles for
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the exact same measurements (Herla et al., 2021). However, both experts might agree that both labeled profiles are
::::
same

:::::
SMP415

:::::::::::
measurement

:::::::::::::::
(Herla et al., 2021)

:
.
::::
This

::
is

::::::
another

::::::
reason

::::
why

:
a
:::::::::::
classification

::::::::
accuracy

::
of

:::::
100%

::::::
cannot

::
be

::::::::
reached.

::::
One

:::::
might

::::::
suggest

::::::::::::
supplementing

:::
the

:::::::::::
classification

:::::::
process

::::
with

:::::::::
additional

:::::::::::
observational

::::
data

::
to

:::::
make

:::
the

:::::::
process

::::
more

::::::::::
“objective”,

:::
as

::
we

::::
also

:::
do

::::
here.

::::::::
However,

:::::
each

:::::::::::
classification

:::
and

:::::::::::
segmentation

:::
of

:
a
:::::::::
snowpack

::
is

::::::::::
“subjective”

::
in

::::::
nature

::::
right

::::
now,

:::
no

::::::
matter

:::::
which

:::::::::::
observational

::::
data

::
is
:::::

used
::
as

:::
the

:::::
basis

:::
for

:::
the

::::::::::::
classification.

:::::
When

:::::::::
requesting

::
a
:::::::::::
segmentation

::::
and

:::::::::::
classification

::
of

::
a

::::::::
snowpack,

::::
one

::
is

::::::
always

:::::::::
requesting

:::
the

:::::::::::
classification

::
of

::
a
::::::
specific

:::::::
expert.

:::::
While

:::
the

:::::::
operator

::::
bias

::::
can

::
be

::::::::
mitigated

:::
by

:::::
using420

::::
NIR,

::::::::::
Micro-CTs,

::
or

:::
the

:::::
SMP,

:::
the

:::::::::::
classification

:::
of

::::
those

:::::::::::::
measurements

::::::
remains

::::::::::
subjective.

:
It
::

is
:::::::

neither
:::
this

::::::
study’s

::::
goal

::::
nor

:::
task

::
to

:::::::
provide

::
an

::::::::
objective

:::::::::::
classification;

:::::::
instead,

:::
we

:::
aim

:::
for

::
a
::::::::
consistent

:::::::::::
classification.

:::::::::
Difficulties

::
in

:::::::
reaching

::::::
100%

:::::::
accuracy

:::
do

:::
not

:::::::
preclude

::::::
overall

:::::
good

:::::::::::
performance,

:::::::
however.

::::::
While

::::::
experts

::::
may

:::
end

:::
up

::::
with

:::::::
different

::::::::::::
segmentations

:::
and

::::::::::::
classifications,

::::
they

::::
can

:::
still

:::::
agree

::::
that

:::
two

::::::::
different

:::::::
analyses

:::
are

::::
both

:
valid analyses of the same

profile. Hence, the model’s performances cannot only be measured in terms of accuracy because models with low accuracy425

might still produce sensible, directly usable predictions. Throughout our experiments,
::::::::
Similarly,

:::
the

:::::::::
algorithms

::::::::
provided

::::
here

:::::
output

::::::::::
predictions

:::
that

::::
may

:::
not

::::::
always

:::::
align

::::
with

:::
the

::::::
expert

:::::::
labelling

:::
but

:::
are

:::::::
sensible

::::
and

:::::::
directly

::::::
usable.

::::::
Hence,

:::
we

::::::
cannot

:::::::
evaluate

:::
the

::::::
models

::::::
solely

:::::
based

:::
on

:::::::::
numerical

:::::::
metrics

::::
such

:::
as

::::::::
accuracy

:::
but

:::::
must

::::
also

:::::::
evaluate

:::
the

:::::::::::
performance

:::::
from

::
a

::::::::
qualitative

:::::::::::
perspective.

::::
This

::
is

:::
the

::::::
reason

::::
why

:::
we

::::::::
evaluated

::
if

:::
an

::::
SMP

:::::
user,

::::
who

::::
also

:::::::
labelled

:::
the

:::::::
training

::::
data,

::::::
would

:::
(1)

:::::
accept

:::
the

:::::::::
predictions

:::
of

::
the

::::
ML

:::::::::
algorithms

::
on

:::
an

:::::::::::::::
out-of-distribution

::::::
dataset,

:::
(2)

::::
find

::::
them

:::::::::
consistent

::::
with

::::
their

::::
own

::::::::
labelling,430

::
(3)

::::
and

:::::
would

:::::::::::
subsequently

:::::
work

::::
with

:::::
those

::::::::::
predictions.

::
In

:::
the

::::
case

::
of

:::
the

:::::::::
MOSAiC

::::::
dataset,

:::
all

:::::
those

::::::
aspects

::::
were

::::::::
fulfilled.

:::
We

:::
find

::::
such

::
a
:::::::::
qualitative

:::::::::
assessment

::::::::
important

:::::
since

:::::
these

::::::::
questions

:::::
decide

:::::::
whether

::
or
::::
not

::
the

:::::
tools

:::::::
provided

::::
will

::
be

:::::
used

::
in

:::::::
practice.

:::
We

::::::
further

::::
want

:::
to

:::::
point

:::
out

::::
that

:::
the

:::::::::
algorithms

::::::::::
themselves

:::
are

:::::::
entirely

:::::::
agnostic

::
to
::::

the
:::::::
question

:::
of

::::::::::::
“subjectivity”.

::::
The

:::::::::
algorithms

:::
are

::::::
merely

::::::::::
reproducing

:::::
what

::::
they

::::
have

::::
been

:::::::
trained

:::
on.

::
If

:::
we

:::
can

:::::::
provide

:::
the

:::::::::
algorithms

::::
with

::
a

::::::
dataset

:::
that

::::
can435

::
be

:::::::::
considered

:::::
“fully

:::::::::
objective”

::::
and

:::
the

:::::::::
community

::::::
agrees

::
on

::::
that

::
as

::::::
ground

:::::
truth

::::
data,

:::
the

:::::::::
algorithms

:::::
could

:::::::::
reproduce

:::::
those

::::::::::
hypothetical

:::::::::
“objective”

::::::
labels.

:::::::::::
Alternatively,

:::::::
signals

:::::
could

:::
also

:::
be

:::::::
grouped

::::
first,

:::
and

:::::
some

:::::::
abstract

::::::
classes

:::::
could

::
be

::::::::
assigned

::
to

:::::
them.

:::::::::::
Nevertheless,

::::
even

:::
this

::::::
would

:::
rely

:::
on

::::::
human

:::::::
expertise

:::::
since

:::
the

:::::::::
parameters

::
to

:::::::
separate

:::::
those

::::::
groups

:::::
would

:::
be

::::::
subject

::
to

::::::::
discussion

::::
(see

::::::
Figure

::
7:

:::
The

::::::
groups

:::
are

:::
not

::::::
simply

::::::::
separable

::::
from

::::
each

:::::
other,

:::
and

:::
the

::::::::
clustering

::::::
would

::::::
depend

::
on

:::::::::
parameter

:::::::
choices).

::
In

:::::::
general,

:::
we

:::::::
provide

:
a
:::::::::::::
methodological

:::::::::
framework

::::
here

::
to

:::::::
classify

:::
and

:::::::
segment

:::::
SMP

::::::
profiles

:::::::
–which

:::::::::::
classification440

::::::
patterns

:::
are

::::::::::
reproduced

:::::::
depends

::
on

:::
the

:::::
user’s

:::::::
choice.

:::
The

:::::::
benefits

::
of

:::::
using

:::
an

::::::::
automatic

::::::::::::
classification

:::
are

:::
that

:::
the

:::::
SMP

::::
user

:::
can

:::
(1)

:::::
save

:::::::
valuable

:::::
time,

:::
(2)

::::::
receive

:::::::::
consistent

:::::::
labelling,

::::
and

:::
(3)

:::::::
perform

::::::::
statistical

::::::
analysis

:::
on

::::
their

::::
SMP

:::::::
dataset.

::
In

:::
the

::::
case

::
of

:::
the

::::::::
MOSAiC

::::::
dataset,

:::::::
manual

:::::::
labelling

::::::
would

::::
have

:::::
meant

::::::::
labelling

::::
over

:::::
3000

:::::::
profiles,

:::::
which

::::
can

:::::
easily

::::
take

:::
up

::
to

:
a
:::::

year
::
to

:::::::
classify

::::
(next

::
to
:::::

other
::::::::::
obligations

::
of

:::::::
domain

:::::::
experts).

::
In

:::::
terms

:::
of

::::::::::
consistency,

:::
we

:::::::
already

::::::::::
experienced

::::
how

:
some of the models’ predictions

::::::
helped

::
us

:
–to our surprise445

–already helped domain experts to detect
:
to

::::::
detect

::::::
human mistakes and inconsistencies in their ground truth labeling. Due to

the experts’ individual classification styles, the models must adapt to those styles to truly satisfy the needs of practitioners.

This means the models must be re-trained on a data set of the particular practitioner. Alternatively, the models could be used to

support and speed up the manual labeling process by making label suggestions that are then checked by a snow expert
:::::
during
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::
the

::::
first

::::::::
labelling

:::::
round.

::::::::::::
Furthermore,

::::
such

::
an

::::::::
up-scaled

::::::::::::
classification

:::::::
enables,

::
for

::::
the

:::
first

:::::
time,

:::
the

::::::::
statistical

:::::::
analysis

::
of

:::
an450

::::
SMP

:::::::
dataset.

:::
One

:::
of

::
the

::::::
initial

:::::::
research

::::::::
questions

:::
for

::::::::
MOSAiC

:::
was

:::
“Is

:::::
Depth

:::::
Hoar

::
in

:::::
Arctic

::::::::::
snowpacks

::::::
mostly

::::::
present

::
at

:::
the

::::::
bottom

:::
and

::::::::
Rounded

::::::
Grains

:::::
Wind

::::::
Packed

::
at

:::
the

::::::
top?”.

::::
With

:::
the

::::
help

::
of
:::::::::::

snowdragon,
:::
the

:::::::::
MOSAiC

::::::
dataset

:::::
could

::
be

:::::::
enough

::::::::::
consistently

:::
and

:::::::::
accurately

::::::
labelled

:::
to

::::::
answer

::::
such

:
a
::::::::
question

::::
with

::::
“Yes,

::::
this

::
is

:::::
indeed

:::
the

::::::
case.”.

4.3 Generalizability

The LSTM can generalize to other winter profiles with the same snow types since the underlying classification and segmen-455

tation rules stay the same. However, the LSTM’s generalization capability does not extend to other seasons or regions when

/ where other snow types are found, such as melted forms or regional snow types. As mentioned before, the models do not

generalize on different classification styles of experts. The models used in this work are still generalizable in that they can be

used on any desired dataset as long as they are re-trained on the chosen dataset. This would not have been possible in previous

works such as Satyawali et al. (2009) since knowledge rules for one snow region and season do not transfer to other regions or460

seasons. For greater generalization capability
:
, the LSTM – or any other model —

:
– must be either trained with a more general

dataset or must be specifically re-trained for an individual data set.

4.4 Limitations and Future Work

::
As

:::::::::
previously

:::::::::
discussed,

::
the

::::::::::
uncertainty

::
of

:::::
expert

::::::::
labelling

:
is
::
a
::::::
general

::::::::
limitation

::
of

::::
this

::::::::
particular

:::::
study.

:::::
While

:::
this

::::::::::
uncertainty

:::::
might

::
be

::::::::
partially

::::::::
mitigated

::::::
further

:::
by

:::::
using

::
a
::::::
dataset

:::
for

::::::
which

:::::
many

:::::::::
additional

::::::
in-situ

::::::::::
observations

:::::
exist,

::
it
::::::
would

::::
still465

::::::
remain

::
an

:::::
issue.

::::
One

::::::::
approach

::
for

::::::
future

::::
work

::::::
would

::
be

::
to

::::::::
quantify

::
the

::::::::::
uncertainty

:::
that

::
is
:::::::
inflicted

:::::
upon

:::
the

:::::::
labelled

:::::::
profiles.

:::::::::::
Subsequently,

:
a
::::::::
machine

:::::::
learning

:::::
model

:::::
could

::
be

::::::
trained

::
to

::::::
classify

:::
not

::::
only

:::::
grain

::::
types

:::
but

:::::::
provide

:
a
::::::::::
probabilistic

:::::::::::
classification.

This work does not address the task setting of first-segment-then-classify because this would require a completely different

set of methods. In a first-segment-then-classify setting, the SMP signal could first be segmented with techniques used in470

audio-segmentation (Theodorou et al., 2014). The resulting time-series pieces could subsequently be classified as a whole

(Ismail Fawaz et al., 2019). Future work could experiment with this problem formulation and analyze if performance further

increases in this setting.

The ANNs used here are off-the-shelve
::::::::::::
off-the-shelves and are not adapted to the specific underlying task in order to ensure

a fair comparison between the different models. However, one could look into adapting the loss functions to include similarity475

measurements between snow samples. Results from clustering, performed on t-SNE data, could then be leveraged during clas-

sification to increase classification performance. Adapting the loss function of the ANNs could increase prediction performance

greatly, however, such a loss function must be carefully constructed and evaluated on different datasets.

As mentioned in Sect. 4.3, the models cannot generalize to completely different settings in terms of seasons and regions. To

ensure generalization capability one could train a large model on a dataset that includes snow types from different regions and480

seasons. Such a data set would need to be newly compiled because common SMP datasets are usually limited to one region

(Ménard et al., 2019; Calonne et al., 2020). However, it is completely unclear if classification on such a large dataset would
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actually yield better performances. The classification task does become significantly harder with more classes and different

data distributions. However
:
In

::::::
theory, a large enough model trained on a large enough dataset could in theory be able to

produce direct predictions for any SMP user.
:::::
users.

:::::
Thus,

:
it
::::::
would

::
be

:::::::::
interesting

::
to

::::
train

::
an

::::
ML

:::::
model

:::
on

:
a
::::::::::
generalized

::::::
dataset485

:::
and

:::::::
validate

:::
its’

:::::::::::
performance

:::
on

:::
the

::::::::::
specialized

::::::::
MOSAiC

:::::
SMP

::::::
dataset.

:::::
This

:::::
would

:::::
shed

::::
new

::::
light

:::
on

:::
the

:::::::::::::
spatiotemporal

:::::::::::
transferability

::
of

:::
the

::::
ML

::::::
models

::::::::
presented

:::::
here.

Alternatively, SMP users can simply re-train a chosen model for their particular dataset. They would need to provide a set

of SMP profiles for their region, season, and classification style, but the overall time savings are still immense. To summarize,

the generalization capabilities may be enhanced by using a more general dataset or one bypasses this problem by re-training to490

specific datasets – the snowdragon repository addresses the needs of the latter.

An immediate consequence of this study is the further analysis of the unlabeled
::::::::
unlabelled

:
part of the MOSAiC dataset.

Domain experts can use the LSTM, or other models, to create predictions for the remaining 3516 profiles. A previously almost

impossible task to classify and segment those thousands of profiles , became feasible by providing just a set of 164 labeled

::::::
labelled

:
profiles. The results of these predictions and their impacts on the cryospheric analysis of snow coverage in the Arctic495

will become apparent in future publications.

5 Conclusions

::::::::::
Snowdragon

::::::::
provides

:::::
SMP

::::
users

:::::
with

:
a
:::::

way
::
to

:::::::
up-scale

:::::::
manual

:::::
SMP

::::::::
labelling

:::
and

:::::::
provide

:::::
large

::::::::::
statistically

:::::::::
consistent

:::::::
datasets. This study

:::
We showed for the first time that SMP profiles

::::::
straight

::::
from

:::
the

::::
field

:
can be automatically segmented and

classified (up to 0.78 accuracy). Fourteen different models were trained here to classify seven snow types without providing500

any additional manual information. It also showed for the first time how ANNs and semi-supervised models can be used for

the task of SMP classification and segmentation. Among all models, the LSTM and the encoder-decoder are performing the

best. The resulting predicted profiles show smooth segmentations and expert-simile classification patterns that were satisfying

to domain experts.

These findings will enable SMP practitioners
::::
users to automatically analyze their SMP measurements. To that end, an SMP505

user must simply decide on one of the fourteen models provided by the snowdragon repository, given the considerations listed

in this paper, and retrain the model for their particular dataset. Afterward
:::::::::
Afterwards, the SMP user can simply predict SMP

classifications and segmentations for the remaining unlabeled
::::::::
unlabelled

:
profiles.

Snowdragon could be extended further, made more user-friendly, and in particular , it could be
:::
The

::::::
models

:::::::::
presented

::::
here,

::
in

::::::::
particular

:::
the

:::::::
LSTM,

:::::
could

::
be

:::::::
trained

::
on

::
a

:::::
broad

::::::
dataset

:::::
from

:::::::
different

::::::
regions

::::
and

:::::::
seasons

::
so

::::
that

::::::::
automatic

:::::
SMP510

::::::::::
classification

::::::::
becomes

:::::
even

::::
more

::::::::::
accessible.

::::
Such

::
a
::::::
model

:::::
could

::::
even

:::
be

:
integrated into the snowmicropyn package. The

resulting tool would make knowledge about snowpacks easier and faster accessible
:::::
access for all scientists. This is of partic-

ular interest (1) for interdisciplinary scientists who rely on snow type
:::::::::
information

:
but do not have the tools to classify them

themselves (remote sensing), (2) for scientists that require fast analysis of SMP profiles, such as in avalanche prediction and

(3) for SMP users facing large datasets.515
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Snowdragon enables already today the analysis of the SMP MOSAiC datasetwith a large amount of detailed data about

the Arctic’s condition. The ML-driven approach used here to analyze SMP profiles will be one of many methods to make the

knowledge behind the data accessible – knowledge that is essential to understanding and mitigating climate change impacts,
::
a

::::::
dataset

:::::::::
containing

:::::::
detailed

::::::::::
information

:::::
about

::::
snow

:::
on

:::::
Arctic

::::
sea

:::
ice.

::
In

:::::
times

::
of
:::::::

climate
:::::::
change,

:::
this

::::::::::
information

::
is
:::::::
crucial:

:::
We

::::
need

::
to

::::::::::
understand

:::
the

::::
state

::
of

:::
the

::::
sea

:::
ice

::
in

:::::
order

::
to

:::::::::
understand

::::::
which

::::
state

:::
the

::::::
Arctic

::::::
system

::
is

:::
in.

:::
For

:::
the

::::
first

:::::
time,520

::::::::
MOSAiC

::::::
enables

:::
the

::::::::
scientific

:::::::::
community

::
to

::::
have

::::::
access

::
to

::::
such

:
a
:::::::
detailed

:::
and

:::::
large

::::::
dataset.

::::
And

::::::::::
snowdragon

::
is
::::
one

:::::::
example

::
of

::::
how

:::
ML

:::
can

::::
help

:::
us

::
to

::::::
actually

::::::
access

:::
the

:::::::::
knowledge

:::::
behind

::
all

:::
the

::::
data.

Code and data availability. The current version of snowdragon is available on GitHub: https://github.com/liellnima/snowdragon under the

MIT licence. To run the code version used in this paper, please refer v1.0.0 on GitHub or Zenodo: https://doi.org/10.5281/zenodo.7335813.

The exact version of the models used to produce the results used in this paper is also archived on Zenodo: https://doi.org/10.5281/zenodo.525

7063520 (Kaltenborn et al., 2022). The MOSAiC SMP data used as input and training data is available on PANGAEA: https://doi.pangaea.

de/10.1594/PANGAEA.935554 (Macfarlane et al., 2021).

Appendix A:
:::::
User’s

::::::
Guide

::::
Here,

:::
we

:::::::
provide

:
a
:::::::::::
walk-through

:::
on

::::
how

::
to

:::
use

::::::::::
snowdragon

::::
with

:::::
SMP

::::::
profiles

::::::::
collected

::
in

:::
the

:::::
field.

1.
::::
Data

::::::::
collection

:
530

–
::::::
Collect

:::
the

::::::
desired

::::
SMP

:::::::
profiles.

:

–
:
If
::::
you

:::
are

:::::::
familiar

::::
with

:::::
snow

::::::::::
stratigraphy

::::::::::::
measurements:

::::::::
Consider

::::::::
collecting

:::::::::
additional

::::::
in-situ

::::::::::
observations

::::
such

::
as

::::::::::
Micro-CTs,

::::
NIR

:::::::::::
photography

:::
or

::::::
similar

:::
to

::::::
inform

::::
your

::::::::
labelling

::::::::::
procedure.

::::
(see

::::
also

::::::
points

:::::
listed

:::::
under

:::::::::::
“Labelling”).

–
:
If
::::

you
:::
are

::::
not

:::::::
familiar

::::
with

:::::
snow

::::::::::
stratigraphy

:::::::::::::
measurements:

::::
Ask

:::::::
experts

::
if

:
a
:::::::

labelled
:::::::

dataset
:::
for

::::
your

:::::
snow535

::::::::
conditions

:::::
exists

::::
(e.g.

::
in
:::
the

::::
case

::
of

::::::
Alpine

:::::
snow

:::::::
labelled

:::::::
datasets

::
are

:::::::
publicly

:::::::::
available)

::
or

::
if

:::
you

::::
need

::
to

:::::::
onboard

::
an

:::::
expert

::
to
:::::::
conduct

::
a

:::
few

::::::
in-situ

::::::::::
observations

::::
and

::::
label

:::::
some

::
of

::::
your

:::::::
profiles.

:

2.
::::::::
Labelling

–
:::::::
Evaluate

:::
the

::::::::
following

::::::::
questions

::::::
before

:::
you

::::
start

:::
the

::::
data

:::::::::
collection.

–
:
If
::::
you

:::::::
conduct

::::
your

::::
own

::::::::
labelling:540

–
:::
Use

:::::::::
additional

:::::
in-situ

:::::::::::
observations

::
to

:::::::
fine-tune

:::::
your

:::::::
labelling

:::::
where

::::::::
possible.

:

–
:::
Ask

::
a

:::::
fellow

:::::::::
researcher

:::
for

::::
their

::::::
opinion

:::
on

:
a
::::
few

::::::
profiles

:::::::
(before

:::
you

::::
label

:::
all

::
of

::::::
them).

–
::::
Note

:::::
down

::::
your

:::::::
labelling

:::::::
criteria

:
-
:::
this

::::
way

:::
you

::::
can

:::::
ensure

::::::::::
consistency

::
in

::::
your

::::::::
labelling.

:
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–
::::::
Revisit

::::
your

:::::::
labelled

::::::
profiles

:::
(all

::
of

::::::
them!)

::
at

::::
least

:
a
::::::
second

:::::
time.

::::
This

::::
way

:::
you

:::
can

:::::
catch

::::::::
mistakes

:::
and

::::::
ensure

::::
once

::::
more

::::::::::
consistency

::
in

::::
your

::::::::
labelling.

:
545

–
:
If
::
a
:::::::
labelled

::::::
dataset

:::::
exists

:::
for

:
a
:::::::
specific

:::::::
location:

:::::::
Analyse

::::::::
carefully

::
if

:::
the

:::::::
labelled

:::
data

:::::
does

::::::
transfer

::
to
:::::
your

::::
snow

:::::::::
conditions.

:::
Can

::::
you

::::::
expect

::
the

:::::
same

:::::
grain

:::::
types?

::::
Was

:::
the

::::
data

:::::::
collected

::
in

:::
the

:::::::::::
same/similar

:::::::
location?

::
Is
::
it

:::
the

::::
same

::::::
season?

::::::
Might

:::::::
changing

:::::::
climatic

:::::::::
conditions

:::::
have

:::
also

:::::::
changed

:::
the

::::::
nature

::
of

:::
the

::::::::::
snowpacks?

::::
Has

:::
the

::::::::::
environment

::
of

:::
the

:::::::
location

::::
gone

:::::::
through

::::
other

:::::
types

::
of

::::::::
changes?

–
:
If
:::::::
labelled

:::::::
datasets

::::
exist

::::::::
capturing

::::
SMP

:::::::
profiles

::
in

:::::::
general:

:::::::
Analyse

:::::::
carefully

::
if

:::
you

:::
can

:::::
work

::::
with

:
a
::::::
general

::::::
dataset550

::
or

::::
need

:
a
::::::::::
specialized

::::::
labelled

:::::::
dataset.

:::::
Does

::
the

:::::::
general

::::::
dataset

:::::
reflect

:::
the

:::::::
profiles

:::
you

::::
have

::::::::
collected

:::::
well?

:::
Do

:::
you

::::
have

::::
grain

:::::
types

:::::::::
dominating

:::::
your

::::::
dataset

:::
that

:::
are

:
a
::::::::
minority

::
in

::
the

:::::::
general

:::::::
dataset?

:::
Do

:::
you

::::
have

:
a
:::::::::
particular

:::::
season

:::::::::
dominating

::::
your

::::::
dataset

::::
that

::
is

::::::::::::::
underrepresented

::
in

:::
the

:::::::
general

:::::::
dataset?

::::
Does

:::
the

:::::::
general

::::::
dataset

::::::
contain

:::
all

::::
grain

::::
types

::::
that

:::
you

::::
have

:::::::::::
encountered

::
in

::::
your

:::::::
dataset?

3.
::::::
Set-Up555

–
:::::::::::::
Raw-Preprocess

::::
your

:::::
SMP

::::::
profiles

::::
and

:::::
labels

:
if
:::::::::
necessary;

::::
data

::::
must

:::
be

:::::::
provided

::
in
::::::
.pnt

::::::
format.

:

–
:::::::
Establish

::
a
::::::::
consistent

:::::::
naming

:::::::::
convention

:::
for

:::::
your

:::::::
profiles.

::::
The

:::::::
labelling

::::
files

:::
(in

:::::
.ini

::::::
format)

::::::
should

::::
have

:::
the

::::
same

:::
file

:::::
name

::
as

:::
the

::::
SMP

::::::
profile

:::
that

:::::::
belongs

::
to

::::
that

:::::::
labelling

:::
file.

::::
For

:::::::
example,

::::
you

:::
can

::::
have

:
a
:::::::::::::::
S31H0370.ini

::::::::
containing

:::
the

:::::
label

:::::::
markers

:::
for

::
the

:::::
force

:::
file

:::::::::::::::
S31H0370.pnt

:
.

–
:::::
Clone

::
or

::::
fork

:::
the

::::::::::
snowdragon

:::::::::
repository:

:
https://github.com/liellnima/snowdragon

:
.560

–
::::::
Follow

:::
the

::::
setup

:::::
guide

::
in

:::
the

:::::::
GitHub

:::::::::
repository.

–
:::
Tell

:::
the

:::::::::
repository

:::::
where

::::
your

::::
raw

:::
data

:::::
lives:

:::::::
Change

:::
the

:::::::::
SMP_LOC

::
in

::::::::::::::::::::::::::::::::::::::
data_handling/data_parameters.py

:
to
:::
the

:::::
right

::::
path

::
as

::::::::
described

::::::
online.

–
:::::::::
Preprocess

::
all

:::
the

:::::
SMP

::::::
profiles

::::::
(follow

::::::
online

::::::::::
guidelines).

4.
:::::
Model

::::::::
Selection

:
565

–
:::::
Select

:::
the

::::
right

::::::
model

::
for

:::::
your

:::
use

::::
case.

:::::
Refer

::
to

:::::::
Section

:::
4.1

:::
for

:::::
further

:::::::::::
information.

5.
:::::::
Training

:::
and

:::::::::
Evaluation

:

–
::::
Refer

::
to
:::
the

::::::
online

:::::
guide

::
of

:::
the

:::::::::
repository.

6.
::::::
Tuning

–
::::
Refer

::
to
:::
the

::::::
online

:::::
guide

::
of

:::
the

:::::::::
repository.570

7.
::::::::
Inference
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–
:::
Use

:::
the

:::::::::::::::::::::
predict_profile()

::
or

::::::::::::::::
predict_all()

:::::::
functions

:::::
from

:::
the

::::::::::::
predict.py

:::
file

:::::::
(provide

::::
path

::
to

:::
data

::::::
again).

::::
The

::::::::
functions

::::
can

:::::
either

::
be

:::::::
directly

::::
used

::
or

::::::
further

:::::::
adapted

::
to

:::::
your

::::::::
particular

:::::
needs.

::::
The

::::::
model

:::
you

::::::
choose

::
for

:::::::::
inference

::::
must

:::
be

:::::
stored

::::::::::
somewhere,

::::::::
meaning

:::
you

:::::
either

:::::
need

::
to

::::
train

::
it
::::::::::
beforehand

::
or

::::::::
download

:::
the

:::::::::
pre-trained

::::::
models

:::
we

:::::::
provide.575

8.
:::::::
Analysis

–
:::::::
Conduct

::::
your

:::::::
specific

:::::::
analysis

:::
on

:::
the

:::::::
labelled

:::::::
profiles.

::::
Run

::::::::::::
visualizations

::
if

::::::
desired

:::
as

::::::::
explained

::
in
::::

the
:::::
online

:::::
guide.

Appendix B:
::::::::
Labelling

:
A
:::::

snow
:::::
micro

::::::::::::
penetrometer

:::::
(SMP)

::
is
::
a
::::::
device

::::
used

::
to

::::::::
determine

:::::
bond

:::::::
strength

:::::::
between

:::::::
internal

:::::
snow

:::::
grains

::
in

::
a
:::::::::
snowpack.580

:::
The

::::::::::::::
micro-structural

:::
and

:::::::::::::::
micro-mechanical

:::::::::
properties

::
of

:::
the

:::::
snow,

:::
for

::::::::
example,

::::::
density

::::
and

::::::
specific

:::::::
surface

::::
area

::::::
(SSA),

:::
are

::::::
directly

::::::::::
influencing

:::
the

:::::
bond

:::::::
strength.

::::::
When

::
a

::::::::::
snow-micro

:::::::::::
penetrometer

:::::::::
penetrates

:::
the

:::::::::
snowpack

:::
and

::::::
breaks

:::::
these

::::::
bonds

:::::::
between

:::
the

:::::
snow

::::::
grains,

::
we

::::
are

::::
able

::
to

::::::
directly

:::::
infer

:::::
these

:::::::::::::
micro-structural

:::::::::
properties,

::
as
::::::

shown
::
in
::::

the
::::::
existing

:::::::
method

:::
by

:::::::::::::::::
(Proksch et al., 2015)

:
.
:::
For

::::::::
example,

:::::
snow

::::
with

:::::
high

::::::
density

::::
has

:
a
::::::
higher

:::::
bond

:::::::
strength

::::
and

::::::::
therefore

:
a
::::::
higher

::::::::::
penetration

::::::::
resistance

::::
force

:::::::::::
(measurable

::::
with

:::
the

:::::
SMP),

::
in
::::::::::
comparison

::
to
::::::::::
low-density

:::::
snow.

:
585

:::::::
Different

:::::
types

::
of

:::::
snow

:::::::::::::::
(Fierz et al., 2009)

:::
are

::::::
known

::
to

::::
have

:::::::
different

::::::::
densities

:::
and

:::::
SSA,

::
so

:::
the

::::::::
extraction

::
of

::::
this

:::
data

:::::
from

::
the

:::::
SMP

:::::
force

:::::
signal

:::::::
already

:::::
allows

:::
us

::
to

::::
draw

::::::
pivotal

::::::::::
conclusions

::::::
about

:::
the

::::
snow

:::::
type.

::::::::
However,

:::
the

::::::::::::
characteristics

::::::
(using

:::::::::
magnitude,

:::::::::
frequency,

:::
and

::::::::
gradient)

:::
and

:::
the

::::::::
signature

:::
of

:::
the

:::::::::
penetration

:::::
force

:::::
signal

:::
can

:::::::
provide

:::::
more

::::::::::
information

:::::
about

:::
the

::::::
internal

:::::
snow

::::
type.

::::
This

::::::::
document

:::::::
outlines

:::
the

:::::::
process

::
of

:::::::::::
classification

::
of

:
a
:::::
snow

::::
grain

::::
type

:::::
found

:::
on

:::
sea

::
ice

::
in
:::
the

::::
high

::::::
Arctic

::::
using

:::
the

:::::
SMP

:::::::::
penetration

:::::::::
resistance

::::
force

::::::
signal.

:
590

::::::
Typical

:::::
grains

::::::::
observed

::
as

::::
part

::
of

:::
the

::::::::
MOSAiC

:::::::::
expedition

::
on

::::
sea

::
ice

::
in
:::
the

::::
high

::::::
Arctic

:::
are

:::::
listed

:::::
below.

:

–
::::::::::
Precipitation

:::::::
particles

:::::
(PP)/

::::::::::::
Decomposing

:::
and

::::::::::
Fragmented

:::::::::::
precipitation

:::::::
particles

::::
(DF)

:

–
::
Ice

::::::::::
formations

:::
(IF)

:

–
::::::
Surface

::::
hoar

:::::
(SH)

–
:::::::
Rounded

::::::
grains,

:::::
wind

::::::
packed

:::::::
(RGwp)595

–
:::::
Depth

::::
hoar

:::::
(DH)

–
:::::
Depth

::::
hoar,

::::::::
indurated

:::::::
(DHid)

–
:::::
Depth

::::
hoar

::::
wind

:::::::
packed

:::::::
(DHwp)

–
::::
Melt

:::::
form,

:::::
depth

::::
hoar

::::::
(MFdh)

:
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:
It
::
is

::::::::
important

::
to

:::::::
mention

:::
that

:::
the

::::
melt

::::::
season

::
is

:::
not

:::::::
included

::
in

:::
this

:::::
study

:::
due

::
to

:::::
liquid

:::::
water

::::::::::
influencing

::
the

::::::::::::
interpretation

::
of600

::
the

:::::
SMP

::::::
signal.

:::
For

:::
the

:::::::
majority

::
of

:::::
snow

:::::
types,

:::
we

:::::
follow

:::
the

:::::::::::
classification

::
of

:::::::::::::::
Fierz et al. (2009).

::::::::
However,

::::::::::::::::
Fierz et al. (2009)

:::
was

:::::::
adapted

:::
for

::::::
Alpine

:::::
snow,

:::
and

:::::
when

::::::::
working

::
on

:::
sea

:::
ice

:::
we

::::::::
identified

::::
one

:::::::::
alternative

::::
snow

:::::
grain

:::::
class

:::::
(Melt

:::::
form/

:::::
depth

::::
hoar,

::::::
MFdh)

::::
that

::
is

:::
not

:::::::
existing

::
in
::::

the
:::::::::::::::
Fierz et al. (2009)

:::::::::::
classification.

::::
This

:::::
grain

::::
type

::
is
::::::
known

:::
in

:::
the

:::
sea

:::
ice

::::::::::
community

::
as

:
a
:::::::
surface

::::::::
scattering

:::::
layer

:::::::::::::::
(Light et al., 2015)

:
.
:
It
::

is
::::::::

typically
:::::
found

::
in
::::

the
:::::::
summer

::::::
season

::::
when

::::
sea

:::
ice

:::::
melts,

::::::::
however,

:::
we

::::::::
identified

:::
this

::
as

:
a
::::::::
persistent

:::::
layer

:::::
when

::::::::::
transitioning

::::
into

::::::
winter.

::
In

:::
the

::::
field,

:::
this

::::
was

::
an

:::::::::
extremely

:::::
dense

::::
layer

::
at

:::
the

::::::::
snow-sea605

::
ice

::::::::
interface,

::::
and

:::
the

:::::::::
penetration

:::::::::
resistance

::::
force

::
of

::::
this

::::
layer

::::::
varied

:::::::::
throughout

:::
the

::::::
season.

::::
The

::::
label

:::::
“melt

:::::
form

:::::
depth

:::::
hoar”

:::
was

::::::
chosen

:::
as

:::
this

::
is

::
a

::::::
feature

::
of

:::::::
melting

:::
sea

:::
ice

::::
that

:::
has

::::::::
persisted

:::
into

::::
the

:::::
winter

::::
and

:::
has

:::::::::
undergone

:::::::::::::
metamorphism

:::::
when

:::::
buried

:::::
under

:::::
snow.

:::
All

:::::
other

::::::::::::
classifications

::
are

:::::
listed

::
in
::::::::::::::::
(Fierz et al., 2009).

:
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B1
::::::::::::
Classification

::::::
details

:::::
Grain

::::
type

:::::::
Location

::
in

:::::
snow

:::::
profile

: ::::::
Typical

::::::::
thickness

:::::
Signal

:::::::::
description

: :::::
Force

::::
range

:::
DF

::::::::::::
Predominantly

:::
at
:::::

the

::::::
surface

::
of

:::
the

::::::
profile

:
<
::
2

:::
cm

::::
Very

:::
low

:::::
force

:::::
signal

:
<
::
1

::
N

::
IF

::::::::
Anywhere

: :::
0.1

:::
mm

::
−

::
5

:::
mm

: :::::
Sharp

:::::::
singular

::::
peak,

:::
no

::::::::::
intermediate

:::::
peaks

:
>
::
1

::
N

:::
SH

::::::
Surface

::
of

::::::
profile

:
<
:::
10

:::
mm

: ::::::::
Tooth-like

::::::::
structure

::::::
similar

::
to

:::::
depth

::::
hoar

:
0
::
−

:::
0.2

::
N

:::::
RGwp

: :::::::::
Anywhere.

:::::::::::
Not

:::::::::
necessarily

:::::
on

::::::
the

::::::
surface

:::::::
and

:::::::
can

:::::::::
sometimes

::::
be

:::::::
buried

::
10

::::
mm

:
−
::
>
::
50

:::
cm

:::::
Wavy

::::
force

::::::
signal,

:::::
when

::::::
density

::
is

::::::
around

:::
500

:::
kg

:::::
m−3

::::
can

::::
also

::::
have

::
a
:::::::::

tooth-like

:::::::
structure

::::::
similar

::
to
::::::

depth
::::
hoar

:::::::
(density

::
of

:
>
::::
400

:::
kg

::::
m−3

::
is
::::::

typical
::::

for
:::::
Arctic

:::::
wind

:::::
crust)

::::::
Varying

::::
but

:::
in

::
the

:::
10

:::
−

:::
40

::
N

::::
range

:

:::
DH

:::::
Often

::::::
found

::::
in

:::::
the

::::::
middle

::
to

:::
the

::::::
bottom

:::
of

::
the

::::::
profile

:

::::::::
Complete

:::::
range

::::::
Classic

:::::
teeth

::::::
signal,

:::::::::
increasing

:::
in

:::::
force,

:::
then

::
a
::::::
sudden

::::
drop

:::
in

:::::
force,

:::
due

::
to

::::::
hitting

::
an

::
air

::::::
pocket

:

:
0
::
−

::
2

:
N
:

::::
DHid

: :::::
Often

::::::::::::
middle-bottom

:::
of

:::::
profile

:

::::::::
Complete

:::::
range

::::::
Classic

::::
teeth

::::::
signal.

:::::
Does

:::
not

::::
drop

::
to
::

0
::
N

:::
like

:::
DH

::::::
would

:
2
::
−

:::
6N

:::
(±

:
2
:::
N)

:::::
DHwp

: ::::
Very

:::::
hard

:::::
layer

::
at
::::

the

::::::
surface

:
4
::::
mm

::
−

::
10

:::
cm

: ::::
High

:::::
force

:::::
signal

::::::
caused

:::
by

:::::::::::
wind-packed

::::
snow

::::::
grains

::::::
which

::::
have

::::::::::::::
metamorphosed

:::
into

:::
an

:::
icy

:::::
layer

:
5
::
−

:::
30

:
N
:

:::::
MFdh

::::
Very

:::::
hard

:::::
layer

::
at
::::

the

:::::::
snow-sea

:::
ice

::::::::
interface

:
1
::
−

:::
10

:::
mm

: ::::
High

:::::::
force

:::::::
signal

::::::::
caused

:::::
by

:::
a

:::::::::::::
metamorphosed

:::::::
surface

:::::::::
scattering

:::::
layer

:::::
buried

:::::
under

:::
the

:::::::::
snowpack

:
5
::
−

:::
30

:
N
:

610

B2
:::::::::
Examples

::
of

:::::
grain

:::::
types’

:::::
SMP

:::::::
signals
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Figure B1.
:

A
::::
snow

:::::
micro

::::::::::
penetrometer

::::
signal

:::::::
showing

:
a
::::::
typical

::::
signal

:::
for

::::::::::
decomposing

:::
and

:::::::::
fragmented

:::::::::
precipitation

:::::::
particles

::::
(DF)

:::
with

::
a

::::
force

:::::::
remaining

:::::
under

:::
0.1

:
N
:::::::
between

:::::::::::
approximately

:::
111

:::
mm

:::
and

:::
121

::::
mm.

Figure B2.
:
A

::::
snow

:::::
micro

::::::::::
penetrometer

:::::
signal

::::::
showing

:
a
::::::

typical
:::::
signal

::
for

:::
ice

::::::::
formations

:::
(IF)

::::
with

:
a
:::::
sharp

::::::
singular

::::
peak

::
at

:
a
::::::::
maximum

::
of

:
4
::
N

::::::
between

:::::::::::
approximately

::::
98.6

:::
mm

:::
and

:::
99.3

::::
mm.
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Figure B3.
:
A

::::
snow

:::::
micro

::::::::::
penetrometer

:::::
signal

::::::
showing

::
a
:::::
typical

:::::
signal

:::
for

:::::
surface

::::
hoar

::::
(SH)

::
at

:::
the

:::::
surface

::
of

:::
the

:::::
profile

::::
with

:
a
::::::::
tooth-like

::::::
structure

::::
with

:
a
:::
low

::::
force

::::::
signal.

Figure B4.
:

A
::::
snow

:::::
micro

::::::::::
penetrometer

::::
signal

:::::::
showing

:
a
:::::
typical

:::::
wavy

::::
force

:::::
signal

::
for

:::::::
rounded

:::::
grains,

::::
wind

:::::
packed

:::::
snow

::::::
(RGwp).
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Figure B5.
:

A
::::
snow

:::::
micro

::::::::::
penetrometer

::::
signal

:::::::
showing

:
a
:::::
typical

::::::::
tooth-like

:::::
signal

::
for

:::::
depth

:::
hoar

:::::
(DH).

Figure B6.
:
A

::::
snow

:::::
micro

::::::::::
penetrometer

:::::
signal

:::::::
showing

:
a
::::::
typical

::::
wavy

:::
and

::::::::
tooth-like

:::::
signal

::
for

:::::
depth

::::
hoar,

::::
wind

::::::
packed

:::::::
(DHwp)

:::
with

::
a

::::
force

::::::
between

:
5
::
−
:::
30

:
N
::
at
::::
snow

:::::
depths

::::
208

:::
mm

::
to

:::
215

::::
mm.
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Figure B7.
::
A

::::
snow

:::::
micro

::::::::::
penetrometer

::::
signal

:::::::
showing

:
a
:::::
typical

::::::::
tooth-like

:::::
signal

::
for

:::::::
indurated

:::::
depth

:::
hoar

::::::
(DHid)

::::
with

:
a
::::
force

:::::::
between

:
2
::
−

:
6
::
N.

:

Figure B8.
:
A

::::
snow

:::::
micro

::::::::::
penetrometer

:::::
signal

::::::
showing

::
a
:::::
typical

::::::
increase

::
in
:::::
force

:
at
:::

the
:::::::
snow-sea

:::
ice

:::::::
interface.

::::
This

:::::
signal

:
is
::::::
typical

::
for

::
a

::::::
remnant

::::::
surface

:::::::
scattering

::::
layer,

::::::
named

:::
melt

:::::
form,

::::
depth

::::
hoar

::
in

:::
this

::::
study.

::::
This

:::::
signal

:::::::
typically

::
has

::
a
::::
force

::::
range

::
of

::
5

:
−
:::
30

::
N.
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Appendix C:
:::::::
Features

C1
::::::::
Features

::::::::
included

::
in

::::
data

::::
Table

:::
C1

::::
lists

:::
all

::::::
features

::::
that

::::
were

::::::::
included

::
in

:::
the

:::::::
training,

:::::::::
validation

:::
and

::::::
testing

::::
data

::
of

:::
this

::::::
study.

:::
The

::::::::::
importance

::
of

:::::
those

::::::
features

::::::::
depends

::
on

:::
the

:::::::
specific

:::::
grain

::::
type

::::
that

::::::
should

::
be

:::::::::
classified.

:::
See

::::::
Table

:::
C2

:::
for

::::
this.

:::
For

::::::::
example,

:::::::::
“Rounded

::::::
Grains615

::::
Wind

::::::::
Packed”

:::::
shows

:
a
:::::

high
:::::::::
correlation

::::
with

::::::::::::::
micromechanical

:::::::
features

::::
such

:::
as

:
L
:::

(4
:::
mm

::::::::
window),

::::::::
whereas

:::::::
“Melted

:::::
Form

::
of

:::::
Depth

:::::
Hoar”

::
is
::::::
mainly

:::::::::
correlated

::::
with

:::
the

:::::
force

:::::
values

::
of

:::
the

:::::
SMP

::::::
profile.

:::::::
Further

::::::
feature

:::::::::
importance

:::::::
analysis

::::::::
(ANOVA

::::
and

:::::::
decision

:::
tree

::::::::::
importance)

::::
can

::
be

:::::
found

::::::
online

::
in

:::
the

::::::::::
snowdragon

::::::
GitHub

:::::::::
repository.

:

C2
::::::::::
Label-wise

::::::
feature

::::::::::
correlation

::::
Table

:::
C2

::::::
shows

::::
why

:::::::::::
classification

:::
for

:::
this

::::::
dataset

::
is

::
so

:::::
hard.

:::::
Some

:::::
labels

::::
have

:::::
lower

::::::::::
correlations

::::::
among

:::
all

:::::::
features,

:::::::
making620

:
it
:::::::
unclear

::::
how

:::
the

::::
right

:::::::::
predictions

::::
can

::
be

::::::::
achieved

::
on

::::
this

:::::
basis.

:::::
Other

:::::
more

::::::::
predictive

:::::::
features

:::
are

:::::::
missing,

:::
i.e.

::
if
::
a

::::::
feature

:
is
:::::::::
discovered

::::
that

:::::
shows

::
a
::::
high

:::::::::
correlation

::::::
within

:::
this

::::
plot,

::
it
:::::
might

:::::
boost

:::
the

::::::
overall

:::::::::::
classification

::::::::::
capabilities

::
of

:::
the

:::::::
models.

:::
The

:::::
figure

::::
also

::::::
shows

::::
that

::::
there

::::::
might

::
be

::::::::::
interaction

::::::
effects

::::::
arising

:::::
since

::::
some

:::::
snow

:::::
types

:::::
show

::::
very

:::::::
similar

::::::::::
correlations

:::
(for

:::::::
example

:::::::
“Melted

:::::
Form

::
of

::::::
Depth

:::::
Hoar”

:::
and

:::::::
“Depth

:::::
Hoard

:::::
Wind

::::::::
Packed”).

:::
In

::::::::
summary,

:::
the

:::::::::
label-wise

::::::
feature

:::::::::
correlation

::::::
reveals

:::
the

::::::::::
classification

::::::::
difficulty

::
of

:::
the

::::::
dataset

::::
and

:::
can

::
be

:::::
used

::
to

:::::::
discover

::::
new

::::::::
predictive

:::::::
features.

:
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Appendix D:
::::::
Metrics

:::
The

::::::
metrics

:::::
used

::
for

:::::::::
validation

:::
and

::::::
testing

:::
are

:::::
listed

:::
and

::::::::
explained

:::
in

::::
Table

::::
D1.

::
It

:::::
might

::
be

::::::
helpful

::
to

:::::::::
familiarize

:::::::
oneself

::::
with

:
a
:::::
binary

:::::::::
confusion

::::::
matrix

::::::::::
beforehand.

::::::::
Intuitively

:::::::::
speaking,

::::::::
accuracy

::::::::
expresses

::::
how

::::::
many

:::::::
samples

:::::
were

::::::::
predicted

::::::::
correctly

:::::::
relative

::
to

:::
all

::::::::::
predictions;

::::::
recall

::::::::
expresses

::::
how

:::::
many

::::::
positive

:::::::
samples

:::::
were

::::::::
predicted

:::::::
correctly

:::::::
relative

::
to

::
all

:::::::
positive

::::::::
samples;

::::::::
precision

::::::::
expresses

::::
how

:::::
many630

::::::
positive

:::::::
samples

:::::
were

::::::::
predicted

:::::::
correctly

:::::::
relative

::
to

:::
all

::::::
positive

::::::::::
predictions;

:::
F1

:::::
score

:::
can

:::
be

::::
used

::
to

:::::::
measure

::::
both

:::::
recall

::::
and

:::::::
precision

:::
in

:::
one

:::::
score;

:::::
ROC

::
is

:::
the

:::::::
receiver

::::::::
operating

::::::::::::
characteristics

::::
and

::::
plots

:::
the

::::
true

:::::::
positive

::::
rate

:::::
versus

:::
the

:::::
false

:::::::
positive

::::
rate;

:::::::
AUROC

:::::::::
expresses,

:::
that

::::
the

:::::
higher

:::
the

::::
area

::::::
under

:::
the

::::
ROC

::::::
curve,

:::
the

::::::
clearer

::::
can

:::
the

:::::
model

::::::::
separate

:::::::
between

:::::::
positive

:::
and

:::::::
negative

::::::::
samples;

:::
and

:::
log

::::
loss

::::::::
expresses

::::
how

::::
good

::
or

::::
bad

:::
the

::::::::
prediction

:::::::::::
probabilities

::
of

::::
each

::::::
sample

:::
are

:::::::::
compared

::
to

:::
the

:::::
target

:::::::::
predictions.

:::
All

:::::
these

::::::
values

:::
are

:::::
better

:::
the

:::::
larger

::::
they

:::
are,

::::::
except

::
of

:::
the

:::
log

::::
loss,

::::::
which

:
is
::::
kept

::
as
::::
low

::
as

::::::::
possible.

:::::
Some635

::
of

:::
the

::::::
metrics

::::
from

:::::
Table

:::
D1

::::::
cannot

:::
be

::::::::
computed

:::
for

::
all

:::::::
models.

::::
This

::
is

:::
the

::::
case

:::::::
because

:::
the

:::::::
AUROC

:::
and

:::
the

:::
log

::::
loss

::::::
metric

::::::
operate

:::
on

::::::::
prediction

:::::::::::
probabilities

:::
for

:::
the

::::::::
different

::::::
classes,

::::::
which

:::
not

:::::
every

::::::
model

:::
can

:::::::
provide.

:::
In

::::
these

::::::
cases,

:::
the

:::::::
missing

:::::
metric

::
is

::::::
marked

::::
with

:::
“-”

::
in
:::
the

:::::
result

::::::
tables.

:
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::::::
Feature

::::
Name

: ::::::::::
Abbreviation

:::::::::
Explanation

::::::
distance

: :::
dist

::::::
Distance

::::
from

:::
the

:::::::::
snowpack’s

:::::
surface

:

:::::::::
dist_ground

::::::
dist_gro

:

::::::
Distance

::::
from

:::
the

:::::
ground

:

:::::
pos_rel

: :::::
pos_rel

:

::::::
Relative

::::::
position

::
in

:::
the

:::::::
snowpack

:

::::::
gradient

: ::::::
gradient

:

::::::
Gradient

::::::
(slope)

::
of

::
the

::::
force

:::::
signal

:

:::::::::
mean_force

::::
mean

:

::::
Mean

::::
force

:::::
signal

::
(1

:::
mm

:::::::
window)

::::::::::
mean_force_4

: ::::::
mean_4

::::
Mean

::::
force

:::::
signal

::
(4

:::
mm

:::::::
window)

:::::::::::
mean_force_12

: :::::::
mean_12

::::
Mean

::::
force

:::::
signal

:::
(12

:::
mm

:::::::
window)

:::::::
var_force

: ::
var

:

::::::
Variance

::
of

:::
the

::::
force

:::::
signal

::
(1

:::
mm

:::::::
window)

:::::::::
var_force_4

::::
var_4

:

::::::
Variance

::
of

:::
the

::::
force

:::::
signal

::
(4

:::
mm

:::::::
window)

::::::::::
var_force_12

:::::
var_12

:

::::::
Variance

::
of

:::
the

::::
force

:::::
signal

:::
(12

:::
mm

:::::::
window)

::::::::
max_force

:::
max

:

::::::::
Maximum

:
of
:::

the
::::
force

:::::
signal

::
(1

:::
mm

:::::::
window)

::::::::::
max_force_4

:::::
max_4

:

::::::::
Maximum

:
of
:::

the
::::
force

:::::
signal

::
(4

:::
mm

:::::::
window)

:::::::::::
max_force_12

::::::
max_12

::::::::
Maximum

:
of
:::

the
::::
force

:::::
signal

:::
(12

:::
mm

:::::::
window)

::::::::
min_force

:::
min

:::::::
Minimum

::
of

:::
the

::::
force

:::::
signal

::
(1

:::
mm

:::::::
window)

:::::::::
min_force_4

: :::::
min_4

:::::::
Minimum

::
of

:::
the

::::
force

:::::
signal

::
(4

:::
mm

:::::::
window)

::::::::::
min_force_12

: ::::::
min_12

:::::::
Minimum

::
of

:::
the

::::
force

:::::
signal

:::
(12

:::
mm

:::::::
window)

::::::::::::
median_force_4

:::::
med_4

:

:::::
Median

::
of
:::
the

::::
force

:::::
signal

::
(4

:::
mm

:::::::
window)

:::::::::::::
median_force_12

::::::
med_12

:::::
Median

::
of
:::
the

::::
force

:::::
signal

:::
(12

:::
mm

:::::::
window)

:::::
delta_4

: :::::
delta_4

:

::::
Width

::
of
:::::
peaks

::
in

::
the

:::::
force

::::
signal

::
(4

::::
mm

::::::
window)

::::::
delta_12

: ::::::
delta_12

:

::::
Width

::
of
:::::
peaks

::
in

::
the

:::::
force

::::
signal

:::
(12

:::
mm

:::::::
window)

:::
L_4

: :::
L_4

:

::::::
Distance

:::::::
between

::::::::::
neighbouring

:::::
peaks

::
in

:::
the

::::
force

:::::
signal

::
(4

:::
mm

:::::::
window)

::::
L_12

::::
L_12

::::::
Distance

:::::::
between

::::::::::
neighbouring

::::
peaks

::
in
:::
the

::::
force

:::::
signal

:::
(12

:::
mm

:::::::
window)

:::::::
lambda_4

: :::::::
lambda_4

:

:::::::
Parameter

::::::::
regulating

:::
the

::::::
Poisson

:::
shot

::::
noise

::
(4
::::
mm

::::::
window)

::::::::
lambda_12

: ::::::::
lambda_12

:

:::::::
Parameter

::::::::
regulating

:::
the

::::::
Poisson

:::
shot

::::
noise

::
(4
::::
mm

::::::
window)

Table C1.
:::::
Names

:::
and

::::::::
description

::
of

:::
the

::::::
features

:::::::
included

::
in

::
the

:::::::
training,

:::::::
validation

:::
and

::::::
testing

:::
data.
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0.03 -0.32 -0.12 -0.30 -0.31 -0.32 -0.14 -0.31 -0.31 -0.32 0.04 -0.02 0.26 -0.32 -0.14 -0.31 -0.31 -0.32 0.05 -0.14 0.26 -0.05 0.19 -0.23

0.01 -0.10 -0.01 -0.18 -0.03 -0.10 -0.01 -0.18 -0.03 -0.10 -0.02 -0.00 0.24 -0.10 -0.01 -0.18 -0.03 -0.11 -0.02 -0.11 0.18 -0.03 0.36 -0.36

0.04 0.40 0.43 0.32 0.44 0.38 0.50 0.29 0.42 0.37 -0.01 -0.00 0.09 0.38 0.50 0.29 0.42 0.33 -0.01 0.00 0.11 0.32 0.25 -0.16

0.02 -0.06 -0.14 0.04 -0.14 -0.06 -0.17 0.05 -0.14 -0.05 -0.01 0.01 -0.48 -0.06 -0.18 0.05 -0.14 -0.04 -0.02 0.15 -0.47 -0.04 -0.44 0.62
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-0.10 -0.08 -0.03 -0.07 -0.09 -0.08 -0.03 -0.07 -0.09 -0.08 -0.00 -0.02 0.01 -0.08 -0.03 -0.07 -0.09 -0.07 -0.00 0.04 0.05 0.01 -0.15 -0.01

-0.03 0.02 0.04 0.01 0.03 0.01 0.04 0.00 0.02 0.01 -0.00 -0.02 0.04 0.01 0.04 0.00 0.02 0.02 -0.00 -0.01 0.03 0.04 -0.03 -0.01
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Table C2.
::::::::::
Label-Feature

::::::::
correlation

:::::::
between

::::
snow

:::::
types

:::
and

::::::::
aggregated

:::::::
features

::
of

::
the

:::::
SMP

::::::
profiles.

:::
The

:::::::
numbers

::
in
:::
the

::::::
feature

:::::
names

::::
stand

::
for

:::
the

::::::
window

:::
size

::::
used

:::::
during

::::::::::
aggregation.

:::::
“Depth

:::::
Hoar”

::::
(dh),

::::::
“Depth

::::
Hoar

::::::::
Indurated”

:::::
(dhid),

:::
and

::::::::
“Rounded

:::::
Grains

::::
Wind

:::::::
Packed”

:::::
(rgwp)

::::
show

:::::
some

::::::
negative

:::::::::
correlations

::::
with

:
a
:::::
subset

::
of
:::

the
:::::::
features.

::::::
“Melted

:::::
Form

::
of

:::::
Depth

:::::
Hoar”

::::::
(mfdh),

::::::
“Depth

::::
Hoar

::::
Wind

:::::::
Packed”

:::::
(dhwp)

:::
and

::::::::
“Rounded

:::::
Grains

::::
Wind

:::::::
Packed”

:::::
(rgwp)

::::
show

:
a
:::::
strong

::::::
positive

:::::::::
correlation

:::
with

::
at

::::
least

:::
one

::::::
feature.

::::::::::
“Precipitation

:::::::
Particles”

::::
(pp)

:::
does

:::
not

::::
show

:::::
strong

:::::::::
correlations

::::
with

:::
any

::::::
feature,

:::::::
however,

:
a
::::::::
correlation

::::
with

::::::
distance

:::::
(dist),

:::::::
variance,

:::
and

::::
force

::::::
features

::::
was

::::::
expected

:::
by

::::::
experts.

:::
The

:::
low

:::::::::
correlations

:::::
could

::
be

:::::
caused

:::
by

::
the

:::::::::::::::
data-preprocessing

:::
step

::::
when

:::::::::::
“Decomposed

:::
and

:::::::::
Fragmented

::::::::::
Precipitation

::::::::
Particles”

:::
were

:::::::::
categorised

::
as
:::::::::::

“Precipitation
::::::::
Particles”

::
as

::::
well.

::::
The

::::
class

:::::
“Rare”

::::::
shows

::
no

:::::::::
correlations

::::
with

:::
the

::::::
features

:::::
since

:
it
:::::::

consists
::
of

::::
very

::::::
different

:::::::::
sub-classes

::::
(“Ice

::::::::
Formation”

::::
and

::::::
“Surface

::::::
Hoar”).

Appendix E: Machine specifications

The evaluation and hyperparameter tuning experiments were run on two different machines. The complete evaluation was640

conducted on a 64-bit system with an Ubuntu 18.04.5 (Bionic Beaver) operating system. The machine has 16 GB RAM and an

Intel® Core™ i7-6700HQ CPU @ 2.60GHz × 8 (and the GPU was not used). The machine on which the first hyperparameter

tuning, training, and validation experiments have been run has the following specifications: 64-bit system with an Ubuntu

20.04.1 (Focal Fossal) operating system, an Intel® Core™ i7-4510U CPU @ 2.00GHz x 4 CPU, and 12 GB RAM (and the

GPU was not used). Final hyperparameter tuning, training, and validation (results presented here) were run on an Azure virtual645

machine of the Dsv3-series, namely on a Standard_D4s_v3 3 machine with Ubuntu 18.04 (Bionic Beaver) as an operating

system, 16 GB RAM and 4 vCPUs.

3https://docs.microsoft.com/en-us/azure/virtual-machines/dv3-dsv3-series
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:::::::
Metrics’s

:::::
Name

::::::
Formula

:::
for

::::::
Binary

::::
Case

:::::::::
Description

:::::::
Balanced

:::::::
Accuracy

: :::::::::::::::::

1
2
( TP
TP+FN

+ TN
TN+FP

)

:::::::::::
Macro-average

:::
of

:::::
recall

::::::
scores

:::
per

::::
class.

:::
For

:::::::
balanced

:::::::
datasets,

:::
the

::::
score

:
is
:::::
equal

:
to
::::::::
accuracy.

:::::::
Weighted

:::::
Recall

: :::::::

TP
(TP+FN)

:::::::
Calculates

:::
the

:::::
recall

::
for

::::
each

::::
class

:::
and

:::::::
computes

:::
the

:::::
mean,

::::::::
weighted

::
by

:::
the

:::::
class’s

::::::
presence

::
in
:::
the

::::
target

::::
data.

:::::::
Weighted

:::::::
Precision

: :::::::

TP
(TP+FP )

:::::::
Calculates

:::
the

::::::::
precision

::
for

::::
each

::::
class

:::
and

::::::::
computes

::::
the

::::::::
weighted

:::::
mean,

:::::::
weighted

::
by

:::
the

:::::
class’s

:::::::
presence

::
in

::
the

::::
target

::::
data.

::
F1

:::::
Score

:::::::::::
2 ∗ precision∗recall

precision+recall

:::::::
Harmonic

:::::
mean

:
of
::::::::

precision
:::
and

::::
recall.

:
In
::::

the
::::::::
multiclass

:::::
case,

:::
F1

:::::::
computes

::
the

::::
class

:::::
mean,

:::::::
weighted

:::
by

::
the

:::::
class’s

::::::
presence

::
in

:::
the

::::
target

::::
data.

:

::::::
AUROC

: :
-

:::::::
Computes

:::
the

::::
area

:::::
under

:::
the

::::::
receiver

:::::::
operating

::::::::::
characteristic

:::::
curve

::::
from

::
the

:::::::
prediction

::::::
scores.

:::
The

::::
ROC

::::
curve

::::
plots

::
the

::::
true

::::::
positive

::::
rate

:::::
versus

:::
the

::::
false

::::::
positive

:::
rate.

::::
The

:::::
scores

:::
are

:::::::
calculated

::
for

::::
each

::::
class

::::::
against

::
all

:::::
other

:::::
classed

::::::::::::
(one-versus-rest)

:::
and

::::::::
weighted.

:::
Log

::::
Loss

::::::::::::::::::::::::::
−(y · log(p)+ (1− y) · log(1− p))

:

::::::
Negative

:::::::::::::::
Log-Likelihood

::::
of

:::
a

:::::
logistic

::::::
model

:::
that

::::::
returns

::::::::
prediction

:::::::::
probabilities

:
p
:::
for

:::
the

:::
true

:::
data

::
y.

Table D1.
:::
List

::
of

:::::
metrics

::::::::
employed

:::::
during

::::::::
validation

:::
and

:::::
testing.

:::
The

:::::
given

:::::::
formulas

::
are

::::
only

::::::::
simplified

::::::
versions

:::
for

:
a
:::::
binary

::::::::::
classification

:::
case

:::::
where

::
no

::::::::
weighting

::::
takes

:::::
place.

:::
The

::::::
formula

:::
for

::
the

:::::::
AUROC

:
is
:::
not

::::
given

::::
here,

:::::
since

:
it
::
is

::
no

:::::::
one-liner

:::
and

::::::
actually

::::::
involves

:::::::::
calculating

::
an

:::
area

:::::
under

::
the

::::
ROC

:::::
curve.

::::::::::::
Implementation

:::
and

::::::::::
explanations

::
of

::
the

::::::
metrics

:::
are

::::
from

:::::::::::::::::
Pedregosa et al. (2011).
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Appendix F: Model setup

The project was executed in Python 3.6 and all used packages can be found on GitHub in the “requirements.txt” file. Princi-

ple component analysis, t-SNE, k-means clustering, Gaussian Mixture Models, Bayesian Gaussian Mixture Models, random650

forests, SVMs, and the k-nearest neighbor
::::::::
neighbour

:
algorithm were used as made available through scikit-learn by Pedregosa

et al. (2011). 4 The easy ensemble for imbalanced datasets and a balanced variant of the random forest are imported from

imbalanced-learn by Lemaître et al. (2017). 5 All ANN architectures were created with the help of TensorFlow (Abadi et al.,

2015) 6 and Keras (Chollet et al., 2015) 7. The attention model within the encoder-decoder network was used as provided in

the keras-attention-mechanism package by CyberZHG (2020).655

Appendix G: Label-wise feature correlation

Label-Feature correlation between snow types and aggregated features of the SMP profiles. The numbers in the feature names

stand for the window size used during aggregation. “Depth Hoar” (dh), “Depth Hoar Indurated” (dhid), and “Rounded Grains

Wind Packed” (rgwp) show some negative correlations with a subset of the features. “Melted Form of Depth Hoar” (mfdh),

“Depth Hoar Wind Packed” (dhwp) and “Rounded Grains Wind Packed” (rgwp) show a strong positive correlation with at660

least one feature. “Precipitation Particles” (pp) does not show strong correlations with any feature, however, a correlation

with distance (dist), variance, and force features was expected by experts. The low correlations could be caused by the

data-preprocessing step when “Decomposed and Fragmented Precipitation Particles” were categorizes as “Precipitation Particles”

as well. The class “Rare” shows no correlations with the features since it consists of very different sub-classes (“Ice Formation”

and “Surface Hoar”).665

Table C2 shows why classification for this dataset is so hard. Some labels have lower correlations among all features, making

it unclear how the right predictions can be achieved on this basis. Other more predictive features are missing, i.e. if a feature

is discovered that shows a high correlation within this plot, it might boost the overall classification capabilities of the models.

The figure also shows that there might be interaction effects arising since some snow types show very similar correlations

(for example “Melted Form of Depth Hoar” and “Depth Hoard Wind Packed”). In summary, the label-wise feature correlation670

reveals the classification difficulty of the dataset and can be used to discover new predictive features.

Appendix G: Pruned decision tree

4https://scikit-learn.org/stable/
5https://imbalanced-learn.org/stable/
6https://www.tensorflow.org/
7https://keras.io/
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var_force <= 0.0
gini = 0.86

samples = 100.0%
class = mfdh

gini = 0.49
samples = 13.5%

class = pp

True

mean_force_12 <= 0.09
gini = 0.84

samples = 86.5%
class = mfdh

False

var_force_12 <= 0.01
gini = 0.8

samples = 66.7%
class = dhid

distance <= 0.05
gini = 0.71

samples = 19.8%
class = mfdh

median_force_12 <= 0.02
gini = 0.78

samples = 65.2%
class = dh

gini = 0.34
samples = 1.5%

class = rare

min_force_4 <= 0.01
gini = 0.46

samples = 19.8%
class = dh

min_force_4 <= 0.02
gini = 0.79

samples = 45.3%
class = dhid

gini = 0.44
samples = 19.0%

class = dh

gini = 0.49
samples = 0.9%

class = rgwp

max_force_12 <= 0.03
gini = 0.72

samples = 21.6%
class = dhid

var_force_12 <= 0.0
gini = 0.75

samples = 23.8%
class = rgwp

gini = 0.6
samples = 0.5%

class = rare

pos_rel <= 0.31
gini = 0.65

samples = 21.1%
class = dhid

gini = 0.78
samples = 3.2%

class = dhwp

gini = 0.57
samples = 18.0%

class = dhid

gini = 0.28
samples = 12.8%

class = rgwp

gini = 0.76
samples = 11.0%

class = dhwp

gini = 0.66
samples = 8.7%

class = dhwp

gini = 0.56
samples = 11.1%

class = mfdh

Figure G1. Pruned decision tree extracted from the random forest. Decision trees encode the decision rules for predicting snow type labels.

This approach helps to explain the model’s decisions, a property that is often asked for by domain experts. At each leaf node, a labeling

::::::
labelling

:
decision is made. All the other nodes encode the labeling

::::::
labelling rules that are used to classify each point. Take the root node as

an example: If the variance of the force is smaller or equal to zero, the point is labeled
:::::
labelled

:
as “Precipitation Particles”. Else it has to be

one of the other labels. The Gini index encodes how well separable the subsets of data points are (the bigger the number the better), and the

sample’s number shows how much percent of the complete data can be found in this subset.
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Appendix H: Confusion matrices

dh
dh

id
m

fd
h

rg
wp

dh
wp

pp
ra

re
0.000 0.000 0.000 1.000 0.000 0.000 0.000

0.000 0.000 0.000 1.000 0.000 0.000 0.000

0.000 0.000 0.000 1.000 0.000 0.000 0.000

0.000 0.000 0.000 1.000 0.000 0.000 0.000

0.000 0.000 0.000 1.000 0.000 0.000 0.000

0.000 0.000 0.000 1.000 0.000 0.000 0.000

0.000 0.000 0.000 1.000 0.000 0.000 0.000

Majority Vote, Accuracy=0.390
0.585 0.157 0.000 0.259 0.000 0.000 0.000

0.160 0.634 0.001 0.205 0.000 0.000 0.000

0.037 0.305 0.454 0.204 0.000 0.000 0.000

0.058 0.067 0.004 0.871 0.000 0.000 0.000

0.006 0.293 0.122 0.580 0.000 0.000 0.000

0.953 0.047 0.000 0.000 0.000 0.000 0.000

0.400 0.400 0.200 0.000 0.000 0.000 0.000

Gaussian Mixture Model, Accuracy=0.649
dh

dh
id

m
fd

h
rg

wp
dh

wp
pp

ra
re

0.565 0.168 0.000 0.267 0.000 0.000 0.000

0.135 0.579 0.001 0.263 0.022 0.000 0.000

0.022 0.290 0.457 0.074 0.156 0.000 0.000

0.055 0.059 0.004 0.871 0.011 0.000 0.000

0.004 0.272 0.126 0.398 0.200 0.000 0.000

0.953 0.047 0.000 0.000 0.000 0.000 0.000

0.400 0.400 0.200 0.000 0.000 0.000 0.000

Bayesian Gaussian Mixture Model, Accuracy=0.646
0.398 0.371 0.000 0.203 0.028 0.000 0.000

0.244 0.600 0.023 0.044 0.090 0.000 0.000

0.030 0.227 0.669 0.000 0.074 0.000 0.000

0.100 0.055 0.000 0.793 0.052 0.000 0.000

0.069 0.044 0.031 0.239 0.617 0.000 0.000

0.057 0.000 0.000 0.943 0.000 0.000 0.000

0.200 0.100 0.000 0.500 0.200 0.000 0.000

K-means, Accuracy=0.620

dh dhid mfdh rgwp dhwp pp rare

dh
dh

id
m

fd
h

rg
wp

dh
wp

pp
ra

re

0.729 0.071 0.002 0.154 0.006 0.025 0.014

0.345 0.407 0.007 0.052 0.132 0.000 0.057

0.048 0.171 0.714 0.000 0.033 0.000 0.033

0.117 0.025 0.000 0.662 0.121 0.020 0.056

0.011 0.046 0.022 0.030 0.624 0.000 0.267

0.377 0.000 0.000 0.000 0.000 0.604 0.019

0.100 0.100 0.000 0.000 0.000 0.400 0.400

Easy Ensemble, Accuracy=0.616

dh dhid mfdh rgwp dhwp pp rare

0.751 0.138 0.000 0.100 0.007 0.004 0.000

0.270 0.585 0.005 0.073 0.066 0.000 0.000

0.059 0.283 0.491 0.000 0.167 0.000 0.000

0.073 0.058 0.000 0.835 0.031 0.002 0.000

0.037 0.165 0.009 0.298 0.487 0.004 0.000

0.113 0.000 0.000 0.255 0.028 0.604 0.000

0.100 0.200 0.000 0.400 0.300 0.000 0.000

K-nearest Neighbors, Accuracy=0.712
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dh
dh

id
m
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h
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wp

dh
wp
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ra

re
0.765 0.127 0.000 0.103 0.005 0.000 0.000

0.259 0.617 0.002 0.045 0.077 0.000 0.000

0.011 0.372 0.550 0.000 0.067 0.000 0.000

0.061 0.083 0.000 0.813 0.028 0.015 0.000

0.009 0.133 0.013 0.278 0.567 0.000 0.000

0.066 0.000 0.000 0.057 0.019 0.858 0.000

0.200 0.200 0.000 0.000 0.300 0.300 0.000

Random Forest, Accuracy=0.726
0.650 0.129 0.001 0.144 0.008 0.062 0.006

0.214 0.535 0.013 0.090 0.085 0.000 0.063

0.030 0.145 0.818 0.000 0.000 0.000 0.007

0.020 0.031 0.000 0.840 0.039 0.047 0.023

0.009 0.052 0.026 0.143 0.489 0.000 0.281

0.000 0.000 0.000 0.000 0.000 0.972 0.028

0.100 0.100 0.000 0.000 0.000 0.400 0.400

Balanced Random Forest, Accuracy=0.696
dh

dh
id

m
fd

h
rg

wp
dh

wp
pp

ra
re

0.697 0.080 0.003 0.192 0.009 0.014 0.005

0.298 0.508 0.023 0.056 0.091 0.000 0.024

0.045 0.104 0.833 0.000 0.011 0.000 0.007

0.039 0.022 0.000 0.851 0.039 0.026 0.022

0.013 0.031 0.041 0.246 0.487 0.007 0.174

0.057 0.000 0.000 0.009 0.000 0.915 0.019

0.100 0.200 0.000 0.000 0.000 0.400 0.300

Support Vector Machine, Accuracy=0.705
0.714 0.106 0.001 0.175 0.002 0.001 0.000

0.195 0.638 0.001 0.116 0.049 0.000 0.000

0.007 0.338 0.580 0.000 0.074 0.000 0.000

0.013 0.018 0.000 0.930 0.023 0.016 0.000

0.007 0.074 0.019 0.469 0.431 0.000 0.000

0.028 0.000 0.000 0.151 0.028 0.792 0.000

0.000 0.300 0.000 0.000 0.300 0.400 0.000

LSTM, Accuracy=0.754

dh dhid mfdh rgwp dhwp pp rare

dh
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h
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wp

dh
wp
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re

0.824 0.128 0.000 0.044 0.002 0.003 0.000

0.251 0.582 0.002 0.103 0.061 0.000 0.000

0.022 0.353 0.439 0.000 0.186 0.000 0.000

0.024 0.069 0.000 0.835 0.064 0.008 0.000

0.013 0.093 0.000 0.322 0.572 0.000 0.000

0.047 0.000 0.000 0.170 0.009 0.774 0.000

0.200 0.100 0.000 0.000 0.300 0.400 0.000

BLSTM, Accuracy=0.736

dh dhid mfdh rgwp dhwp pp rare

0.887 0.072 0.000 0.030 0.011 0.000 0.000

0.291 0.619 0.006 0.030 0.054 0.000 0.000

0.007 0.338 0.535 0.026 0.093 0.000 0.000

0.039 0.022 0.000 0.906 0.029 0.005 0.000

0.059 0.181 0.020 0.222 0.509 0.007 0.000

0.123 0.000 0.000 0.519 0.028 0.330 0.000

0.200 0.100 0.000 0.400 0.300 0.000 0.000

Encoder Decoder, Accuracy=0.780
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dh dhid mfdh rgwp dhwp pp rare

dh
dh

id
m

fd
h
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wp

dh
wp
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re

0.619 0.146 0.001 0.146 0.006 0.078 0.005

0.205 0.551 0.012 0.090 0.087 0.000 0.056

0.026 0.145 0.814 0.000 0.000 0.000 0.015

0.022 0.031 0.000 0.840 0.042 0.044 0.020

0.009 0.056 0.030 0.152 0.489 0.000 0.265

0.000 0.000 0.000 0.000 0.000 0.972 0.028

0.100 0.100 0.000 0.000 0.000 0.400 0.400

Self Trainer, Accuracy=0.692

dh dhid mfdh rgwp dhwp pp rare

0.749 0.132 0.000 0.109 0.007 0.003 0.000

0.267 0.591 0.003 0.073 0.065 0.000 0.000

0.063 0.283 0.491 0.000 0.164 0.000 0.000

0.074 0.060 0.000 0.837 0.027 0.001 0.000

0.022 0.165 0.007 0.311 0.493 0.002 0.000

0.113 0.000 0.000 0.264 0.019 0.604 0.000

0.100 0.200 0.000 0.400 0.300 0.000 0.000

Label Propagation, Accuracy=0.714
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Table H1. Confusion matrices of all models displaying the predicted and the observed snow types. The number in each cell is the relative

prediction frequency of a label within the observed class. The numbers of the diagonal (upper left to lower right) represent the prediction

accuracy of each label. The stronger pronounced the diagonal and the less pronounced the upper and the lower triangles are, the better are the

predictions. The confusion matrices help for an in-depth analysis of the label-specific performances. This is useful when practitioners
::::
users

want to choose a model that is suitable for a specific snow classification task.
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