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Abstract. Snow-layer segmentation and classification are essential diagnostic tasks for various cryospheric applications. The

SnowMicroPen (SMP) measures the snowpack’s penetration force at submillimetre intervals in snow depth. The resulting

depth-force profile can be parameterized for density and specific surface area. However, no information on traditional snow

types is currently extracted automatically. The labeling of snow types is a time-intensive task that requires practice and becomes

infeasible for large datasets. Previous work showed that automated segmentation and classification is, in theory, possible but5

can either not be applied to data straight from the field or needs additional time-costly information, such as from classified snow

pits. We evaluate how well machine learning models can automatically segment and classify SMP profiles to address this gap.

We trained fourteen models, among them semi-supervised models and artificial neural networks (ANNs), on the MOSAiC SMP

dataset, an extensive collection of snow profiles on Arctic sea ice. We found that SMP profiles can be successfully segmented

and classified into snow classes based solely on the SMP’s signal. The model comparison provided in this study enables SMP10

users to choose a model that is suitable for their task and dataset. The findings presented will facilitate and accelerate snow

type identification through SMP profiles. Anyone can access the tools and models needed to automate snow type identification

via the software repository “snowdragon”. Overall, snowdragon creates a link between traditional snow classification and

high-resolution force-depth profiles. With such a tool, traditional snow profile observations can be compared to SMP profiles.

1 Introduction15

The cryosphere covers around 10% of our earth and plays a significant role in stabilizing the earth’s climate (Pörtner et al.,

2019). Snow cover plays a role in optics, heat, and mass balance and is one of the most significant uncertainties in global climate

models (Sturm and Massom, 2017; Steger et al., 2013; Douville et al., 1995). Snow layer segmentation and classification

put forth knowledge about the atmospheric conditions a snowpack has experienced (Colbeck, 1987; Fierz et al., 2009). This

knowledge helps to discern fundamental snow and climate mechanisms in the Arctic and to analyze polar tipping points.20

Classification of snow types 1 is essential to assess the state of our cryosphere and is thus of interest for polar, cryospheric, and

1Also referred to as “snow grain type” or “grain type” in the community.
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climate change research (Domine et al., 2019; King et al., 2015; Sturm and Liston, 2021). Snow type is often better reproduced

in detailed snow cover models (Vionnet et al., 2012) than their effective physical properties, especially indirectly structural

anisotropy (King et al., 2015). This is especially relevant for active and passive microwave sensing, essential to map the arctic

snowpack during polar night (Sandells et al., 2023).25

Traditionally, snow stratigraphy measurements are made in snow pits. These pits are dug manually into snowpacks and

require trained operators and a substantial time commitment. To accelerate these measurements, the SnowMicroPen (SMP), a

portable high-resolution snow penetrometer, can be used (Johnson and Schneebeli, 1998). They have demonstrated the SMP as

a capable tool for rapid snow type classification and layer segmentation. The measurement results are stored in an SMP profile

that consists of the penetration force signal of the measurement tip in Newton and the depth signal indicating how far the tip30

moved. Afterwards, the SMP profiles must be manually labeled by an expert, which requires time and practice.

To address these shortcomings, Machine learning (ML) algorithms could be used to automate the labeling process. Instead

of manually labeling each SMP profile, an ML model can be trained on a few labeled profiles and can subsequently reproduce

the labeling patterns on other profiles. As a consequence, this would (1) immensely accelerate the SMP analysis, (2) enable the

analysis of large datasets, and (3) support interdisciplinary scientists who are unfamiliar with snow type categorization.35

Such an automatic classification of SMP profiles helps to find layers with shared properties within a large SMP dataset.

By reproducing a trained labeling pattern on new profiles with ML, SMP classification is up-scaled. While it is impossible

to manually label and analyse a dataset of thousands of SMP profiles, an ML-assisted classification enables us to conduct

completely new analyses. Questions like “How does a typical snow layer in the Arctic look like?” suddenly move within reach.

Statistical analyses of signal and layer types rely on consistent, large, and fully labeled SMP datasets.40

Several previous works have addressed the task of automatically classifying snow types with machine-learning algorithms.

The nearest neighbour method of Satyawali et al. (2009) was the first model that automated the segmentation and classification

of SMP profiles without needing additional snow pit information. To assign a snow type to an unlabeled data point, the method

chooses the most frequent class occurring in the neighbourhood of this data point. The neighbourhood contains the most similar

points to the unlabeled data point. Their algorithm predicts five different snow types (“New Snow”, “Faceted Snow”, “Depth45

Hoar”, “Rounded Grains”, “Melt-Freeze”), with an accuracy ranging from 0.68 to 0.94. However, this high performance is

only achieved by integrating specific and inflexible expert rules. For example, one rule ensures that no “Faceted Snow”, “Depth

Hoar”, or “Rounded Grains” occur between layers of “New Snow”, but precisely this happens under certain circumstances,

as they point out themselves. Hard-coded rules might improve the performance of one dataset, but they cannot capture all

phenomena and will not generalize well to other datasets. The performance results are also limited by the fact that their testing50

set consists of only three SMP profiles, i.e. it is not clear how representative their results are. In addition, their results can

hardly transfer to the real-world setting because they explicitly exclude any mixed snow type layers. Suppose an automatic

segmentation and classification algorithm is intended to work with profiles straight from the field. In that case, this algorithm

should be able to handle mixed classes and diverse snow phenomena and be thoroughly tested.

Havens et al. (2012) worked with random forests and SVMs to classify SMP profiles. They used previously segmented SMP55

profiles and classified the snow type of each layer with the help of a random forest model. They build upon their previous
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work with single decision trees (Havens et al., 2010). They trained the model on three different snow types (“New Snow”,

“Rounded Grains”, “Faceted Grains”), achieving error rates between 16.4% and 44.4% (depending on the dataset). Notably,

Havens et al. (2012) requires profiles that have been manually segmented beforehand. Since this is done manually, this takes

a considerable amount of time, raising the question of to what extent the task has been “automated”. Only layers larger than60

100 mm (sometimes 20 mm) could be considered due to manual segmentation. In the field, particularly for avalanche risk

assessment (Lutz et al., 2007), it is important to detect layers only a few millimetres thick. Improving on the work of Havens

et al. (2010) would thus include more snow types, thinner layers, and no need for manual segmentation.

More recently, King et al. (2020a) trained Support Vector Machines (SVMs) on SMP force signals and manual density cutter

measurement. Both segmentation and classification are conducted automatically. They distinguish three types of snow grains65

(“Rounded”, “Faceted” and “Hoar”) and achieve classification accuracies between 0.76 and 0.83. The profiles were collected

on Arctic ice in the same region, which means that the profiles might be more homogeneous than in other datasets. The model’s

generalisability could, in theory, be enhanced by training it on additional, broader datasets. Most importantly, the SVM method

by King et al. (2020a) relies on additional manual density cutter measurement, time-intensive snow pit measurements that are

not always available. Thus, similarly as for Havens et al. (2012), more snow types would make the work more applicable in the70

field, as well as eliminate the necessity of additional manual density cutter measurements. In summary, previous work showed

that supervised machine learning algorithms are a promising pathway to automatic snow grain categorization.

While all these works put forward the task of automated SMP analysis, SMP users still lack a method that can be used in

practice. Users need a model that fully automates their SMP analysis: (1) without the need of digging a snow pit, (2) picking

layers manually, or (3) constructing specific knowledge rules. Furthermore, SMP users need models that can deal with SMP75

profiles coming straight from the field. This implies that (4) the profiles have multiple snow types (more than three) and that

(5) no layers are excluded. The aim of this study is to provide models that fully automate SMP analysis and can directly be

used in the field, addressing all five mentioned needs.

To this end, we implemented fourteen different machine learning (ML) models and compared their performance on the

MOSAiC SMP dataset, consisting of 164 labeled profiles (see Fig. 1). Thereby, we provide the first comparable performance80

overview of different models classifying and segmenting SMP profiles. Moreover, we used semi-supervised methods and

artificial neural networks (ANNs) for SMP classification.

Results show that especially artificial neural networks (ANNs), such as the long short-term memory (LSTM) and Encoder-

Decoder, can produce predictions that are similar to profiles labeled by experts and achieve the best results among all models.

However, the choice of the model depends mostly on the individual needs of an SMP user because factors such as explainability,85

desired sensitivity to rare classes, available time, and computational resources must be taken into consideration.

The work presented here is a methodological contribution. We provide insights into which ML algorithms can be used for

the automatic and consistent classification of large SMP datasets. Our findings can be applied to different SMP datasets or

similar data. The more fine-grained contributions of this study are:

– Demonstration that SMP profiles straight from the field can be automatically segmented and classified; without manual90

preparation of the profiles or additional snow-pit data after training on a smaller set of SMP profiles,
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Figure 1. All 164 labeled SnowMicroPen (SMP) profiles used for training, validation (80%), and testing (20%). Each bar represents one SMP

profile. The colours encode the different snow types. The top of each bar is the air-snow interface and the bottom is the profile’s snow-ground

interface. The in-picture figure illustrates the force signal (grey) and the mean force signal (blue) of a single SMP profile (S31H0368). The

snow-air interface is on the left, and the bottom of the profile is on the right. The background shading in the inset panel and the colors in the

main panel represent the labeling of the profiles.

– Evaluation of semi-supervised models and ANNs for SMP classification,

– Detailed comparison of different ML models for SMP classification,

– The snowdragon repository which provides the tools to automate SMP labeling.

In the following section (Sect. 2) the data and the classification task are described, as well as the fourteen different models95

that were used in this study. In Sect. 3, the models’ performances are presented. Subsequently, the results, their limitations,

and future work are discussed in section 4. The impact of this work is addressed in the conclusion (Sect. 5). The code and

data availability is outlined directly after the conclusion, and a detailed guide on how to use snowdragon with your own SMP

dataset can be found in Appendix A.

2 Methods100

2.1 Data

All experiments throughout this study use snow data collected during the MOSAiC expedition (October 2019 - September

2020) (Nicolaus et al., 2022). The snow pit measurements conducted include SMP profiles, micro computer tomography

(Micro-CT) (Coléou et al., 2001), and near-infrared (NIR) photographs (Matzl and Schneebeli, 2006). Collecting profiles of
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snow on Arctic sea ice is especially challenging: A) Only a few hours were available to perform all measurements within one105

snow pit. B) The measurements need to be conducted with wind velocities up to 25 m/s and temperatures of −30◦ Celsius. C)

Changing personnel, i.e. different operators were conducting the snow pit measurements. As a result, traditional stratigraphy

analysis and in-situ snow grain classification from snow pits carry operator biases. Merkouriadi et al. (2017) could measure

only 27 snow pits with stratigraphy under similar conditions.

In contrast, during the MOSAiC expedition, several thousand (3680) SMP profiles were collected. Out of the 269 snowpit110

events which included SMP measurements, 102 had NIR measurements and 103 had micro-CT profiles collected simultane-

ously. 71 snowpit events had all three measurements (SMP, NIR and micro-CT). We encountered eleven different snow types.

Refer to Fierz et al. (2009) for descriptions of the different snow types referenced here and a classification guideline for snow

particles visually observed.2

The main measurements collected were signal profiles from the Snow Micro Penetrometer since it provides profiles fast,115

with little physical labour, and independently from the person who measures them. Of the 3680, 164 profiles from the cold

season (January – May 2020) were labeled and evaluated here (see Fig. 1). The labels expressed by color in Fig. 1 indicate

which snow type is found at the respective position of the profile. In this study, we focus only on profiles of cold snow, as no

standardized interpretation of SMP force profiles exists for wet snow. All profiles collected in the cold season are referred to

as “MOSAiC winter data” in the following. Micro-CT and NIR were recorded whenever possible to validate the subsequent120

labeling of the SMP profiles. More details on the collection methods can be found in Macfarlane et al. (2023). A figure giving

a comparison of these instruments can be seen in Appendix B in Figure B2.

The labeling of the SMP profiles was conducted by two snow experts and is based on the properties of the force signal

(magnitude, frequency, and gradient) and the signature of the SMP signal. The labeling procedure is described in detail in

Appendix B, building upon the notion and observations of (Schneebeli et al., 1999). The first labeling phase was conducted125

by one expert, and in the second phase, two experts revisited the profiles to ensure consistent labeling. The labeling process

involves using Micro-CT samples and NIR photography to validate the snow types identified from the force signal where

possible. When assigning the labels to the SMP profiles, we lean to the above-mentioned international classification guideline

of seasonal snow on the ground Fierz et al. (2009). However, we regard the labels assigned to the SMP signals as mere

approximators. During the labeling process, signal types are grouped together, and we infer from Micro-CTs which snow type130

matches each group best. Since we seek a language that is common to the snow community, we are using the labels provided

by (Fierz et al., 2009) where possible. Since (Fierz et al., 2009) focuses on Alpine snow and does not cover all snow types on

Arctic sea ice, such as different forms of “Depth Hoar”, we extend those labels where necessary. The resulting labeled profiles

were used during training, testing, and validation, while some unlabeled profiles were used for semi-supervised models and

out-of-distribution tests. Up-scaling consistent labeling of SMP profiles is exactly the type of task that ML algorithms can135

tackle.
2Fierz et al. (2009) refer only to visually observed snow grains; not to SMP signals.
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We preprocessed each SMP profile as well as the complete labeled dataset. The surface and the ground of the profiles

were detected automatically by the snowmicropyn package 3. For each SMP profile, we replaced negative force values with

0, summarized the signal into bins (1 mm), and added mean, variance, maximum, and minimum force values for those bins.

Those values were also determined for a 4 mm and 12 mm moving window. Moreover, Löwe and Van Herwijnen (2012)’140

Poisson shot noise model was used to extract δ, f , L and the median force value for a 4 and 12 mm window. We added further

depth-dependent information, including the distance from the ground and position within the snowpack for each data point.

Refer to Table C1 in Appendix C for an overview of all features used for each SMP profile, and to Table C2 to see the feature

importance for each snow type.

We preprocessed the complete labeled dataset by normalizing it, removing profiles from the melting season, and merging145

snow classes. For example, “Decomposed and Fragmented Precipitation Particles” are merged with the class “Precipitation

Particles” since they represent a similar type of snow. The few occurring “Ice Formations” and “Surface Hoar” instances in the

MOSAiC dataset are summarized in the class “Rare”. While a high classification performance cannot be expected for the rare

classes, we still include them to show how the models perform on a “real-world dataset” that in most cases will also include

classes with few occurrences. The data preprocessing ensures that the dataset is clean and that all necessary information, such150

as depth-dependent information, is available during classification.

The resulting dataset has the following properties: (1) There are multiple, noisy, and overlapping classes. (2) There is a

between-class imbalance, i.e. some snow types occur much more frequently than others. (3) There is a within-class imbalance,

i.e. some grain classes contain different sub-grain-classes, but some of them are more frequent than others. (4) The labeling of

classes is afflicted with uncertainty, i.e. snow experts themselves are not sure to which class exactly some data points belong.155

The complexity of the data set complicates classification and lowers the maximum achievable accuracy.

2.2 Task description

We compare the capabilities of different models to classify and segment the profiles of the MOSAiC winter SMP dataset. To

this end, the models first classify each data point of the signal and then summarize the classified points into distinct snow layers

(“first-classify-then-segment”). This task can be solved with different learning and classification techniques.160

The task can be addressed via independent classification or sequence labeling. In independent classification, each individ-

ual point is classified independently, without looking at other data points. The underlying assumption is that each individual

data point carries enough information to be classified solely on that basis. In contrast, sequence labeling assumes that the data

is an intra-dependent sequence, where the label of each data point also depends on the preceding labels (Nguyen and Guo,

2007).165

The models can follow either the supervised, unsupervised, or semi-supervised learning regime. In supervised learning,

labels are provided to learn an input-output mapping function (Russell and Norvig, 2002). In unsupervised learning, patterns

and structure are found in unlabeled data (Ghahramani, 2004), however, no classification is possible, which is why no unsu-

pervised models are employed here. Instead, semi-supervised models are used, which are able to find structures in sparsely

3https://snowmicropyn.readthedocs.io/en/latest/
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labeled data and leverage this information during classification. In the following, all models employed in this work are shortly170

presented and put in the context of their learning and task type.

2.3 Models

The majority vote classifier is used as the baseline for the performance comparison and simply predicts always the majority

class (“Rounded Grains Wind Packed”). It satisfies the criteria that a baseline should not require much expertise, should be

easy to build, and fast to evaluate (Li et al., 2020).175

The cluster-then-predict models employed in this study, can be separated into three different semi-supervised and indepen-

dent classification models. Unsupervised methods are used to find clusters in the dataset and subsequently, a supervised model

is used to assign labels to the cluster (Soni and Mathai, 2015; Trivedi et al., 2015). As an unsupervised model, k-means clus-

tering (Forgy, 1965; Lloyd, 1982), mixture model clustering (GMM) (Bishop, 2006) and Bayesian Gaussian mixture models

(BGMM) (Bishop, 2006) were used. The supervised part of the model is a simple majority vote within the clusters, in order to180

see if the unsupervised model adds enough information to beat the majority vote baseline.

Label propagation is a graph-based, semi-supervised, independent classification algorithm. It propagates the labels of

labeled data points to unlabeled ones (Zhu and Ghahramani, 2002). Here, a modified version of this algorithm by Zhou et al.

(2004) is used (also known as “label spreading”) (Bengio et al., 2006; Pedregosa et al., 2011).

Self-trained classifiers turn a given supervised classifier into a semi-supervised independent classifier. It follows an iterative185

approach of training a supervised model on labeled data, predicting more data with the model, and retraining the model with

the most confident predictions (Yarowsky, 1995).

Random forests (RFs) are ensembles of diversified decision trees (supervised and independent classification). The diversifi-

cation happens via tree and feature bagging, where only subsets of data or features are used during training (Ho, 1995; Breiman,

2001). Decision trees are simple to build, explainable, white-box classifiers and for these reasons among the most popular ma-190

chine learning algorithms (Wu et al., 2008). Additionally, a balanced random forest was used with random under-sampling to

balance the data (Chen et al., 2004).

Support vector machines (SVMs) construct a hyperplane in a high-dimensional space to solve binary classification tasks

(Cortes and Vapnik, 1995; Han et al., 2012) (supervised and independently). When a problem is non-linearly separable, the

input data can be projected into a higher-dimensional space until the problem becomes linearly separable. The kernel trick195

can be used to circumvent the computationally expensive data transformation involved here. It directly extracts a non-linear

optimal hyperplane (Schölkopf et al., 2002).

K-nearest neighbours (KNN) is a local, non-parametric classification method that compares samples and classifies new

samples based on their k nearest training data points (supervised and independently). The class of the prediction sample is

determined via a majority vote. (Fix and Hodges Jr, 1952; Cover and Hart, 1967)200

Easy ensemble classifiers are ensembles of balanced adaptive boosting classifiers (supervised and independent). The

method is especially helpful for imbalanced datasets since the learners are trained on different bootstrap samples, which are

balanced via random under-sampling. (Liu et al., 2008)
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Long short-term memories (LSTMs) are a form of artificial neural networks (ANNs) and can perform supervised sequence

labeling tasks. ANNs incrementally update their decision function that describes the decision boundary between classes. ANNs205

have different nodes, which can be seen as representing different parts of the functions which are weighted differently. During

training, the weights of the ANN are optimized by minimizing a loss function via gradient descent. A long short-term memory

can handle time-series data. It consists of different memory cells so the LSTM can forget information that is no longer needed,

remember information that is required for future decisions, and retrieve information that is required for current decisions.

(Hochreiter and Schmidhuber, 1997; Jurafsky and Martin, 2021)210

Bidirectional LSTMs (BLSTMs) connect two independent LSTMs where the first LSTM processes the inputs forward and

the second one backwards. The outputs of both LSTMs are connected to one output. This architecture is helpful when the

dependencies of a time series go in both time directions, which is the case for snow profiles. (Schuster and Paliwal, 1997;

Jurafsky and Martin, 2021)

Encoder-decoder networks consist of an ANN encoder that compresses the time-dependent information into a vector and215

a decoder that uses this information to solve a supervised sequence labeling task. Additionally, the attention mechanism can

be used to strengthen the ability to learn long-term dependencies by focusing only on the parts of the input sequence that are

relevant for the current time step. (Bahdanau et al., 2014; Jurafsky and Martin, 2021)

2.4 Evaluation

In this work, (1) the performance of different models is compared, (2) differences in the classification of different snow types220

are analyzed, and (3) the generalization capability of the best-performing model is examined. (1) The performance comparison

is done by looking at the metrics of each model and the specific predictions on the test data set. The metrics used here are

accuracy, balanced accuracy, weighted precision, F1 score, area under the receiver operating characteristic (AUROC), log loss,

fitting, and scoring time (see Appendix D for further explanations). (2) The label-wise performance is analyzed with the help of

label-wise accuracy plots and receiver operating characteristic (ROC) curves. ROC curves plot the true positive rate versus the225

false positive rate. The higher the area under the ROC curve, the clearer the model can separate between positive and negative

samples. (3) The generalization capability is tested by running the best-performing model on 100 random profiles from different

parts of MOSAiC winter data. These profiles are outside of the distribution of the training, validation, and testing data and we

refer to them as “out-of-distribution profiles“. Here, the “out-of-distribution” profiles contain the same classes as the training

data, so the model still has a chance to predict the correct labels. Evaluating these three aspects ensures that users can choose230

a model and know (1) how it performs compared to other models, (2) what to expect from the snow-type-specific predictions,

and (3) how robust a chosen model will be.

2.5 Experimental setup

The experimental setup includes a training, validation, and testing framework: roughly 80% of the labeled dataset is used for

training and validation, while the other 20% is set aside for testing. Validation is realized as 5-fold cross-validation (Stone,235

1974). The hyperparameters were tuned on the validation data and the best-found hyperparameters were used during testing.
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Category Model Absolute

Accu-

racy

Balanced

Accu-

racy

Prec-

ision

F1

Score

ROC

AUC

Log

Loss

Fitting

Time

Scoring

Time

Baseline Majority Vote 0.39 0.14 0.15 0.22 nan nan < 1 < 10−3

Semi-
Supervised

K-means 0.62 0.44 0.60 0.61 nan nan 385 0.01

GMM 0.65 0.36 0.57 0.61 nan nan 151 0.008

BGMM 0.65 0.38 0.63 0.63 nan nan 225 0.009

Self-trainer 0.69 0.67 0.74 0.71 0.92 0.84 19 0.29

Label propagation 0.71 0.54 0.72 0.71 0.92 1.5 10 3.35

Supervised

Random Forest 0.73 0.60 0.73 0.73 0.93 0.70 72 0.97

Balanced RF 0.70 0.67 0.74 0.71 0.92 0.84 9.9 0.58

SVM 0.71 0.66 0.73 0.71 0.93 0.67 19 7.45

KNN 0.71 0.54 0.71 0.71 0.89 3.58 < 1 1.84

Easy Ensemble 0.62 0.59 0.70 0.64 0.88 1.66 46 42.5

ANNs

LSTM 0.75 0.58 0.75 0.75 0.94 0.63 349 2.3

BLSTM 0.74 0.58 0.74 0.73 0.93 0.79 975 3.4

Encoder-Decoder 0.78 0.54 0.78 0.77 0.94 0.64 2911 5.8

Table 1. Results of different models from the categories baseline, semi-supervised, supervised and ANNs. The best values among all models

are bold. Second-best values among all models are italic. The best values among one category are underlined. ROC AUC and logistic loss

(log loss) could not be determined for the baseline and some of the semi-supervised models due to the design of these models.

Hyperparameter tuning is the process of searching the optimal internal learning settings of an ML model. Hyperparameters

control the learning process of the models, whereas parameters are learnt by the model. The tuning is performed on the

validation data and the hyperparameters that achieve the highest performance for their model chosen for subsequent model

evaluation. Here, tuning was applied moderately and with a simple grid search. All tuning results can be found in the GitHub240

repository. Specifications of the machine on which the experiments were run can be found in Appendix E and descriptions of

the model setup can be found in Appendix F.

3 Results

3.1 Classification performance of models

Overall, the results show that an automatic classification and segmentation of SMP profiles with ML algorithms is possible,245

even if no further information such as snow-pit data or manual segmentation is provided. Category-wise all semi-supervised
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models were not performing particularly well (see Table 1). Only the self-trainer could compete with models from other

categories, but this might be the case because the self-trainer is based on a balanced random forest. The supervised models

achieved mixed performances: Some models such as the random forests and the SVM are clearly performing well, whereas

other models such as the KNN and the easy ensemble are underperforming. Overall, the random forest was the best model in250

the supervised category since it achieves the highest absolute accuracy (0.73) and F1-Score (0.73). However, considering rare

classes, the balanced random forest outperformed the plain random forest. All three ANNs did exceptionally well and their

category was clearly the most successful among all three categories. The encoder-decoder showed the best scores among all

models in terms of absolute accuracy, precision, and F1-Score, closely followed by the LSTM. We consider the LSTM the best

model within that category since the encoder-decoder only reached its high performance after extensive hyperparameter tuning255

and underperformed significantly when not tuned well. In contrast, the LSTM achieved its performance more consistently and

even under moderate hyper-parameter tuning, and is thus more suitable for users. The subsequent analyses compare those three

models that performed best within their category: the LSTM performed best among the ANNs, the random forest among the

supervised models, and the self-trainer among the semi-supervised models.

Different ML models exhibited different prediction styles in terms of smoothness and ability to predict rare classes. In Fig. 2260

it becomes visible that the models’ predictions are not far off from the labels. In general, the predictions are somewhat similar

to the labeled profiles but the models often had difficulties in determining the precise start and end of a segment. Looking at

three random exemplary profiles of the test data in Fig. 3, one can see that the three main models seem not only to generate

similar predictions but make also similar mistakes. In the medium-deep profile (middle column), all three models predicted a

longer segment of “Depth Hoar” that was actually not present in the labeled profile. In the shallow profile, all three models265

predicted some intermediate “Depth Hoar Wind Packed” layers in the first third that did not exist. And in the deep profile, all

three models miss the narrow intermediate “Depth Hoar” layer. In summary, it becomes apparent that the different models are

producing consistent predictions to a certain degree. Of course, there are significant differences among the models, too. First of

all, the LSTM is closest to the labeled profiles (see Fig. 3). Secondly, the LSTM provided much smoother and less fragmented

predictions than the other two models. And thirdly, the self-trainer clearly overestimates rare classes, which hurts the overall270

performance. To summarize, the LSTM, random forest, and self-trainer show certain prediction similarities among each other,

however, the LSTM imitates expert labeling best.

3.2 Classification difficulty of snow types

Fig. 4 shows that some snow types are easier and others are harder to classify. The label-wise accuracy seems to be influenced

by the following factors: (1) choice of model, (2) frequency of snow type in the dataset, (3) snow type itself. Within one snow275

type category, the models perform differently well, however, some snow types seem to be easier, and others are more difficult

to classify for all models. For example, “Rounded Grains Wind Packed” achieved a high accuracy among all models, whereas

“Depth Hoar Wind Packed” achieved a low accuracy among all models. This could be partially attributed to the fact that

there are fewer samples available for “Depth Hoar Wind Packed”. However, the snow types themselves seem to influence the

classification difficulty as well: the class “Precipitation Particles” achieves high accuracy values among some models, despite280
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Figure 2. Predictions on the test dataset of the LSTM, random forest, and self-trainer. The upper left panel shows the labeled data. In the

other panels, the correct predictions are shown with more intense colours and the wrong predictions with less intense colours. The LSTM has

the highest rate of correct predictions and imitates the smoothness of the labeled data very well. The random forest does well but provides

more segmented predictions. The self-trainer immensely overestimates rare classes.
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Figure 3. Model predictions for three randomly chosen SMP profiles. The first row represents the labeled profiles (with force signal). The

subsequent rows represent the LSTM’s, random forest’s, and self-trainer’s predictions, with the red bar indicating wrong predictions. Each

column shows a different profile randomly chosen from the test data (shallow profile: S31H0276; medium profile: S31H0206; deep profile:

S49M1918). All three models seem to make similar mistakes, e.g. they predict a larger portion of “Depth Hoar” at the end of the medium

SMP profile. The predictions of the LSTM are closest to the labeled profiles.
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Figure 4. Label-wise accuracy of all models. each model is encoded with a different colour. The most frequent label is on the left of the x-axis

(“Rounded Grains Wind Packed”), and the least frequent is on the right (“Precipitation Particles”). The class “Rare” was dropped. Each bar

represents the accuracy for a single snow type. The dotted lines show the overall accuracy performance of each model. The encoder-decoder,

the BLSTM, and the LSTM achieved the highest accuracy values. For all models, some classes are more difficult to classify than others: e.g.

“Depth Hoar Indurated” and “Depth Hoar Wind Packed”. Some classes are easier to classify than others, such as “Rounded Grains Wind

Packed”. Some classes can only be classified well by a subset of the models, such as “Precipitation Particles” and “Melted Form Depth

Hoar”.

the fact that it is the rarest class in the dataset. For some snow types, some models are able to access certain information

enabling a high performance on that particular snow type – independent of its frequency. This means that the classification

difficulty does not only depend on the number of available samples. Instead, several other underlying characteristics determine

the classification of difficulty of each snow type as well, most notably: (1) The initial classification, which is not always

completely consistent; (2) the underlying micro-mechanical properties, i.e. some snow types have characteristic force signals285

that separate them more clearly from others; (3) the training data set since it does not cover all types of force signals.

Depending on the model, a higher accuracy score could lead to a lower precision score for a label (accuracy-precision trade-

off). The ROC curve in Fig.5 illustrates this relationship between the true positive and false positive rates for the different snow

types and their averaged performances. It becomes apparent that both the snow type and the choice of model influence the

accuracy-precision trade-off. The class “Rare” for example seems to be difficult to classify both accurately and precisely for all290

models, whereas “Precipitation Particles” are showing an almost perfect ROC curve. If one is interested in choosing a model

that performs well for a particular snow type, these ROC curves can reveal which model is most suitable. To get even more

detailed label- and model-wise insights, refer to the confusion matrices in Appendix H. Both the LSTM and the random forest

achieve an area under the ROC curve of 0.96. However, on average (see Fig. 5, pink dotted line), the LSTM outperforms the

self-trainer and random forest and is thus most suitable for general classification tasks.295
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Figure 5. ROC curves of the LSTM, random forest, and self-trainer for each class. The dotted lines are the micro- and macro-averaged ROC

curves. The macro-average calculates the ROC for each class and averages the performances afterwards. The micro-average weights the

performance according to class contribution (balanced performance results). The LSTM achieves the highest ROC performance overall. The

order of the best-performing snow types is similar among all models. The classes “Rare” and “Depth Hoar Indurated” have the lowest ROC

areas, whereas “Precipitation Particles” has the highest ROC area for all models.
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Figure 6. LSTM SMP profile predictions on out-of-distribution data. The SMP profiles used here come from different legs of the MOSAiC

expedition than the training, validation, and test data. The profiles used here still stem from the winter season to ensure that the same set of

snow types can be used as in the training dataset. The distribution of the predicted profiles looks convincing, with only a few profiles standing

out as certainly wrong predictions (e.g. most right profile with ∼ 90% “Depth Hoar Wind Packed”).

3.3 Generalizability

The prediction of the LSTM for 100 random profiles outside of the training and testing distribution is shown in Fig. 6. Since

the labeled profiles are not yet available for these predictions, the generalization capabilities can only be evaluated on the basis

of what seems “reasonable”. “Melted Form Depth Hoar” appears only at the ground of the profiles, “Precipitation Particles”

only at the top, “Rounded Grains Wind Packed” are mostly at the top and rather deep – these are all “reasonable” predictions.300

However, there are also some predictions that are not reasonable or at least unexpected: the left profile consists almost entirely

of “Depth Hoar Wind Packed”, sometimes “Depth Hoar Wind Packed” appears right before “Melted Form of Depth Hoar”, and

“Rounded Grains Wind Packed” sometimes appear briefly in the “middle” of a profile (and not at the top). Overall, the LSTM

seems to make mostly reasonable predictions, however, an in-depth expert analysis of the predictions is necessary to validate

that further.305
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4 Discussion

The results showed that the automatic classification of SMP profiles is possible with up to 78% accuracy. In the following the

nature, impact, and limits of these results are discussed.

The metrical results presented are in line with previous findings: King et al. (2020a) reported an overall accuracy score of

0.76 when using SVMs and additional snow pit information to classify three snow types. Satyawali et al. (2009) achieved an310

average accuracy of 0.81 when using the nearest neighbour approach and knowledge rules to classify five snow types. However,

these results stem from only three profiles and are not representative. Havens et al. (2012) achieved an accuracy of maximal

0.76 (global dataset) when using random forests and time-intensive manual layer segmentation to classify three snow types.

The major difference from these previous results is that the accuracy results of this study were achieved for seven snow types,

without time-intensive layer picking, snow pit digging, or additional knowledge rules. This means that in contrast to previous315

work, the models here can be directly employed by users for their own SMP datasets in the field: simply retrain and predict. For

this, they only need to provide a set of training samples for their specific dataset and classification style. The work presented

here enables scientists for the first time to rely on fully automated ML SMP profile classification and segmentation.

The results were also satisfying to domain experts since the predictions were in themselves consistent and followed the

patterns of the training data. In general, the snowpack on sea ice is extremely variable, and the traditional snow types are often320

a mixture of different features. This becomes visible when comparing the SMP-profiles to the micro-CT samples. In the view

of the authors, a temporally consistent classification is more relevant to the interpretation of the development of the snowpack,

even if there is a certain, but unknown, bias to an expert interpretation. Hence, the models were also in practice helpful to

analyse Arctic snowpack development.

4.1 Classification performance of models325

Each model category performs differently because each model takes different aspects of the data into account. Semi-supervised

models try to take unlabeled data into account to improve their predictions, however, this did not work well in our context. The

most likely reason for the overall underperformance of this category is that the unlabeled data contained out-of-distribution

data, i.e. the unlabeled data had different underlying mechanisms than the labeled data (different parts of the winter season).

Another reason might be that only a small subset of unlabeled data was included in order to limit running times. Moreover, the330

poor performance of the cluster-then-predict models is most likely also a result of the classifier used after clustering: a more

sophisticated method than a majority vote classifier is needed here.

The simple supervised models take one data point after the other into account and do not consider time-series structures

within the data. The algorithms used in all previous SMP automation studies fall into this category. In contrast, ANNs are

supervised models that take the underlying time sequence of the data into account. While the supervised model in general335

performed well, they were still clearly outperformed by the ANNs. A likely reason why the ANNs outperformed all the other

models is precisely the ANNs’ ability to process time-dependent – or in the case of snow profiles depth-dependent – informa-

tion. ANNs are tackling the classification task as a sequence labeling task which enables them to include information from the
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order and position of snow layers. The supervised models still have access to time-relevant information (time-window features,

see Appendix C1), however, they do not have any ability to learn time-based information (what should be remembered and340

forgotten). Besides, the ANNs learn to imitate the training set, leading to smooth and expert-simile predictions. In comparison,

taking the time component of SMP signals into account has not been done in previous methods and we argue that it adds a

major information piece and boosts the overall prediction performance significantly.

Each model exhibits a different prediction style due to the models’ intrinsic differences and thus might be suitable for specific

tasks. The following aspects are listed for consideration (user’s guide):345

A Time and resources for hyperparameter tuning. The LSTM and the encoder-decoder network are recommended when

plenty of tuning time is available. Especially, the encoder-decoder network performs badly if not tuned well. The SVM

and the balanced random forest need little tuning time, whereas the random forest is the go-to model in case (almost) no

tuning time can be provided.

B Need for a simple to handle, off-the-shelf algorithm. Among the high-performing models, the random forest and the350

SVM are the easiest to handle off-the-shelf algorithms. The self-supervised algorithms and especially the ANNs require

a somewhat deeper understanding of the models and the ability to implement them.

C Desired level of explainability. The random forests are most explainable since the decision trees can be directly visual-

ized (Appendix G). The ANNs are the least explainable models (without further modifications).

D Importance of minority classes. When deciding on a model, the underlying task must be examined as well: In the case355

of avalanche prediction, it might be essential to predict a buried layer of “Surface Hoar”, a very rare class, which needs

to be detected no matter the costs. In such a case of “minority class prediction,” the balanced RF or the SVM should be

employed. The ANNs and the random forest, in contrast, are more suitable to achieve an overall good classification.

E Availability of unlabeled data that is from the same distribution as the labeled data. In case a lot of unlabeled

data from the same distribution and time is available, the self-trained classifier can be considered. The weak learner of360

the self-trained classifier can be chosen according to the criteria listed above. Since in this work we only had a small

subset of unlabeled data stemming from the same distribution as the labeled data, further evaluations on the self-trained

classifier and label propagation remain open.

This highlights that there is not a single best model, but instead, users can deliberately choose a model that suits their needs,

such as overall accuracy, ability to predict rare classes, explainability, training, and deployment time.365

4.2 Classification difficulty of snow types

Snow types are differently difficult to classify since their categories are rather continuous than discrete. This was also observed

in previous work and in all previous works performances were reported label-wise to account for those differences (Satyawali

et al., 2009; Havens et al., 2012; King et al., 2020a). We performed t-distributed stochastic neighbour embedding (t-SNE)
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Figure 7. 2-dimensional t-distributed stochastic neighbour embedding (t-SNE) of SnowMicroPen (SMP) dataset. The colours encode the

snow types. The figure shows that (1) “Depth Hoar" and “Depth Hoar Indurated” are hardly separable, (2) “Depth Hoar Wind Packed” is

similar to several other snow types, and (3) “Precipitation Particles”, “Melted Form of Depth Hoar” and “Rounded Grains Wind Packed” can

each be separated more clearly from the other snow types.

on the SMP dataset to visualize how separable the different classes are (see Fig. 7). “Precipitation Particles”, for example,370

appears as a singled-out green grouping, which is in line with our and other findings (Satyawali et al., 2009) that it is easier

to classify than other snow types. We conclude that some classes have features distinguishing them more strongly from other

snow types. The class “Rounded Grain Wind Packed” behaves similarly (Satyawali et al., 2009). However, some classes, such

as “Depth Hoar” and “Depth Hoar Indurated” are completely overlapping in Fig. 7, and indeed our models had problems

with differentiating between those two classes. Similarly, “Depth Hoar Wind Packed” seems to overlap largely with “Rounded375

Grains Wind Packed” and “Melted Form of Depth Hoar”. We theorize that the reason for their non-separability is that those

snow types transform into each other during snow metamorphosis. This means many data points can not be discretized into

one single category since they are on a continuous spectrum. Satyawali et al. (2009) pointed out, as well, that they often found

data points being in transition between snow classes and attributed it to the fact that the snow is changing continuously. In

conclusion, it is currently impossible to reach 100% classification accuracy on every snow type since some snow types will380

always lie between categories.

Despite these difficulties, the underlying SMP signals are still characteristic enough for specific snow types to be classified

successfully. The different micro-mechanical properties of the snow types are reflected in the SMP signal and are thus the
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driver for the classification. Some classes, such as “Precipitation Particles”, can be clearly separated from others since the

bonding between the grains is so weak that the force signal is very low. As long as “Precipitation Particles” are not sharing385

this characteristic with other snow types, they can be easily classified. Refer to Appendix B to learn more about the relation

between snow types and SMP signal, and refer to Appendix G to see which classes have unique and which classes have shared

signal characteristics.

The classification difficulties also extend to the expert labeling process itself. The continuous nature of the snow types makes

it particularly difficult for domain experts to agree on labeling, i.e. two different snow experts will produce two different la-390

beled and segmented profiles for the same SMP measurement (Herla et al., 2021). This is another reason why a classification

accuracy of 100% cannot be reached. One might suggest supplementing the classification process with additional observational

data to make the process more “objective”, as we also do here. However, each classification and segmentation of a snowpack is

“subjective” in nature right now, no matter which observational data is used as the basis for the classification. When requesting

a segmentation and classification of a snowpack, one is always requesting the classification of a specific expert. While the oper-395

ator bias can be mitigated by using NIR, Micro-CTs, or the SMP, the classification of those measurements remains subjective.

It is neither this study’s goal nor task to provide an objective classification; instead, we aim for a consistent classification.

Difficulties in reaching 100% accuracy do not preclude overall good performance, however. While experts may end up with

different segmentations and classifications, they can still agree that two different analyses are both valid analyses of the same

profile. Similarly, the algorithms provided here output predictions that may not always align with the expert labeling but are400

sensible and directly usable. Hence, we cannot evaluate the models solely based on numerical metrics such as accuracy but

must also evaluate the performance from a qualitative perspective. This is the reason why we evaluated if an SMP user, who

also labeled the training data, would (1) accept the predictions of the ML algorithms on an out-of-distribution dataset, (2) find

them consistent with their own labeling, (3) and would subsequently work with those predictions. In the case of the MOSAiC

dataset, all those aspects were fulfilled. We find such a qualitative assessment important since these questions decide whether405

or not the tools provided will be used in practice.

We further want to point out that the algorithms themselves are entirely agnostic to the question of “subjectivity”. The

algorithms are merely reproducing what they have been trained on. If we can provide the algorithms with a dataset that can

be considered “fully objective” and the community agrees on that as ground truth data, the algorithms could reproduce those

hypothetical “objective” labels. Alternatively, signals could also be grouped first, and some abstract classes could be assigned410

to them. Nevertheless, even this would rely on human expertise since the parameters to separate those groups would be subject

to discussion (see Figure 7: The groups are not simply separable from each other, and the clustering would depend on parameter

choices). In general, we provide a methodological framework here to classify and segment SMP profiles –which classification

patterns are reproduced depends on the user’s choice.

The benefits of using an automatic classification are that the SMP user can (1) save valuable time, (2) receive consistent415

labeling, and (3) perform statistical analysis on their SMP dataset. In the case of the MOSAiC dataset, manual labeling would

have meant labeling over 3000 profiles, which can easily take up to a year to classify (next to other obligations of domain

experts). In terms of consistency, we already experienced how some of the models’ predictions helped us –to our surprise
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–to detect human mistakes and inconsistencies during the first labeling round. Furthermore, such an up-scaled classification

enables, for the first time, the statistical analysis of an SMP dataset. One of the initial research questions for MOSAiC was “Is420

Depth Hoar in Arctic snowpacks mostly present at the bottom and Rounded Grains Wind Packed at the top?”. With the help of

snowdragon, the MOSAiC dataset could be enough consistently and accurately labeled to answer such a question with “Yes,

this is indeed the case.”.

4.3 Generalizability

The LSTM can generalize to other winter profiles with the same snow types since the underlying classification and segmen-425

tation rules stay the same. However, the LSTM’s generalization capability does not extend to other seasons or regions when

/ where other snow types are found, such as melted forms or regional snow types. As mentioned before, the models do not

generalize on different classification styles of experts. The models used in this work are still generalizable in that they can be

used on any desired dataset as long as they are re-trained on the chosen dataset. This would not have been possible in previous

works such as Satyawali et al. (2009) since knowledge rules for one snow region and season do not transfer to other regions430

or seasons. For greater generalization capability, the LSTM – or any other model – must be either trained with a more general

dataset or must be specifically re-trained for an individual data set.

4.4 Limitations and future work

As previously discussed, the uncertainty of expert labeling is a general limitation of this particular study. While this uncer-

tainty might be partially mitigated further by using a dataset for which many additional in-situ observations exist, it would435

still remain an issue. One approach for future work would be to quantify the uncertainty that is inflicted upon the labeled

profiles. Subsequently, a machine learning model could be trained to classify not only snow types but provide a probabilistic

classification.

This work does not address the task setting of first-segment-then-classify because this would require a completely different

set of methods. In a first-segment-then-classify setting, the SMP signal could first be segmented with techniques used in440

audio-segmentation (Theodorou et al., 2014). The resulting time-series pieces could subsequently be classified as a whole

(Ismail Fawaz et al., 2019). Future work could experiment with this problem formulation and analyze if performance further

increases in this setting.

The ANNs used here are off-the-shelves and are not adapted to the specific underlying task in order to ensure a fair compari-

son between the different models. However, one could look into adapting the loss functions to include similarity measurements445

between snow samples. Results from clustering, performed on t-SNE data, could then be leveraged during classification to

increase classification performance. Adapting the loss function of the ANNs could increase prediction performance greatly,

however, such a loss function must be carefully constructed and evaluated on different datasets.

As mentioned in Sect. 4.3, the models cannot generalize to completely different settings in terms of seasons and regions. To

ensure generalization capability one could train a large model on a dataset that includes snow types from different regions and450

seasons. Such a data set would need to be newly compiled because common SMP datasets are usually limited to one region
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(Ménard et al., 2019; Calonne et al., 2020). In theory, a large enough model trained on a large enough dataset could be able

to produce direct predictions for any SMP users. Thus, it would be interesting to train an ML model on a generalized dataset

and validate its’ performance on the specialized MOSAiC SMP dataset. This would shed new light on the spatiotemporal

transferability of the ML models presented here.455

Alternatively, SMP users can simply re-train a chosen model for their particular dataset. They need to provide a set of SMP

profiles for their region, season, and classification style, but the overall time savings are still immense. To summarize, the

generalization capabilities may be enhanced by using a more general dataset or one bypasses this problem by re-training to

specific datasets – the snowdragon repository addresses the needs of the latter.

An immediate consequence of this study is the further analysis of the unlabeled part of the MOSAiC dataset. Domain experts460

can use the LSTM, or other models, to create predictions for the remaining 3516 profiles. A previously almost impossible task

to classify and segment those thousands of profiles became feasible by providing just a set of 164 labeled profiles. The results

of these predictions and their impacts on the cryospheric analysis of snow coverage in the Arctic will become apparent in future

publications.

5 Conclusions465

Snowdragon provides SMP users with a way to up-scale manual SMP labeling and provide large statistically consistent datasets.

We showed for the first time that SMP profiles straight from the field can be automatically segmented and classified (up to

0.78 accuracy). Fourteen different models were trained here to classify seven snow types without providing any additional

manual information. It also showed for the first time how ANNs and semi-supervised models can be used for the task of SMP

classification and segmentation. Among all models, the LSTM and the encoder-decoder are performing the best. The resulting470

predicted profiles show smooth segmentations and expert-simile classification patterns that were satisfying to domain experts.

These findings will enable SMP users to automatically analyze their SMP measurements. To that end, an SMP user must

simply decide on one of the fourteen models provided by the snowdragon repository, given the considerations listed in this

paper, and retrain the model for their particular dataset. Afterwards, the SMP user can simply predict SMP classifications for

the remaining unlabeled profiles.475

The models presented here, in particular the LSTM, could be trained on a broad dataset from different regions and seasons so

that automatic SMP classification becomes even more accessible. Such a model could even be integrated into the snowmicropyn

package. The resulting tool would make knowledge about snowpacks easier and faster access for all scientists. This is of

particular interest (1) for interdisciplinary scientists who rely on snow type information but do not have the tools to classify

them themselves (remote sensing), (2) for scientists that require fast analysis of SMP profiles, such as in avalanche prediction480

and (3) for SMP users facing large datasets.

Snowdragon enables the analysis of the SMP MOSAiC dataset, a dataset containing detailed information about snow on

Arctic sea ice. In times of climate change, this information is crucial: We need to understand the state of the sea ice in order

to understand which state the Arctic system is in. For the first time, MOSAiC enables the scientific community to have access
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to such a detailed and large dataset. And snowdragon is one example of how ML can help us to actually access the knowledge485

behind all the data.

Code and data availability. The current version of snowdragon is available on GitHub: https://github.com/liellnima/snowdragon under the

MIT licence. To run the code version used in this paper, please refer v1.0.0 on GitHub or Zenodo: https://doi.org/10.5281/zenodo.7335813.

The exact version of the models used to produce the results used in this paper is also archived on Zenodo: https://doi.org/10.5281/zenodo.

7063520 (Kaltenborn et al., 2022). The MOSAiC SMP data used as input and training data is available on PANGAEA: https://doi.pangaea.490

de/10.1594/PANGAEA.935554 (Macfarlane et al., 2021).

Appendix A: User’s Guide

Here, we provide a walk-through on how to use snowdragon with SMP profiles collected in the field.

1. Data collection

– Collect the desired SMP profiles.495

– If you are familiar with snow stratigraphy measurements: Consider collecting additional in-situ observations such as

Micro-CTs, NIR photography or similar to inform your labeling procedure. (see also points listed under “labeling”).

– If you are not familiar with snow stratigraphy measurements: Ask experts if a labeled dataset for your snow condi-

tions exists (e.g. Macfarlane et al. (2021); Wever et al. (2022); King et al. (2020b) are publicly available) or if you

need to onboard an expert to conduct a few in-situ observations and label some of your profiles.500

2. Labeling

– Evaluate the following questions before you start the data collection.

– If you conduct your own labeling:

– Use additional in-situ observations to fine-tune your labeling where possible.

– Ask a fellow researcher for their opinion on a few profiles (before you label all of them).505

– Note down your labeling criteria - this way you can ensure consistency in your labeling.

– Revisit your labeled profiles (all of them!) at least a second time. This way you can catch mistakes and ensure

once more consistency in your labeling.

– If a labeled dataset exists for a specific location: Analyse carefully if the labeled data does transfer to your snow

conditions. Can you expect the same snow types? Was the data collected in the same/similar location? Is it the same510

season? Might changing climatic conditions have also changed the nature of the snowpacks? Has the environment

of the location gone through other types of changes?
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– If labeled datasets exist capturing SMP profiles in general: Analyse carefully if you can work with a general dataset

or need a specialized labeled dataset. Does the general dataset reflect the profiles you have collected well? Do you

have snow types dominating your dataset that are a minority in the general dataset? Do you have a particular season515

dominating your dataset that is underrepresented in the general dataset? Does the general dataset contain all snow

types that you have encountered in your dataset?

3. Set-Up

– Raw-Preprocess your SMP profiles and labels if necessary; data must be provided in .pnt format.

– Establish a consistent naming convention for your profiles. The labeling files (in .ini format) should have the520

same file name as the SMP profile that belongs to that labeling file. For example, you can have a S31H0370.ini

containing the label markers for the force file S31H0370.pnt.

– Clone or fork the snowdragon repository: https://github.com/liellnima/snowdragon.

– Follow the setup guide in the GitHub repository.

– Tell the repository where your raw data lives: Change the SMP_LOC in525

data_handling/data_parameters.py to the right path as described online.

– Preprocess all the SMP profiles (follow online guidelines).

4. Model Selection

– Select the right model for your use case. Refer to Section 4.1 for further information.

5. Training and Evaluation530

– Refer to the online guide of the repository.

6. Tuning

– Refer to the online guide of the repository.

7. Inference

– Use the predict_profile() or predict_all() functions from the predict.py file (provide path to535

data again). The functions can either be directly used or further adapted to your particular needs. The model you

choose for inference must be stored somewhere, meaning you either need to train it beforehand or download the

pre-trained models we provide.

8. Analysis

– Conduct your specific analysis on the labeled profiles. Run visualizations if desired as explained in the online guide.540
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Appendix B: Labeling

A snow micro penetrometer (SMP) is a device used to determine bond strength between internal snow grains in a snowpack.

The micro-structural and micro-mechanical properties of the snow, for example, density and specific surface area (SSA), are

directly influencing the bond strength. When a snow-micro penetrometer penetrates the snowpack and breaks these bonds

between the snow grains, we are able to directly infer these micro-structural properties, as shown in the existing method by545

(Proksch et al., 2015). For example, snow with high density has a higher bond strength and therefore a higher penetration

resistance force (measurable with the SMP), in comparison to low-density snow.

Different types of snow (Fierz et al., 2009) are known to have different densities and SSA, so the extraction of this data from

the SMP force signal already allows us to draw pivotal conclusions about the snow type. However, the characteristics (using

magnitude, frequency, and gradient) and the signature of the penetration force signal can provide more information about the550

internal snow type. This document outlines the process of classification of a snow type found on sea ice in the high Arctic

using the SMP penetration resistance force signal.

Typical grains observed as part of the MOSAiC expedition on sea ice in the high Arctic are listed below.

– Precipitation particles (PP)/ Decomposing and Fragmented precipitation particles (DF)

– Ice formations (IF)555

– Surface hoar (SH)

– Rounded grains, wind packed (RGwp)

– Depth hoar (DH)

– Depth hoar, indurated (DHid)

– Depth hoar wind packed (DHwp)560

– Melt form, depth hoar (MFdh)

It is important to mention that the melt season is not included in this study due to liquid water influencing the interpretation

of the SMP signal. For more information on the environmental and meteorological conditions under which the dataset has been

collected refer to Rinke et al. (2021).

For the majority of snow types, we follow the classification of Fierz et al. (2009). However, Fierz et al. (2009) was adapted565

for Alpine snow, meaning some of the snow types listed above are either not included in the classification or differ from the

ones encountered in Alpine snow.

Melt form, depth hoar. When working on sea ice we identified one alternative snow grain class (Melt form/ depth hoar,

MFdh) that is not existing in the Fierz et al. (2009) classification. This snow type is known in the sea ice community as a surface

scattering layer (Light et al., 2015). It is typically found in the summer season when sea ice melts, however, we identified this570
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as a persistent layer when transitioning into winter. In the field, this was an extremely dense layer at the snow-sea ice interface,

and the penetration resistance force of this layer varied throughout the season. The label “melt form depth hoar” was chosen as

this is a feature of melting sea ice that has persisted into the winter and has undergone metamorphism when buried under snow.

Depth hoar, wind packed. Initially wind packed rounded grains (RGwp) metamorphoses into a very hard, dense depth hoar

under the large temperature gradients, which we call wind packed depth hoar (DHwp) (Pfeffer and Mrugala, 2002).575

All other classifications are listed in (Fierz et al., 2009).

B1 Classification details

Snow type Location in snow profile Typical thickness Signal description Force range

DF Predominantly at the sur-

face of the profile

< 2 cm Very low force signal < 1 N

IF Anywhere 0.1 mm − 5 mm Sharp singular peak, no intermediate peaks > 1 N

SH Surface of profile < 10 mm Tooth-like structure similar to depth hoar 0 − 0.2 N

RGwp Anywhere. Not neces-

sarily on the surface and

can sometimes be buried

10 mm − > 50 cm Wavy force signal, when density is around

500 kg m−3 can also have a tooth-like

structure similar to depth hoar (density of

> 400 kg m−3 is typical for Arctic wind

crust)

Varying but in

the 2 − 20 N

range

DH Often found in the mid-

dle to the bottom of the

profile

Complete range Classic teeth signal, increasing in force,

then a sudden drop in force, due to hitting

an air pocket

0 − 2 N

DHid Often middle-bottom of

profile

Complete range Classic teeth signal. Does not drop to 0 N

like DH would

2 − 6N (± 2 N)

DHwp Very hard layer at the

surface

4 mm − 10 cm High force signal caused by wind packed

snow grains which have metamorphosed

into an icy layer

5 − 30 N

MFdh Very hard layer at the

snow-sea ice interface

1 − 10 mm High force signal caused by a metamor-

phosed surface scattering layer buried un-

der the snowpack

5 − 30 N

B2 Examples of snow types’ SMP signals

B3 Complementary parallel measurements580

When measuring the snow properties, we had access to numerous instruments, which each proved to be beneficial when

interpreting the snow grain type. For example, the near-infrared camera provided overview images of the cross-section of the
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(a) A snow micro penetrometer signal showing a typical sig-

nal for decomposing and fragmented precipitation particles

(DF) with a force remaining under 0.1 N between approxi-

mately 111 mm and 121 mm.

(b) A snow micro penetrometer signal showing a typical sig-

nal for ice formations (IF) with a sharp singular peak at a

maximum of 4 N between approximately 98.6 mm and 99.3

mm.

(c) A snow micro penetrometer signal showing a typical in-

crease in force at the snow-sea ice interface. This signal is

typical for a remnant surface scattering layer, named melt

form, depth hoar (MFdh) in this study. This signal typically

has a force range of 5 − 30 N.

(d) A snow micro penetrometer signal showing a typical

signal for surface hoar (SH) at the surface of the profile with

a tooth-like structure with a low force signal.
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(e) A snow micro penetrometer signal showing a typical

tooth-like signal for indurated depth hoar (DHid) with a

force between 2 − 6 N.

(f) A snow micro penetrometer signal showing a typical

wavy force signal for rounded grains, wind packed snow

(RGwp).

(g) A snow micro penetrometer signal showing a typical

tooth-like signal for depth hoar (DH).

(h) A snow micro penetrometer signal showing a typical

wavy and tooth-like signal for depth hoar, wind packed

(DHwp) with a force between 5 − 30 N at snow depths 208

mm to 215 mm.

Figure B1. SMP profiles with typical SMP signals for the following snow types: a) DF, b) IF, c) MFdh, d) SH, e) DHid, f) RGwp, g) DH,

and h) DHwp.
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a) b)

rgwp

dhid & dh

c) d) e)

Figure B2. An holistic figure showing the use of a library of datasets to assist in labeling the SMP signal. a) An NIR image from the event

PS122-2_23-105 giving a horizontal cross-section of the snowpack where the 5 SMP measurements in b) were taken. The rounded grain,

wind-packed (rgwp), indurated depth hoar (dhid), and depth hoar (dh) regions are identified. b) Five SMP profiles measured approximately 20

cm apart in the same snowpit during event PS122-2_23-105. c) An NIR image from event PS122-2_21-53 giving a horizontal cross-section

of the snowpack where the 5 SMP measurements in e) were taken. d) A 3-D reconstruction of the snow microstructure measured using

micro-computer tomography. e) Five SMP profiles measured approximately 20 cm apart in the same snowpit during event PS122-2_21-53.

snowpit wall (see examples in Figures B2a and B2c), and micro computer tomography measured the snow’s microstructure in

high-resolution (Figure B2d). The metadata section in the dataset by Macfarlane et al. (2021) gives additional information on

how many micro-CTs and NIR images are used in parallel to each other.585
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Appendix C: Features

C1 Features included in data

Table C1 lists all features that were included in the training, validation and testing data of this study. The importance of those

features depends on the specific snow type that should be classified. See Table C2 for this. For example, “Rounded Grains

Wind Packed” shows a high correlation with micromechanical features such as L (4 mm window), whereas “Melted Form of590

Depth Hoar” is mainly correlated with the force values of the SMP profile. Further feature importance analysis (ANOVA and

decision tree importance) can be found online in the snowdragon GitHub repository.

C2 Label-wise feature correlation

Table C2 shows why classification for this dataset is so hard. Some labels have lower correlations among all features, making

it unclear how the right predictions can be achieved on this basis. Other more predictive features are missing, i.e. if a feature595

is discovered that shows a high correlation within this plot, it might boost the overall classification capabilities of the models.

The figure also shows that there might be interaction effects arising since some snow types show very similar correlations

(for example “Melted Form of Depth Hoar” and “Depth Hoard Wind Packed”). In summary, the label-wise feature correlation

reveals the classification difficulty of the dataset and can be used to discover new predictive features.

Appendix D: Metrics600

The metrics used for validation and testing are listed and explained in Table D1. It might be helpful to familiarize oneself with

a binary confusion matrix beforehand.

Intuitively speaking, accuracy expresses how many samples were predicted correctly relative to all predictions; recall ex-

presses how many positive samples were predicted correctly relative to all positive samples; precision expresses how many

positive samples were predicted correctly relative to all positive predictions; F1 score can be used to measure both recall and605

precision in one score; ROC is the receiver operating characteristics and plots the true positive rate versus the false positive

rate; AUROC expresses, that the higher the area under the ROC curve, the clearer can the model separate between positive

and negative samples; and log loss expresses how good or bad the prediction probabilities of each sample are compared to the

target predictions. All these values are better the larger they are, except of the log loss, which is kept as low as possible. Some

of the metrics from Table D1 cannot be computed for all models. This is the case because the AUROC and the log loss metric610

operate on prediction probabilities for the different classes, which not every model can provide. In these cases, the missing

metric is marked with “-” in the result tables.

29



Feature Name Abbreviation Explanation

distance dist Distance from the snowpack’s surface

dist_ground dist_gro Distance from the ground

pos_rel pos_rel Relative position in the snowpack

gradient gradient Gradient (slope) of the force signal

mean_force mean Mean force signal (1 mm window)

mean_force_4 mean_4 Mean force signal (4 mm window)

mean_force_12 mean_12 Mean force signal (12 mm window)

var_force var Variance of the force signal (1 mm window)

var_force_4 var_4 Variance of the force signal (4 mm window)

var_force_12 var_12 Variance of the force signal (12 mm window)

max_force max Maximum of the force signal (1 mm window)

max_force_4 max_4 Maximum of the force signal (4 mm window)

max_force_12 max_12 Maximum of the force signal (12 mm window)

min_force min Minimum of the force signal (1 mm window)

min_force_4 min_4 Minimum of the force signal (4 mm window)

min_force_12 min_12 Minimum of the force signal (12 mm window)

median_force_4 med_4 Median of the force signal (4 mm window)

median_force_12 med_12 Median of the force signal (12 mm window)

delta_4 delta_4 Width of peaks in the force signal (4 mm window)

delta_12 delta_12 Width of peaks in the force signal (12 mm window)

L_4 L_4 Distance between neighbouring peaks in the force signal (4

mm window)

L_12 L_12 Distance between neighbouring peaks in the force signal (12

mm window)

lambda_4 lambda_4 Parameter regulating the Poisson shot noise (4 mm window)

lambda_12 lambda_12 Parameter regulating the Poisson shot noise (4 mm window)

Table C1. Names and description of the features included in the training, validation and testing data.
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Table C2. Label-Feature correlation between snow types and aggregated features of the SMP profiles. The numbers in the feature names

stand for the window size used during aggregation. “Depth Hoar” (dh), “Depth Hoar Indurated” (dhid), and “Rounded Grains Wind Packed”

(rgwp) show some negative correlations with a subset of the features. “Melted Form of Depth Hoar” (mfdh), “Depth Hoar Wind Packed”

(dhwp) and “Rounded Grains Wind Packed” (rgwp) show a strong positive correlation with at least one feature. “Precipitation Particles” (pp)

does not show strong correlations with any feature, however, a correlation with distance (dist), variance, and force features was expected by

experts. The low correlations could be caused by the data-preprocessing step when “Decomposed and Fragmented Precipitation Particles”

were categorised as “Precipitation Particles” as well. The class “Rare” shows no correlations with the features since it consists of very

different sub-classes (“Ice Formation” and “Surface Hoar”).

Appendix E: Machine specifications

The evaluation and hyperparameter tuning experiments were run on two different machines. The complete evaluation was

conducted on a 64-bit system with an Ubuntu 18.04.5 (Bionic Beaver) operating system. The machine has 16 GB RAM and an615

Intel® Core™ i7-6700HQ CPU @ 2.60GHz × 8 (and the GPU was not used). The machine on which the first hyperparameter

tuning, training, and validation experiments have been run has the following specifications: 64-bit system with an Ubuntu

20.04.1 (Focal Fossal) operating system, an Intel® Core™ i7-4510U CPU @ 2.00GHz x 4 CPU, and 12 GB RAM (and the

GPU was not used). Final hyperparameter tuning, training, and validation (results presented here) were run on an Azure virtual

machine of the Dsv3-series, namely on a Standard_D4s_v3 4 machine with Ubuntu 18.04 (Bionic Beaver) as an operating620

system, 16 GB RAM and 4 vCPUs.

4https://docs.microsoft.com/en-us/azure/virtual-machines/dv3-dsv3-series
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Metrics’s Name Formula for Binary Case Description

Balanced Accuracy 1
2
( TP
TP+FN

+ TN
TN+FP

)

Macro-average of recall scores per

class. For balanced datasets, the score

is equal to accuracy.

Weighted Recall TP
(TP+FN)

Calculates the recall for each class and

computes the mean, weighted by the

class’s presence in the target data.

Weighted Precision TP
(TP+FP )

Calculates the precision for each class

and computes the weighted mean,

weighted by the class’s presence in the

target data.

F1 Score 2 ∗ precision∗recall
precision+recall

Harmonic mean of precision and re-

call. In the multiclass case, F1 computes

the class mean, weighted by the class’s

presence in the target data.

AUROC -

Computes the area under the receiver

operating characteristic curve from the

prediction scores. The ROC curve plots

the true positive rate versus the false

positive rate. The scores are calculated

for each class against all other classed

(one-versus-rest) and weighted.

Log Loss −(y · log(p)+ (1− y) · log(1− p))

Negative Log-Likelihood of a logistic

model that returns prediction probabil-

ities p for the true data y.

Table D1. List of metrics employed during validation and testing. The given formulas are only simplified versions for a binary classification

case where no weighting takes place. The formula for the AUROC is not given here, since it is no one-liner and actually involves calculating

an area under the ROC curve. Implementation and explanations of the metrics are from Pedregosa et al. (2011).
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Appendix F: Model setup

The project was executed in Python 3.6 and all used packages can be found on GitHub in the “requirements.txt” file. Prin-

ciple component analysis, t-SNE, k-means clustering, Gaussian Mixture Models, Bayesian Gaussian Mixture Models, ran-

dom forests, SVMs, and the k-nearest neighbour algorithm were used as made available through scikit-learn by Pedregosa625

et al. (2011). 5 The easy ensemble for imbalanced datasets and a balanced variant of the random forest are imported from

imbalanced-learn by Lemaître et al. (2017). 6 All ANN architectures were created with the help of TensorFlow (Abadi et al.,

2015) 7 and Keras (Chollet et al., 2015) 8. The attention model within the encoder-decoder network was used as provided in

the keras-attention-mechanism package by CyberZHG (2020).

Appendix G: Pruned decision tree630

5https://scikit-learn.org/stable/
6https://imbalanced-learn.org/stable/
7https://www.tensorflow.org/
8https://keras.io/
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Figure G1. Pruned decision tree extracted from the random forest. See Appendix C1 to understand the features that the nodes represent.

Decision trees encode the decision rules for predicting snow type labels. This approach helps to explain the model’s decisions, a property

that is often asked for by domain experts. At each leaf node, a labeling decision is made. All the other nodes encode the labeling rules that

are used to classify each point. Take the root node as an example: If the variance of the force is smaller or equal to zero, the point is labeled

as “Precipitation Particles”. Else it has to be one of the other labels. The Gini index encodes how well separable the subsets of data points

are (the bigger the number the better), and the sample’s number shows how much percent of the complete data can be found in this subset.
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Appendix H: Confusion matrices
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dh
wp
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re
0.765 0.127 0.000 0.103 0.005 0.000 0.000

0.259 0.617 0.002 0.045 0.077 0.000 0.000

0.011 0.372 0.550 0.000 0.067 0.000 0.000

0.061 0.083 0.000 0.813 0.028 0.015 0.000

0.009 0.133 0.013 0.278 0.567 0.000 0.000

0.066 0.000 0.000 0.057 0.019 0.858 0.000

0.200 0.200 0.000 0.000 0.300 0.300 0.000

Random Forest, Accuracy=0.726
0.650 0.129 0.001 0.144 0.008 0.062 0.006

0.214 0.535 0.013 0.090 0.085 0.000 0.063

0.030 0.145 0.818 0.000 0.000 0.000 0.007

0.020 0.031 0.000 0.840 0.039 0.047 0.023

0.009 0.052 0.026 0.143 0.489 0.000 0.281

0.000 0.000 0.000 0.000 0.000 0.972 0.028

0.100 0.100 0.000 0.000 0.000 0.400 0.400

Balanced Random Forest, Accuracy=0.696
dh

dh
id

m
fd

h
rg

wp
dh

wp
pp

ra
re

0.697 0.080 0.003 0.192 0.009 0.014 0.005

0.298 0.508 0.023 0.056 0.091 0.000 0.024

0.045 0.104 0.833 0.000 0.011 0.000 0.007

0.039 0.022 0.000 0.851 0.039 0.026 0.022

0.013 0.031 0.041 0.246 0.487 0.007 0.174

0.057 0.000 0.000 0.009 0.000 0.915 0.019

0.100 0.200 0.000 0.000 0.000 0.400 0.300

Support Vector Machine, Accuracy=0.705
0.714 0.106 0.001 0.175 0.002 0.001 0.000

0.195 0.638 0.001 0.116 0.049 0.000 0.000

0.007 0.338 0.580 0.000 0.074 0.000 0.000

0.013 0.018 0.000 0.930 0.023 0.016 0.000

0.007 0.074 0.019 0.469 0.431 0.000 0.000

0.028 0.000 0.000 0.151 0.028 0.792 0.000

0.000 0.300 0.000 0.000 0.300 0.400 0.000

LSTM, Accuracy=0.754

dh dhid mfdh rgwp dhwp pp rare

dh
dh

id
m

fd
h

rg
wp

dh
wp

pp
ra

re

0.824 0.128 0.000 0.044 0.002 0.003 0.000

0.251 0.582 0.002 0.103 0.061 0.000 0.000

0.022 0.353 0.439 0.000 0.186 0.000 0.000

0.024 0.069 0.000 0.835 0.064 0.008 0.000

0.013 0.093 0.000 0.322 0.572 0.000 0.000

0.047 0.000 0.000 0.170 0.009 0.774 0.000

0.200 0.100 0.000 0.000 0.300 0.400 0.000

BLSTM, Accuracy=0.736

dh dhid mfdh rgwp dhwp pp rare

0.887 0.072 0.000 0.030 0.011 0.000 0.000

0.291 0.619 0.006 0.030 0.054 0.000 0.000

0.007 0.338 0.535 0.026 0.093 0.000 0.000

0.039 0.022 0.000 0.906 0.029 0.005 0.000

0.059 0.181 0.020 0.222 0.509 0.007 0.000

0.123 0.000 0.000 0.519 0.028 0.330 0.000

0.200 0.100 0.000 0.400 0.300 0.000 0.000

Encoder Decoder, Accuracy=0.780
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dh dhid mfdh rgwp dhwp pp rare

dh
dh

id
m

fd
h

rg
wp

dh
wp

pp
ra

re

0.619 0.146 0.001 0.146 0.006 0.078 0.005

0.205 0.551 0.012 0.090 0.087 0.000 0.056

0.026 0.145 0.814 0.000 0.000 0.000 0.015

0.022 0.031 0.000 0.840 0.042 0.044 0.020

0.009 0.056 0.030 0.152 0.489 0.000 0.265

0.000 0.000 0.000 0.000 0.000 0.972 0.028

0.100 0.100 0.000 0.000 0.000 0.400 0.400

Self Trainer, Accuracy=0.692

dh dhid mfdh rgwp dhwp pp rare

0.749 0.132 0.000 0.109 0.007 0.003 0.000

0.267 0.591 0.003 0.073 0.065 0.000 0.000

0.063 0.283 0.491 0.000 0.164 0.000 0.000

0.074 0.060 0.000 0.837 0.027 0.001 0.000

0.022 0.165 0.007 0.311 0.493 0.002 0.000

0.113 0.000 0.000 0.264 0.019 0.604 0.000

0.100 0.200 0.000 0.400 0.300 0.000 0.000

Label Propagation, Accuracy=0.714
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Table H1. Confusion matrices of all models displaying the predicted and the observed snow types. The number in each cell is the relative

prediction frequency of a label within the observed class. The numbers of the diagonal (upper left to lower right) represent the prediction

accuracy of each label. The stronger pronounced the diagonal and the less pronounced the upper and the lower triangles are, the better the

predictions. The confusion matrices help for an in-depth analysis of the label-specific performances. This is useful when users want to choose

a model that is suitable for a specific snow classification task.
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