Preprints
https://doi.org/10.5194/egusphere-2024-1404
https://doi.org/10.5194/egusphere-2024-1404
24 May 2024
 | 24 May 2024

Spatio-temporal snow data assimilation with the ICESat-2 laser altimeter

Marco Mazzolini, Kristoffer Aalstad, Esteban Alonso-González, Sebastian Westermann, and Désirée Treichler

Abstract. The satellite laser altimeter ICESat-2 provides accurate surface elevation observations across the globe. Where a high-resolution DEM is available, we can use these measurements to retrieve snow depth profiles even in areas where snow amounts are poorly constrained, despite being of great societal interest. However, the adoption of these retrievals remains low since they are very sparse in space (the satellite measures along profiles) and in time (the revisit is 3 months). Data assimilation methods can exploit snow observations to constrain snow models and provide gap-free snow map time series. Assimilation of observations like snow cover is established, but there are currently no methods to assimilate sparse ICESat-2 snow depth profiles. We propose an approach that spatially propagates information using – instead of the classic geographical distance – an abstract distance measured in a feature space defined by topographical parameters and the melt-out climatology.

We demonstrate this framework for a small experimental catchment in the Spanish Pyrenees through three experiments. We assimilate different observations in an intermediate-complexity snow model: fractional snow cover retrievals from Sentinel-2, snow depth profiles from ICESat-2 located in the proximity of the catchment, or both snow cover and depth in a joint assimilation experiment. Results show that assimilating ICESat-2 snow depth profiles successfully updates the neighboring unobserved catchment, improving the simulated average snow depth compared to the prior run. Moreover, adding the snow depth profiles to fractional snow-covered area observations leads to an accurate reconstruction of the snow depth spatial distribution, improving the skill score by 22 %.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this paper. While Copernicus Publications makes every effort to include appropriate place names, the final responsibility lies with the authors. Views expressed in the text are those of the authors and do not necessarily reflect the views of the publisher.
Share

Journal article(s) based on this preprint

16 Sep 2025
Spatio-temporal snow data assimilation with the ICESat-2 laser altimeter
Marco Mazzolini, Kristoffer Aalstad, Esteban Alonso-González, Sebastian Westermann, and Désirée Treichler
The Cryosphere, 19, 3831–3848, https://doi.org/10.5194/tc-19-3831-2025,https://doi.org/10.5194/tc-19-3831-2025, 2025
Short summary
Marco Mazzolini, Kristoffer Aalstad, Esteban Alonso-González, Sebastian Westermann, and Désirée Treichler

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2024-1404', Anonymous Referee #1, 10 Jul 2024
    • AC1: 'Reply on RC1', Marco Mazzolini, 06 Sep 2024
  • RC2: 'Comment on egusphere-2024-1404', Anonymous Referee #2, 12 Jul 2024
    • AC2: 'Reply on RC2', Marco Mazzolini, 06 Sep 2024

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2024-1404', Anonymous Referee #1, 10 Jul 2024
    • AC1: 'Reply on RC1', Marco Mazzolini, 06 Sep 2024
  • RC2: 'Comment on egusphere-2024-1404', Anonymous Referee #2, 12 Jul 2024
    • AC2: 'Reply on RC2', Marco Mazzolini, 06 Sep 2024

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
ED: Reconsider after major revisions (further review by editor and referees) (27 Sep 2024) by Clara Draper
AR by Marco Mazzolini on behalf of the Authors (19 Dec 2024)  Author's response   Author's tracked changes   Manuscript 
ED: Referee Nomination & Report Request started (03 Mar 2025) by Clara Draper
RR by Anonymous Referee #1 (28 Mar 2025)
RR by Anonymous Referee #2 (17 Apr 2025)
ED: Publish subject to minor revisions (review by editor) (30 May 2025) by Clara Draper
AR by Marco Mazzolini on behalf of the Authors (09 Jun 2025)  Author's response   Author's tracked changes   Manuscript 
ED: Publish as is (26 Jun 2025) by Clara Draper
AR by Marco Mazzolini on behalf of the Authors (28 Jun 2025)

Journal article(s) based on this preprint

16 Sep 2025
Spatio-temporal snow data assimilation with the ICESat-2 laser altimeter
Marco Mazzolini, Kristoffer Aalstad, Esteban Alonso-González, Sebastian Westermann, and Désirée Treichler
The Cryosphere, 19, 3831–3848, https://doi.org/10.5194/tc-19-3831-2025,https://doi.org/10.5194/tc-19-3831-2025, 2025
Short summary
Marco Mazzolini, Kristoffer Aalstad, Esteban Alonso-González, Sebastian Westermann, and Désirée Treichler

Model code and software

MuSA: v2.1 Esteban Alonso-González, Marco Mazzolini, and Kristoffer Aalstad https://zenodo.org/records/11147258

Marco Mazzolini, Kristoffer Aalstad, Esteban Alonso-González, Sebastian Westermann, and Désirée Treichler

Viewed

Total article views: 1,078 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
708 296 74 1,078 48 56
  • HTML: 708
  • PDF: 296
  • XML: 74
  • Total: 1,078
  • BibTeX: 48
  • EndNote: 56
Views and downloads (calculated since 24 May 2024)
Cumulative views and downloads (calculated since 24 May 2024)

Viewed (geographical distribution)

Total article views: 1,059 (including HTML, PDF, and XML) Thereof 1,059 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Latest update: 16 Sep 2025
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
In this work, we use the satellite laser altimeter ICESat-2 to retrieve snow depth in areas where snow amounts are still poorly estimated despite the high societal importance. We explore how to update snow models with these observations through algorithms that spatially propagate the information beyond the narrow satellite profiles. The positive results show the potential of this approach for improving snow simulations, both in terms of average snow depth and spatial distribution.
Share