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Abstract. The satellite laser altimeter ICESat-2 provides accurate surface elevation observations across the globe. Where
::::
With

a high-resolution DEMis available, we can use these
::::
such measurements to retrieve snow depth profiles even in

:::::
remote

:
areas

where snow amounts are poorly constrained, despite being of great societal interest. However, the adoption of these retrievals

remains low since they are very sparse in space(,
::
as
:

the satellite measures along profiles)
:
,
:
and in time(,

:::
as the revisit is

3 months). Data assimilation methods can exploit snow observations to constrain snow models and provide gap-free snow map5

time series. Assimilation
:::::::::
distributed

::::::::::
simulations.

::::
The

::::::::::
assimilation of observations like snow cover is established, but there are

currently no methods to assimilate sparse ICESat-2 snow depth profiles. We propose an approach that spatially propagates

information using – instead of the classic geographical distance – an abstract distance measured in a feature space defined by

topographical parameters
:
a

:::::::::::
topographical

:::::
index

:
and the melt-out

::::
date climatology.

We demonstrate this framework for a small experimental catchment in the Spanish Pyrenees through three experiments. We as-10

similate different
::::
snow

:
observations in an intermediate-complexity snow model: fractional snow cover retrievals from Sentinel-

2, snow depth profiles from ICESat-2 located in proximity of the catchment, or both snow cover and depth in a joint assimilation

experiment. Results show that assimilating ICESat-2 snow depth profiles successfully updates the neighboring
:::::::::::
neighbouring

unobserved catchment, improving the simulated average snow depth compared to the prior run. Moreover,
::::::
Another

:::::::::::
encouraging

::::::
finding

::
is

:::
that

:
adding the snow depth profiles to fractional snow-covered area observations leads to an accurate reconstruction15

of the snow depth spatial distribution, improving the skill score by 22%
::::
19%

::
in

:::
the

:::::::::::
accumulation

::::::
season.

1 Introduction

Seasonal snow is characterized by a
:
a
::::::
crucial

:::::::
element

:::
for

::::::::
sustaining

::::::
human

:::
life

:::
and

::
an

::::::::
essential

::::::
climate

::::::::
regulator

::::::::::::::::
(Sturm et al., 2017)

:
.
:
It
::
is

:::::::::::
characterized

::
by

:
strong spatial and temporal variability (Mott et al., 2018) arising

:::::
which

::::
arise

:
from several processes such

as preferential deposition, wind transport, differential radiation and
::::::::
turbulent heat fluxes, metamorphism

:::
and

:::::::::::::
metamorphism20

:::::::::::::::
(Mott et al., 2018). This is a challenge for spatially-distributed modelling efforts as point measurements have a limited util-

ity. Manual snow measurements (of depth, snow water equivalent (SWE) or density) are present in populated areas, but this

is not the case for remote mountain ranges (Orsolini et al., 2019), or above the treeline (Treichler and Kääb, 2017). Similarly,
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field campaigns are expensive and limited in their spatio-temporal extent. Remote sensing is thus the most
:::::::
Remote

::::::
sensing

::::
thus

:::::::
presents

:
a
::::
more

:
promising method to estimate the spatial distribution of snow (Clark et al., 2011). Moreover, Dozier et al. (2016)25

state that the study of snow water equivalent (SWE) distribution is the sector in hydrology that would benefit the most from

remote sensing innovations.

Optical satelliteplatforms are routinely used to retrieve the fractional snow-covered area (fSCA) which is the key observed

variable to reconstruct the seasonal snow evolution (Margulis et al., 2016). Several products are available, including operational

ones such as long-term but coarse global ESA Snow_cci snow cover data from AVHRR (Naegeli et al., 2022), moderate30

resolution global snow cover data from MODIS and VIIRS (Riggs et al., 2017), and higher resolution snow cover retrievals

from Sentinel-2 and Landsat available in limited regions (Gascoin et al., 2019). The accuracy of fSCA retrievals varies considerably

depending on the retrieval algorithm and sensor employed (Aalstad et al., 2020). Both coarser and higher resolution fSCA

retrievals have been shown to help reconstruct the evolution of the seasonal snowpack across entire mountain ranges (Alonso-González et al., 2021; Margulis et al., 2016)

.35

Accurately measuring snow amounts
:::::::
Despite

:::
the

:::::
many

:::::::::
approaches

::::::::
involving

::::::::
satellite,

:::::::
airborne

:::
and

::::::
drone

::::::
sensors

::
of

:::::::
various

:::::::
different

:::::
types

::::::::
currently

:::::
being

::::
used,

:::::::::
accurately

:::::::::
measuring

:::
the

::::::::
temporal

:::
and

::::::
spatial

:::::::::
variability

::
in

:::::
snow

:::::::
amount (i.e., mass or

depth) from space is still a major scientific challenge (Dozier et al., 2016), but many approaches are currently used. Satellite

measurements with passive microwave sensors have coarse spatial resolution (tens of kilometers) and saturate with a deep

snowpack, limiting their applicability in complex terrain,(Foster et al., 2005) as in the state-of-the-art global passive microwave40

SWE product GlobSnow v3.0 (Luojus et al., 2021) where mountain regions are masked out. Active microwave sensors have

also been experimented with, and Lievens et al. (2022) obtained snow depth estimates at medium spatial resolution (500 m)

from Sentinel-1 Synthetic Aperture Radar (SAR) backscatter information and an empirical change detection algorithm.

In the last decades, unpiloted aerial vehicles (UAV) and airplanes have been widely used to map the spatial distributions

of snow depth on a catchment to smaller scales. Photogrammetry (Eberhard et al., 2021), and light detection and ranging45

(lidar; Geissler et al., 2023; Harder et al., 2019) have been extensively used for this purpose. The most notable effort is the

airborne snow observatory (ASO; Painter et al., 2016)), where snow depth has been extensively mapped over a large number

of basins over the western part of the North American continent. However, the costs of performing such campaigns remain

high and organizationally complex, making this approach prohibitively expensive for mapping seasonal snow globally.

Photogrammetry can be applied also with space-borne platforms acquiring high-resolution stereo imagery (Marti et al., 2016)),50

but the costs of acquiring imagery from private companies that operate very high-resolution optical satellites with the required

specifications currently limit its use. Lidar technology is also used onboard satellites, for example snow depth has been

estimated with the NASA satellite ICESat (Treichler and Kääb, 2017). However, the coarse footprint limits the applications

of this technology in complex topography
::::::::::::::::::
(Gascoin et al., 2024).

In
:::::
Since October 2018, the ICESat-2 mission was launched. The Advanced Topographic Laser Altimeter System (ATLAS)55

mounted onboard has significantly better sensor characteristics for measuring snow depth. It emits
::::::::
measures

::
the

:::::::
Earth’s

::::::
surface
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:::::::
elevation

:::::::
through

:
a
:
532 nm (green) laser pulses that illuminate

:::::
along six parallel profiles along which it measures the earth’s

surface elevation (Markus et al., 2017). On average, for an area located at mid-latitudes extending around 10 km in longitude,

ICESat-2 is expected, in the absence of clouds, to scan the surface with the 6 beams once or twice during the snow season.

:::::::::::::::::
(Markus et al., 2017).

:
The geolocated photons have a centimetric vertical measurement error (although on flat terrain Markus et al., 2017)60

and the geolocation
::
on

:::
flat

::::::
terrain

:::::::::::::::::
(Markus et al., 2017)

:
,
:::::
while

:::
the horizontal accuracy is estimated at 3 to

:
to

:::
be

:::::::
between

:
3
::::
and

4 m (Magruder et al., 2021). ICESat-2 data products derived from the spatial aggregation of photons over tens to a hundred

meters have been used to measure snow depth by differencing with a digital elevation model (DEM) acquired during snow-free

conditions. From comparison to airborne lidar snow depth observations, Enderlin et al. (2022) found that the median absolute

deviation (MAD), an index of accuracy, is around 0.2 m for slopes < 5◦, while it increases to be > 1 m for slopes > 20◦.65

Deschamps-Berger et al. (2023) found similar results: the random error (precision) was 0.5 m for < 10◦ sloped terrain. Besso

et al. (2024) improved the results in the same basins of the two works
:::::::::::::
aforementioned

::::::
studies by focusing on customized data

products generated with the SlideRule Earth service (Shean et al., 2023).

All of the aforementioned observations
::::
The

::::::::
ICESat-2

::::
snow

:::::
depth

::::::::
retrievals

::::
can

:::::::
quantify

:::
the

:::::
snow

::::::
spatial

::::::::::
distribution

::
at

:::
the

:::::::::
acquisition

::::
time.

::::::::
However,

::::
they

:
have limited value in directly estimating snow water resources, because they

:
a
::::
trait

::::
they

:::::
share70

::::
with

::::
other

:::::::::
commonly

::::
used

::::::::::::::
remotely-sensed

::::::::::
observations

:::::
such

::
as

::::::::
fractional

:::::
Snow

:::::::
Covered

:::::
Area

::::::
(fSCA).

::::
This

:::::::::
limitation

:::::
arises

::::::
because

::::::::
ICESat-2

:::::::::::
observations are only able to capture a subset of the full state of the snowpack at one to several points in time

and space (because of their coverage, and spatial and temporal resolution)
:::::::::::::::::::::::::::::::::::::::::::
(Alonso-González et al., 2021; Margulis et al., 2016)

. In order to capture the spatiotemporal
::::::::
completely

:::::::
capture

:::
the

::::::::::::::
spatio-temporal evolution of the snowpack, these

::::::
satellite

observations have been used to constrain a plethora of snow models with varying complexity, from simple empirical models75

with one to several parameters (Hock, 1999), to physically-based models that represent the snow energy and mass balance with

many distinct layers (Lehning et al., 2002). Herein, we focus on an intermediate complexity snow model, namely the Flexible

Snow Model (FSM2 Essery, 2015)
::::::::::::::::::::::
(FSM2; Essery et al., 2024), which is a compromise between a detailed representation of

physical processes that influence the key snow hydrological state variables and parsimonious parametrizations that allow for

increased computational efficiency. The
:::::::::::
Observations

::::
such

:::
as

::::
snow

::::::
depth

::
or

:::::
fSCA

::::
can

:::::::
mitigate

:::
the

:
main limitation of all80

snow hydrology models , independently of complexity,
:::::
which has been shown to be the

:::::::
accuracy

::
of

:
atmospheric forcing data

(Raleigh et al., 2015), especially in the .
:::::

This
::::::
applies

::::::::
especially

:::
in

:
a
:::::::::
potentially

::::::::::::::::
globally-applicable

:
spatially-distributed case

::::
setup

:
when the forcing needs to be extracted from larger

::::
large

:
scale atmospheric model outputs such as coarse resolution

::::::::::::::
coarse-resolution (30 km) global atmospheric reanalyses (e.g. ERA5; Hersbach et al., 2020).

Data Assimilation (DA) enables the fusion of
:::::
offers

:
a
::::::
wealth

::
of

:::::::::
algorithms

::
to
::::
fuse

:
noisy observations with uncertain models in85

a Bayesian statistical framework (Evensen et al., 2022), obtaining (statistically ) optimal estimates with an associated
:
to

::::::
obtain

:::::::::
statistically

:::::::
optimal

::::::::
estimates

:::::::
together

::::
with

::
a
:::::::::::
quantification

:::
of

::::
their

:
uncertainty. This technique , especially ensemble-based

(Monte Carlo) implementations, has shown considerable promise in the snow science community to meet the reconstruction

and forecasting requirements needed to more accurately map the water storage services that snow provides to downstream

ecosystems and communities (Girotto et al., 2020). In terms of time dynamics, these schemes can be employed either in90
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a strictly sequential forward manner as filters (e.g. for initializing short-term snow hydrological forecasts Mott et al., 2023), or

instead as retrospective smoothers that allow information from observations to transfer backward in time, yielding a constrained

and consistent reconstruction (ideal for snow reanalysis problems Margulis et al., 2016).

Ensemble DA methods can be further subdivided between particle and Kalman methods (Evensen et al., 2022). Particle filters

(Leisenring and Moradkhani, 2011) and smoothers (Margulis et al., 2015) are particularly popular snow DA methods given95

their flexibility, ease of implementation, and relative lack of assumptions. However, particle methods are prone to undesirable

ensemble collapse due to weight and path degeneracy (Murphy, 2023), especially in higher dimensional spatio-temporal

problems (Cressie, 2011) that remains an active area at the frontier of particle DA research (Evensen et al., 2022).

Herein, we restrict our attention to ensemble Kalman methods (Evensen et al., 2022) which, despite (and thanks to) stronger

Gaussian linear assumptions, have been shown to be robust also in very high-dimensional geophysical DA problems (Carrassi et al., 2018)100

.These ensemble Kalman techniques represent distributions through an ensemble of model realizations that are updated in state

and/or parameter space using available observations. Moreover, the use of iterative ensemble Kalman updates that temper the

likelihood such as the ensemble smoother with multiple data assimilation scheme (ES-MDA Emerick and Reynolds, 2013)

, and the deterministic version (DES-MDA Alonso-González et al., 2023) has been shown to strongly mitigate the negative

impact of a linear forward model assumption implicit of such methods (Aalstad et al., 2018; Evensen et al., 2022).105

Ensemble Kalman methods have been widely applied to various snow DA problems and have been used to assimilate SWE

data from stations(Magnusson et al., 2014) and passive microwave satellite retrievals (De Lannoy et al., 2012), snow depth data

from stations (Stigter et al., 2017) and drones (Alonso-González et al., 2022), and fSCA satellite retrievals (De Lannoy et al., 2012; Stigter et al., 2017)

. Moreover, the ensemble smoother, a batch ensemble Kalman smoother (see Evensen et al., 2022; Alonso-González et al., 2022)

, was suggested as a method for Bayesian snow reconstruction by Durand et al. (2008) and has been subsequently used to110

assimilate both moderate (Oaida et al., 2019) and higher resolution (Girotto et al., 2014) fSCA retrievals. More recently, iterative

ensemble smoothers based on the ES-MDA have shown promise in the assimilation of satellite-based fSCA retrievals (Aalstad et al., 2018)

or drone-based snow depth retrievals (Alonso-González et al., 2023).

Most
:::::::::::::::::
Girotto et al. (2020)

::::
noted

::::
that

::::
most snow DA research ,

:
–
:
with a few exceptions (e.g. Magnusson et al., 2014; De Lannoy et al., 2012; Cho et al., 2023)

,
:::::::::::::::::::::::::::::::::::::::::::
(e.g. De Lannoy et al., 2012; Magnusson et al., 2014)

:
–
:
has focused on purely temporal DA where the snow in each model115

grid cell (or more generally spatial unit) is simulated and updated independently of its neighboring
::::::::::
neighbouring

:
cells and the

observations therein. However, De Lannoy et al. (2022) recommend a greater adoption of spatio-temporal multivariate DA.

Recent studies have demonstrated the added value of spatio-temporal DA in exploiting spatially sparse snow depth observa-

tions propagating the
::
by

::::::::::
propagating

:
information through covariances based on geographical distance (Cluzet et al., 2022).

Alonso-González et al. (2023), in contrastwith the other aforementioned exceptions,
::::::::::::::::::::::::::::::
(Cluzet et al., 2022; Cho et al., 2023).

:::
In120

:::::::
contrast,

:::::::::::::::::::::::::
Alonso-González et al. (2023) have shown promising results with the ES-MDA scheme and

:
a

::::
more

::::::
general

:::::::::
technique

::::
using

:
a prior covariance matrix dependent on pixel proximity in a multi-dimensional space based on morphometric terrain

features. However, this approach
:::
was

:::::
shown

::::
only

::::
with

::::
high

:::::::::
resolution

:::
and

::::
high

::::::::
accuracy

::::
UAV

::::
data,

::::
and has yet to be extended
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to emerging yet sparse space-borne observations (see comment 6 ?) of snow depth, such as
::::
snow

::::::::::
observations

:::::
such

::
as

:::::
snow

::::
depth

:
profiles derived from the laser altimeter on

::::::
onboard

:
ICESat-2 (Deschamps-Berger et al., 2023; Besso et al., 2024),

:::
as125

:::::::::::
recommended

:::
by

::::::::
comment

:
6
::
in

:::::::::::::::::
Anonymous (2023)

:::
and

::
by

::::::::::::::::::
Gascoin et al. (2024).

In this study, we aim to demonstrate for the first time the value of assimilating snow depth retrieved from the satellite laser

altimeter ICESat-2 in a small experimental catchment. While other studies have focused on evaluating spatially aggregated

data products from this satellite altimeter (Deschamps-Berger et al., 2023; Enderlin et al., 2022; Besso et al., 2024), we use the

geolocated photon data product ATL03 (Neumann et al., 2019) with finer spatial resolution. The validation of this product is130

undergoing work
:::::::
currently

::
in

:::::::
progress, but preliminary results show good agreement in comparison to drone-based snow depth

maps. Because of the temporal and spatial sparsity of these observations, their utility for direct mapping of snow depth
:::::
along

::::::
profiles

:
via temporal DA is limited. Hence, we showcase the use of ICESat-2 data in a spatio-temporal DA scheme (Alonso-

González et al., 2023) that enriches this data in that it can now be used to constrain distributed seasonal snow models for an

entire catchment
:::::
where

:::
the

:::::::
majority

::
of

::::
grid

::::
cells

:::
are

:::
not

::::::::
observed

::
by

::::::::
ICESat-2.135

We
:::
also

:
propose the joint assimilation of ICESat-2 snow depth and fSCA from Sentinel-2. This is compared to assimilating

only ICESat-2 data or fSCA data alone, whereby
::::
where

:
the latter is widely available and routinely used in

::
by

:
the snow DA

community
::::::::::::::::::
(Largeron et al., 2020). The two datasets have complementary features: ICESat-2 retrieves snow depth directly, but

only along profiles; while fSCA has an indirect correlation
:::::::::
relationship

:
with snow depth, but this dataset is spatially distributed.

Our hypothesis is that the joint assimilation will be able to exploit these to better infer the seasonal snowevolution
:::
The

:::::
novel140

:::::::
scientific

::::::::
questions

:::
we

::::
aim

::
to

::::::
answer

:::
are:

:

a)
:::
Can

::::::::::
information

::::
from

:::::
snow

:::::
depth

::::::
profiles

:::::::
retrieved

::::
with

::::::::
ICESat-2

:::
be

::::
used

:
to
:::::::
provide

::::::::::
information

:::::
about

::::::
average

:::::::::::::
catchment-scale

::::
snow

:::::
depth

::::
and

::
its

::::::::
complete

:::::
spatial

:::::::::::
distribution?

:

b)
:
Is
:::::::::::

assimilating
:::::
sparse

:::::::::
ICESat-2

::::
snow

:::::
depth

::::::::
retrievals

::::::
better

::::
than

::::
more

::::::::::
commonly

::::
used

:::::
fSCA

:::::::::::
observations

:::::::
derived

::::
from

:::::
optical

:::::::::
satellites?145

c)
:
Is
::::::::::::::
ensemble-based

:::
DA

::::
able

::
to

:::::::
leverage

::::::::::
information

:::::
from

::::
both

::::::::::
observation

:::::
types

::::
when

::::::
jointly

::::::::::
assimilating

:::::
both

:::::
fSCA

:::
and

:::::
sparse

:::::
snow

:::::
depth

:::::::::::
observations?

:

:::
The

:::::::::
underlying

:::::::::
hypothesis

::
of

::::
this

:::::
work,

::::::
shared

::::
with

::::
other

:::::::::::::
high-resolution

:::
DA

::::::::::
assimilation

:::::::
studies,

:::
can

:::
be

:::::::
outlined

::
as

:::::::
follows.

:::
The

:::::
snow

::::::
model

::::
does

:::
not

::::::::
represent

:::::
some

::
of
::::

the
:::::
lateral

:::::::::
processes

:::::::::
influencing

:::
the

:::::::::
snowpack

::::
such

:::
as

::::
wind

::::
and

:::::::::::
gravitational

:::::::::::
redistribution:

:::
the

:::::::::::
atmospheric

::::::
forcing

::::::::::
information

::::
that

:
is
::::::::

available
::
at

:::::
scale

::
is

:::
not

:::::::
detailed

::::::
enough

::
to

:::::::::
accurately

::::::
capture

:::::
such150

::::::::
processes

::
in

:
a
:::::::::
distributed

:::::::
manner.

:::
We

:::
aim

::
at

:::::::
showing

:::
that

:::::::::::
assimilating

:::::::::
information

:::::
from

:::::
higher

:::::::::
resolution

::::::
satellite

:::::::::::
observations

:::
can

::::::::
constrain

:::
the

:::::
spatial

::::::::::
distribution

::
of

:::::
snow,

:::::::::
mitigating

:::
the

::::::
effects

::::::::
resulting

::::
from

:::::::
missing

:::
the

:::::::::::::
aforementioned

::::::::
processes

::::
that

::
are

:::
not

::::::::::
represented

::
in

:::
the

:::::
snow

:::::
model.
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2 Study Area and Data

The study area is the Izas experimental catchment(Revuelto et al., 2017), located in the Central Spanish Pyrenees. The elevation155

ranges between 2075 and 2325 m a.s.l. and the total annual precipitation typically sums up to 2000 mm, with around half of this

in the form of snowfall as is typical for such a sub-alpine environment. Snow usually covers a large fraction of the catchment

from late November to the end of May. The vegetation type is a high mountain steppe :
:::::
where

:
most of the surface is covered

by bunch grass .
::::::::::::::::::
(Revuelto et al., 2017)

:
.

We chose this site because of the availability of several spatially distributed drone-based snow depth measurements (Alonso-160

González, 2022) in the 55 ha area
::::
sized

:::::::::::
experimental

:::::::::
catchment

:
highlighted with black in Figure 1(Revuelto et al., 2021). The

drone surveys were conducted in 2020 on 14/01, 03/02, 24/02, 11/03, 29/04, 3/05, 12/05, 19/05, 26/05, 02/06, 10/06, 21/07 and

were already used in various DA experiments (e.g. Alonso-González et al., 2022, 2023)
:::::::::::::::::::::::::::::
(Alonso-González et al., 2022, 2023).

The original
::::::
spatial resolution is 1 m, and the measurement error is assumed to have a standard deviation equal to 20 cm. The

right panel
:::::
Panel

::
c) of Figure 1 shows the spatial distribution of snow depth close to the seasonal peak

:
at
:::
the

::::::
native

::::::::
resolution.165

Very high snow depths (> 300 cm) are accumulated under the ridgeline on the west side of the area
::::::
western

::::::::
ridgeline, in

the deep valleys throughout the catchment, and at the foot of the slope on the east side
::::::
eastern

:::::
slope. Very low snow depths

(< 50 cm) can be seen in the south-southeast facing
::::
areas

:::
are

::::::
located

:::
on

:::
the

::::::::::::::
southeast-facing

:
aspects located on the north

:::::::
northern

:::
side

:::
of

:::
the

::::::::
catchment

::
as
::::
well

:::
as

::
on

:::
the

::::::::::
wind-blown

::::::
ridges

::::::
located

::
on

:::
the

::::::::
southern side of the catchment.

Figure 1.
::::
Panel

:::
a): Topography of the Izas experimental basin

:::::::
extended

::::::
domain, located in the Pyrenees. The raw DEM data is obtained from

the Centro Nacional de Información Geográfica. Blue lines: ICESat-2 snow depth profiles in 2020 used in the experiments; gray dashed lines:

ICESat-2 snow-free profiles that are used for coregistration purposes; black area:
::::::::::
experimental catchment where 12 snow depth maps were

acquired during the 2020 snow season. The
::::
Panel

:::
b):

:::
the small-scale topography , shown in

:
of
:
the middle panel

:::
Izas

:::::::::
experimental

::::::::
catchment,

dictates
::::::
dictating

:
the peak snow depth patternsshown in the right panel, which was

:
.
::::
Panel

:::
c):

::::::::::
drone-derived

::::
snow

:::::
depth

::::
map acquired on

11th of March
::::
shown

:
at

::
the

::::::
original 1 m resolutionand is

:
, obtained from Alonso-González (2022).
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We obtain
::::::
retrieve

:
snow depth by subtracting the

:::::::
snow-off

::::::::
elevation

:::::::
obtained

:::::
with

:
a
:::::::::

reference
:::::
DEM

::
to

:::
the

:
snow surface170

elevation measured by the ICESat-2 satellite altimeter to a snow-off DEM. The
::::
with

:::
the

:
ATLAS instrument onboard the

National Aeronautics and Space Administration (NASA) satellite ICESat-2provides very accurate surface height measurements

along six beams (Markus et al., 2017). We use the level 2A product ATL03 (Neumann et al., 2023a)
:::::::::::::::::::
(Neumann et al., 2023b),

which we downloaded through the SlideRule python-client (Shean et al., 2023). This low-level product combines the time of

flight data with the location of the satellite to obtain the geolocation of single photons’ reflection events
::
off

:::
the

:::::
snow

::::::
surface.175

The ATLAS transmitter generates six beams (across-track direction). The beams are arranged in three pairs, with a strong

and weak beam located at a distance of 90 m, while the pairs are spaced 3.3 km
:::::::::::::::::::
(Neumann et al., 2019).

::::
The

:::::
orbit

:::
has

:
a
::::
92◦

:::::::::
inclination. The signal ratio between strong and weak beams is 4 to 1 . One

:::
and

:
a
:
pulse of the 532 nm laser illuminates a region

::::::::
(footprint)

:
ca. 14 m in diameter. Pulses are transmitted every 1.5 ns, hence the footprints are spaced 0.7 m in the along-track

::::::::::
along-profile

:
direction and have a large overlap. The expected number of photons backscattered to the ATLAS receiver for a180

single strong beam shot from a reflective surface such as snow ranges from 7 to 3 depending on the slope and roughness of

the surface (Neumann et al., 2019). We select two of the strong beam profiles acquired on
::
in

:::
the

::::
night

:::
of the 5th of February

2020, as they sample snow depth during the accumulation phase. We
:::::
tested

:::
the

:::::
weak

::::::
beams

:::
but

::::
they

::::
were

:::
not

:::::
used

::
as

:::::
those

:::::::
provided

::
an

::::::::::
observation

:::
set

::::
with

:::::
fewer

::::::
returns

::
in

:::
the

::
20

::
m

::::
cell

::
we

:::::
used

::
as

::::
unit,

:::
and

::
a

::::::::
consistent

::::::
vertical

::::
shift

::::
was

::::::::
detected.

:::
We

discard the third strong beam as it is located further away at lower elevations and in forested terrain, and the weak beams as185

preliminary results showed their signal-to-noise ratio is too weak for this application. ICESat-2’s next acquisition during the

2020 snow season in the study area is in May, but the cloudy conditions
::::::::
weakened

:::
the

::::::
surface

:::::
signal

::::
and made these profiles

unreliable. ICESat-2 measures the surface elevation through the geolocation of photon reflection events, and we access this

information through the low-level ATL03 data product (Luthcke, 2021). Most of these events happen on the highly reflective

snow surface during the cold
:::::::::::
snow-covered

:
season, but there is a substantial

::::::
relevant

:
amount of noise due to solar radiation190

::::::::::
atmospheric

::::::::
scattering

:
or double bounces (Neumann et al., 2023a). Photon events are divided into several classes depending

on the identified location of the event (e.g. ground, canopy, top of the canopy) in the algorithm vegetation product ATL08

(Shean et al., 2023).

The DEM used as the snow-off reference surface is available thanks to the Spanish government
::
’s

:
Plan Nacional de Orto-

fotografía Aérea (PNOA)
:::::::
airborne

:
lidar initiative and its spatial resolution is 2 m. The accuracy in terms of RMSE for this195

lidar-based model is declared to be 20 cm in the vertical direction and 30 cm in the horizontal plane (Centro Nacional de Infor-

mación Geográfica). Moreover, as we will detail in the following section 3, we
::
We

:
use snow-off ICESat-2 profiles to evaluate

the vertical offset between the mentioned
:::::::::::::
aforementioned DEM and the ICESat-2 acquisitions,

:::
as

:::::::
detailed

::
in

::::::
Section

::
3. We

employ 18 profiles depicted with a gray dashed line in Figure 1.

In addition to the ICESat-2’s snow depth data, we also employ snow cover information from high-resolution (∼ 10 m) mul-200

tispectral satellite imagery. We used surface reflectances (the Level 2A product) obtained from the MultiSpectral Instrument

:::::
(MSI) onboard the Sentinel-2A and Sentinel-2B twin satellites (Drusch et al., 2012) operated by the European Space Agency

as part of the Copernicus Programme. The Sentinel-2 imagery was downloaded from Google Earth Engine (Gorelick et al.,
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2017), which is a cloud-based platform that harvests
::::
hosts

:
open Earth observation data from its original source, in this case

Copernicus. By manually selecting cloud-free imagery, we obtained a total of 19 scenes covering the entire study area and205

snowmelt season. The acquisition dates of the used scenes are shown with blue stars in panel a) of Figure ??
:
5, and are irreg-

ularly spaced between the 5th of February (before peak snow) and the 17th of July 2022 (complete melt-out), with a median

(maximum) spacing of 5 (33) days.

3 Methods

3.1 ICESat-2 snow depth retrieval
:::::::::
Modelling210

:::
We

:::::::
simulate

::::
the

::::::::
snowpack

:::
at

:::
20

::
m

::::::
spatial

:::::::::
resolution

::::
with

::::
the

:::::::
Flexible

::::::
Snow

::::::
Model

:::::::::::::::::::::::
(FSM2; Essery, 2015, 2023)

:
.
:::::

This

::::::::::::::::::::
intermediate-complexity

:::::
model

:::::::::
represents

:::
the

:::::::::
snowpack

::::
with

:::
up

::
to

:::::
three

:::::::
different

::::::
layers

::::
and

:::::
solves

:::
the

:::::::
coupled

:::::
mass

::::
and

:::::
energy

:::::::
balance

:::::::::
equations

::
to

:::::::
simulate

::::
the

:::::::
seasonal

::::::::
evolution

:::
of

:::::
snow.

:::
In

::::::
FSM2,

:::::
seven

:::::::
physical

:::::::::
processes

::::::::
occurring

:::
in

:::
the

::::::::
snowpack

:::
are

::::::::::
represented

::::
with

:::::::
multiple

::::::::
available

::::::::::::::::
parameterizations.

:::
We

::::::
choose

:::
the

:::::
most

:::::::
complex

::::::::::::
representation

:::
for

:::
all

:::
the

::::::::
processes

::
to

::::::
obtain

:
a
:::::

more
:::::::::::::
comprehensive

:::::::::
snowpack

::::::::
ensemble

::::::::::
simulation.

:::::
These

::::::::::::::
parametrizations

::::
are:

::::::
albedo

:::::
decay

:::::
with215

::::::
elapsed

::::
time

:::::
since

:::
the

::::
last

:::::::::
significant

::::::::
snowfall,

:::::::
thermal

:::::::::::
conductivity

::
as

::
a
:::::::
function

:::
of

:::::
snow

:::::::
density,

::::::
density

:::
as

:
a
::::::::

function

::
of

:::::::::
overburden

::::
and

:::::::::::::
metamorphism,

::::::::
turbulent

::::::
fluxes

:::::::::
diagnosed

:::::
using

:::
the

::::::::::::::
Monin-Obukhov

::::::::
similarity

:::::::
theory,

:::
and

::::::::::
melt-water

:::::::::
percolation

::
as

::
a

:::::::
function

::
of

:::::::::::
gravitational

::::::::
drainage,

::::::::
fractional

:::::
snow

:::::
cover

::
as

::
an

::::::::::
asymptotic

:::::::
function

::
of

:::::
snow

:::::
depth.

:::
No

::::::
lateral

::::::::
processes

:::
are

:::::::::
represented

::
in
::::::
FSM2.

:

:::
We

::::
drive

:::
the

:::::::::
simulations

::::
with

:::::::::::::
meteorological

::::::
forcing

::::::
derived

::::
from

:::
the

:::::::::::::::
globally-available

:::::
ERA5

:::::::::
reanalysis

::::::::::::::::::
(Hersbach et al., 2020)220

:
.
:::::::
Because

:::
the

:::::
coarse

:::::::::
resolution

::
of

::
30

:::
km

::::::
misses

:::
the

:::::::
subgrid

:::::::::::::::
topography-driven

:::::::::::
heterogeneity

:::
of

::
the

:::::::::::
atmospheric

::::::::
variables,

:::
we

::::::::
downscale

:::
the

:::::::::
reanalysis

::::
with

:::
the

::::::
widely

::::
used

:::::::
hillslope

:::::
scale

::::::::::::::
topograpy-based

::::::::::
downscaling

::::
tool

:::::::::::
TopoSCALE

:::::::::::::::::::::::::::::::::::::
(see Filhol et al., 2023, and references therein)

:
.
::::
This

::::::
process

::::
uses

:::
the

:::::::
pressure

:::::
level

::::
data

::
to

:::::::::
interpolate

:::
the

::::::
forcing

::::::::
variables

::
to

::
the

::::
grid

::::
cell

::::::::
elevation,

::::
and

:::::::
radiative

::::::
fluxes

:::
are

:::::::
adjusted

:::
by

:::::
taking

::::
into

:::::::
account

::::
local

::::
and

::::::::::
surrounding

::::::::::
topography

::
as

::::
well

:::
as

::
the

::::::::
position

::
of

:::
the

::::
sun.

::::
The

::::::::
TopoSUB

:::::::
routine

:::::::
included

:::
in

:::
the

::::::::::
downscaling

::::
tool

::::::
allows

:::
for

:::::::
efficient

::::::::::::::
semi-distributed

::::::
spatial225

::::::::::
downscaling

:::::::
through

:::::::::::::::
topography-based

:::::::::
clustering

::::::::::::::::
(Fiddes et al., 2019)

:
.
:::
We

:::::
select

::::
400

::
as

:::
an

::::::::::
appropriate

:::::::
number

::
of

:::::::
clusters

::
to

:::
run

:::
the

:::::::::::::
semi-distributed

:::::::::::
downscaling

:::
for

:::
the

::::::::
extended

::::::
domain

::::::
which

:::
has

::
a

:::::
rather

:::::
small

::::
area

::
of

:::::
about

::
5

::
by

::
3
:::
km

::::::
(equal

::
to

::
the

::::::
extent

::
of

:::::
panel

::
a)

::
of

::::::
Figure

:::
1).

:::
The

::::::::
obtained

:::::::::::::
semi-distributed

::::::
forcing

::
is
::::
then

:::::::
mapped

::::
back

:::
to

:
a
:::
20

::
m

::::
fully

:::::::::
distributed

::::
grid

:::::::
covering

:::
the

:::::
whole

::::::::
extended

:::::::
domain.

:::
This

:::::::
globally

:::::::::
applicable

:::::::::::
TopoSCALE

:::::
metod

:::
has

:::
for

:::::::
example

::::
been

::::
used

::
in

::::::
similar

:::::::
settings

::
to

::::::::::
successfully

::::::::::::::::::::::
topographically-downscale

::::::
ERA5

:::::::::
reanalysis

::::
data

::
to

:::::
drive

:::::
snow

::::::
models

:::::
both

::
in

::::::::::::::
hyper-resolution

:::::
snow

::::
data230

::::::::::
assimilation

::::::::::
experiments

::::::::::::::::
Fiddes et al. (2019)

:::
and

::
in

:::::::::
nationwide

::::::::::::
hillslope-scale

:::::
snow

:::::::::
simulations

::::
with

:::::
FSM

::::::::::::::::
(Fiddes et al., 2022)

:
.
:::
The

:::::::::
application

:::
of

:::::::::::::
topographically

:::::::::
downscaled

::::::
ERA5

::::
data

::
to

::::
force

:::
the

:::::
snow

:::::
model

::::::
FSM2

:::
has

::::::
already

:::::
been

::::::::
conducted

::
in
::::
this

:::
area

::
in

::::::::::::::::::::::::::::::
Alonso-González et al. (2022, 2023)

:
–
::::::::
although

::::::
another

:::::::::::
downscaling

:::::
model

::::
was

::::
used.

::::
We

:::
now

:::::
select

:::
the

::::
cells

::::::::
covering

::
the

:::::
drone

:::::
maps

::
in

:::
the

::::
Izas

:::::::::::
experimental

:::::::::
catchment

:::::
(solid

::::
black

::::
line

::
in

::::::
Figure

::
1)

:::
and

:::
the

::::
grid

::::
cells

::
in

:::
the

::::::::
extended

::::::
domain

::::
that

8



::
are

::::::::::
intersected

::
by

:::
the

::::::::
ICESat-2

:::::
tracks

:::::
(blue

::::
lines

::
in

:::::
panel

::
a),

::::::
Figure

:::
1),

:::::::
summing

:::
up

::
to

:
a
::::
total

::
of

:::::::
∼ 1900

::::
cells

:::::
where

:::
the

::::::
FSM2235

:::::
model

:::
is

:::
run.

:

3.2
::::::::
ICESat-2

::::
snow

::::::
depth

:::::::
retrieval

As mentioned in the previous section, the laser altimeter ATLAS on-board of the satellite
:::
The

:::::::
retrieval

::
of

:::::
snow

:::::
depth

::::::::::
observations

:
is
:::::
based

:::
on ICESat-2geo-locates photon reflection events to retrieve the surface elevation

:
’s

:::::::
accurate

::::::
surface

::::::::
elevation

::::::::::::
measurements

::::
from

:::::::::
individual

::::::
photon

::::::::
reflection

::::::
events. We filter such events by selecting only the ones classified as ground, as results240

from Besso et al. (2024) indicate such filtering improves the median absolute error. Moreover, we assign the photon events

a weight based on the local neighborhood
::::::::::::
neighbourhood

:
density, using the Yet Another Photon Classifier (YAPC) algo-

rithm(Sutterley and Gibbons, 2021). This determines the significance of individual photon events with a customized inverse-

distance weighted kNN algorithm . The neighborhood
::::::::::::::::::::::::
(Sutterley and Gibbons, 2021)

:
.
::::
The

::::::::::::
neighbourhood

:
is defined with a

window length (parallel to the line of flight) of 5 m and a 3 m height. The rationale behind this is that photons returning245

from the ground have a large number of neighbors
:::::::::
neighbours

:
as it is less likely for photons reflected from atmospheric par-

ticles or objects above the ground to be clustered together. For each ∼ 4 km profile we select 60% of the photons with the

largest significance according to YAPC. In Figure 2, the orange photons’ size is proportional to their YAPC score, while the

filtered-out photons are grey
:::
gray. Before comparing the ATL03 photon events to the snow-free reference surface elevation it

is necessary to co-register this dataset with the snow-off DEM. Every beam is independently co-registered with a horizontal250

displacement, and a .
::
A

:
vertical offset common to all the acquisitions and beams is obtained by computing the median of all

the snow-off acquisitions vertical offsets, as other studies have done (Enderlin et al., 2022; Besso et al., 2024). We employ the

Nuth-Kääb algorithm to obtain the horizontal shifts (Nuth and Kääb, 2011), implemented in the xdem python library (Dehecq

et al., 2021).

Snow depth is computed for each selected photon event by subtracting the elevation from the co-registered DEM. We linearly255

interpolate the DEM to obtain the snow-off elevation at the location of the photon event. Subsequently, we divide the snow

depth observations into cells with a 20 m spatial resolution, in order to match the spatial resolution of the simulation (see 3.6).

Since the ICESat-2 orbit is 92◦, each cell has around 29 footprints summing up to
::::::
Section

::::
3.1).

:::
On

:::::::
average,

:
45± 18 photons

after the YAPC filtering. As
::::::::
individual

::::
snow

:::::
depth

:::::::::::::
measurements

:::
per

:::
cell

:::
are

:::::::::
available.

::::
Due

::
to

:::::::::
ICESat-2’s

:::::::
inclined

:::::::
ground

::::
track

::::
(see

::::
panel

:
a

::
of

::::::
Figure

::
1) some of the cells defined by modelling grid might have very few measurements, we

:::::
hence filter260

out cells where
:::
with

:
less than 10 photon reflection events. In addition,

:::
also

:::
the

:
cells with an average slope larger

::::::
greater than

40◦
::
are

::::::
filtered

::::
out, as the horizontal positioning uncertainty makes snow depth retrievals not

:::
less

:
reliable for steep terrain.

In Figure 2, a 400 m transect with a comparison between the co-registered photons and the high-resolution DEM is shown

(upper panel
::::
panel

::
a)) as well as the snow depth sample distribution available along the transect (lower panel

::::
panel

::
b)). We

sample the obtained snow depth distribution to retrieve an observation in each cell with the median operator. To estimate a265

domain-consistent statistic for the spread of the snow depth observation error(σy), we compute the standard deviation of snow

depth samples in each cell and average it over the profiles, obtaining σy = 0.92 m.
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Topographic context

c)b)

a)

Figure 2. Left panel: the topography of the ICESat-2 profile. Upper panel
::::
Panel

::
a): A 400 m long segment where the photon events selected

are compared with the snow-off information obtained from the 2 m resolution DEM. Lower panel
::::
Panel

::
b): the median operator is applied to

snow depth observations from the selected photon on a 20 m moving window and the shaded area represents the 2 standard deviation range

around the median.
::::
Panel

:::
c):

::
the

::::::
general

:::::::::
topography

::
of

::
the

:::::::
ICESat-2

::::::
profile

:::::
shown.

:

3.3 Sentinel-2 fSCA retrieval

The fSCA retrieval algorithm is based on surface reflectances estimated from MSI onboard the Sentinel-2 satellites in 6 bands

in the visible, near-infrared, and shortwave infrared. By comparing the reflectances measured in these bands to modeled spectra270

for snow and snow-free endmembers we infer the fSCA using spectral unmixing via a fully constrained least squares algorithm.

As shown in Aalstad et al. (2020), this approach can outperform simpler linear regression and thresholding-based approaches to

fSCA retrieval, albeit at a higher computational cost. This unmixing approach to retrieving fSCA from Sentinel-2 imagery has

been successfully applied both in the high-Arctic (Aalstad et al., 2020), as well as at Alpine sites (Pirk et al., 2023) in Norway.

The retrievals were performed in the native 10 m grid of the visible and near-infrared reflectances from Sentinel-2, and were275

subsequently regridded
::::::::
resampled

:
to the 20 m spatial resolution of the simulations 3.6 through averaging and subsequent

inverse distance weighting. We estimate the observation error for the fSCA retrievals at 20 m resolution to be σ = 0.34. As

independent
::::::::::
Independent

:
validation estimated the observation error σN at 100 m resolution to be equal to σN = 0.07 (see Table

2 Aalstad et al., 2020), we expect the error at coarser resolution to improve
:
.
:::
We

:::::::
obtained

::::
our

::
20

::
m

::
σ
:::::::
estimate

:::::
using

::::
that

:::
the

10



::::
error

::::
from

:::::::
coarser

:::::::::
resolutions

::::::
should

:::::::
increase

::
at
::::::
higher

:::::::::
resolutions

:
according to the central limit theorem σN = σ√

N
, where280

N
:::::::
through

:::::::::::
σ = σN

√
N ,

:::::
where

:::::::
N = 25

:
is the number of independent 20 m cells being aggregated

::::::::
contained

:
in the coarser

validation (N = 25 in this case). Thus, the disaggregated observation error at 20 m resolution for these fSCA retrievals should

be on the order σ = σN

√
N ≃ 0.34 from which we obtained our estimate.

3.4 Modelling

We simulate the snowpack at 20 m spatial resolution with the Flexible Snow Model (FSM2 Essery, 2015, 2023). This intermediate-complexity285

model represents the snowpack with up to three different layers and solves the coupled mass and energy balance equations to

simulate the seasonal evolution of snow. To obtain a more comprehensive snowpack representation, 7 physical processes are

parameterized with the most detailed process representation among those available in the snow model. These parametrizations

are: albedo decay with elapsed time since the last significant snowfall, thermal conductivity depending on snow density, density

influenced by overburden and metamorphism, turbulent fluxes diagnosed using the Monin-Obukhov similarity theory, and290

melt-water percolation depending on gravitational drainage, fractional snow cover asymptotic to snow depth.

We drive the simulations with meteorological forcing derived from the ERA5 reanalysis (Hersbach et al., 2020). Because the

coarse resolution of 30 km misses the subgrid topography-driven heterogeneity of the atmospheric variables, we downscale the

reanalysis with TopoSCALE (Filhol et al., 2023). This process uses the pressure level data to interpolate the forcing variables

at the cell elevation, and radiation components are scaled depending on the topography. The TopoSUB routine in TopoSCALE295

allows for efficient semi-distributed spatial downscaling through topography-based clustering (Fiddes et al., 2019). We select

400 as an appropriate number of clusters to run the semi-distributed downscaling for this rather small area (equal to the extent

of the map in the left panel of Figure 1). The obtained semi-distributed forcing is then mapped back to the 20 mfully distributed

grid. Such a combination of topographic downscaling (although another downscaling model was used) and the snow model

FSM2 has already been used in this area in Alonso-González et al. (2022, 2023). Note that to save computational resources we300

simulate only the cells in the domain where an ICESat-2 observation or the drone validationis available (∼ 1900 cells).
::::
(100

:::
m)

::::::::
validation.

:

3.4 Data assimilation

The Multiple Snow DA System (MuSA Alonso-González et al., 2022)
::::::::::::::::::::::::::::::::
(MuSA; Alonso-González et al., 2022) allows the exe-

cution of various forms of ensemble-based snow DA. Therein, the prior uncertainty
::::::::::
distribution

::
—

:
a
:::::::::::

probabilistic
::::::::::
distribution305

::::::::::
representing

::::::::::
uncertainty

::::
over

:::
the

::::::::
system’s

::::
state

::::
and

::::::::
parameter

:::::
space

::::::
before

:::::::::::
observations

:::
are

:::::
taken

::::
into

:::::::
account

:::
— is rep-

resented by the spread of the
:
a
:::::

finite
:::::::::
collection

::
of

::::::::
samples

::::::
known

::
as

:
ensemble members. Each

::::
This

::::::
spread

::
in

:::::
terms

:::
of

:::::::::::
basin-average

:::::
snow

:::::
depth

:::
can

::
be

::::
seen

::
in

:::
the

::::
gray

:::::::::
trajectories

::
of

::::::
panels

::
a),

::
b)

::::
and

::
c)

::
of

:::::
Figure

::
5.

:::::
Each

::::
prior

::::::::
ensemble member is

an FSM2 simulation obtained by perturbing a selection of forcing variables. In the presented experiments, the perturbed forcing

variables are air temperature, precipitation and downwelling longwave radiation. The perturbation parameters are time-invariant310

throughout the water year, and the prior perturbation parameters are extracted via transformations
::
are

::::::::
extracted from a logit-
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Table 1.
::::::::::::

Hyperparameters
::
for

:::
the

::::::::
extraction

::
of

::
the

:::::::::::
logit-normally

::::::::
distributed

::::
prior

::::::::::
perturbation

::::::::
parameters.

:::::::::
Numerical

:::::
entries

::::::
without

::::
units

::
are

::::::::
implicitly

:::::::::::
dimensionless.

::::
Note

::::
that

::
the

::::::::::::
hyperprameters

::
µ
:::
and

::
σ
:::
are

:::
the

::::
mean

::::
and

::::::
standard

::::::::
deviation,

::::::::::
respectively,

::
of

:::
the

::::::::
associated

:::::::
Gaussian

:::::::::
distributions

:::
that

:::
the

:::::::::::::
logit-transformed

::::
prior

:::::::::
perturbation

::::::::
parameters

::::::
follow.

::::::
Variable

: ::::
Type

:
µ

:
σ

:::::
Lower

:::::
bound

:::::
Upper

:::::
bound

:::::::::
Precipitation

::::::::::
Multiplicative

::::
−0.9

:::
0.7

::
0.1

: :
5
:

:::::::::
Temperature

::::::
Additive

: :
0

:::
0.5

::::
−8K

::
8K

::::::::
Longwave

:::::::
radiation

::::::
Additive

: :
0

:::
0.5

::::::::
−8Wm−2

::::::
8Wm−2

normal distribution rather than Gaussian , to restrict
:::::
whose

:::::
prior

::::::::::::::
hyperparameters

:
µ
::::
and

::
σ

:::
can

::
be

::::
seen

::
in
:::::

Table
::
1.
::::

We
::::::
choose

:::
this

:::::::::
distribution

::::
over

::
a

:::::::::
log-normal

::
or

:
a
::::::::
Gaussian

::::::::::
distribution

::
as

:::
the

::::::::::
logit-normal

:::::::
restricts the perturbation within defined bounds

(Aalstad et al., 2018; Guidicelli et al., 2023)
:::::
upper

:::
and

:::::
lower

::::::
bounds

::::::
(shown

::
in
:::::
Table

:::
1),

::
in

:::::::
contrast

::
to

::::
other

::::::::::
distributions

::::::
which

:::::
would

::::
have

::::::::::
respectively

::::
only

::::
one

::
or

::
no

::::::
bounds

:::::::::::::::::::::::
(Aitchison and Shen, 1980). The nature of the perturbation is multiplicative for315

the precipitation (
::
in

:::
part

:
to prevent non-physical negative values) and additive for the other variables.

The ensemble members representing the prior perturbation parameter distribution are updated with a DES-MDA with four

iterations, as the mapping from perturbation parameters to observations – the snow model
:::::::::::
deterministic

::::::
version

::
of

:::
the

::::::::
ensemble

:::::::
smoother

::::
with

:::::::
multiple

::::
data

::::::::::
assimilation

:::::::
scheme

::::::::::::::::::::::
(DS-MDA; Emerick, 2018).

:::::
Such

:::::::
iterative

:::::::
‘multiple

::::
data

:::::::::::
assimilation’

:::::::::
algorithms

:::::::
mitigate

::
the

:::::::
negative

::::::
impact

::
of

::
a

::::
linear

:::::::
forward

::::::
model

:::::::::
assumption

:::::::
implicit

::
in

::::::
Kalman

:::::::
methods

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Aalstad et al., 2018; Alonso-González et al., 2022; Evensen et al., 2022)320

:
.
::::
Since

:::
the

:
FSM2 – is clearly

:::::
model

::
is
:
non-linear

::
in

:::
the

:::::::
mapping

:::::::
between

:::::::::::
atmospheric

::::::
forcing

:::
and

:::::
snow

:::::
states,

:::
we

::::::
choose

::::
four

::::::::
iterations,

::
in

::::
line

::::
with

:::
the

:::::::::::::
aforementioned

:::::::
literature. We select 40 as an appropriate number of ensemble members in order to

adequately represent the prior distributions while maintaining a reasonable computational cost.

3.5 Spatial propagation of information

The key to spatially propagate information from local observations in space
::
—

:::
that

::
is
::
to

:::::
other

::::::::
simulated

::::
cells

:::
— is in the con-325

struction of the prior covariance matrix with spatial dependence (Cressie, 2011). Details on the practical implementation (and

the theoretical background) of the system can be found in Alonso-González et al. (2023). As the spatial distribution of snow

depth is strongly governed by topography, and as the relative patterns are often repeated year after year, we follow a concept

introduced in experiment III of Alonso-González et al. (2023). We employ
::::
adopt

:
a
::::::::::::::

spatio-temporal
::::
snow

::::
DA

::::::::
approach

:::::
based

::
on

::::::::::
generalized

::::::::::::::
non-dimensional

::::::::
distances

::::::::::::::::::::::::::
(Alonso-González et al., 2023).

:::::::
Details

:::
on

:::
the

:::::::
practical

::::::::::::::
implementation

:::
and

::::
the330

::::::::
theoretical

::::::::::
background

:::
of

:::
this

:::::::
method

:::
can

::
be

::::::
found

::
in

::::::::::::::::::::::::
Alonso-González et al. (2023)

:
.
::::
The

:::
key

:::::::::
innovation

::
of

::::
this

::::::
method

::::
was

::
to

:::::
define

:
a generalized prior correlation function dependent on the proximity of cells in a

::::::::::::::
multidimensional

:
feature space. We

selected the following
::::::
Herein,

:::
we

:::::
adapt

::
the

:::::::
method

::
to

:::
our

:::::
novel

::::::::
ICESat-2

::::
snow

:::::
depth

::::
DA

:::::::
problem.

:::::
After

:
a
::::::
careful

::::::::::
assessment

::
of

::::::
various

:::::::::
predictors,

:::
we

:::::
select

:::
the

::::::::
following

::::
two features as the dimensions for the generalized

::::::
feature space:

1.
::::::
CSMD:

:::
the

:::::::::::
Climatology

::
of

:::::
Snow

::::::::
Melt-out

::::
Date

::
is
::::::::
obtained

::
by

:::::::::
averaging

:::
the

::::
date

::::::::::::::::
(day-of-water-year)

:::::
when

:::
the

:::::
snow335

:::::
melted

::::
out

::
in

::
a
:::::::
selected

:::::
pixel,

:::::::::
extracted

::::
from

:::::::::
Sentinel-2

::::::
fSCA

::::
time

:::::
series

::::::::
provided

:::
by

:::
the

::::::
Theia

::::
land

::::
data

::::::
center
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:::::::::::::::::
(Gascoin et al., 2019)

:
.
::
A

::::::::::
climatology

::::::::
consisting

:::
of

:::
five

:::::
water

:::::
years

:::
was

::::
used

:::::::::::
(2017-2021).

::::
This

::
is
::
a

:::
new

::::
and

:::::::::
potentially

::::::::::::::
globally-available

::::::
feature

::::
that

:::
was

::::
not

::::
used

::
in

::::::::::::::::::::::::
Alonso-González et al. (2023)

:
.

2. TPI: the topographical position index (Weiss, 2001) is computed as the difference of the cell’s elevation compared with

its neighborhood
::::::::::::
neighbourhood

:
defined as a 24 m radius

::
—

:::::::
selected

:::::
based

:::
on

:::
the

::::::
results

::
of

:::::::::
regression

:::::::::::
experiments340

:::::::
targeting

:::::
snow

:::::
depth

::
in

:::
the

:::
Izas

:::::::::::
experimental

:::::::::
catchment

::::::::::::::::::
(Revuelto et al., 2014). It represents the exposure of the terrain

at the mentioned scale, so that cells with negative TPI are located in a concavity or a valley and positive TPI are cells in

convex terrain such as a ridge relative to its surroundings;

3. Sx: the maximum upwind slope parameter of Winstral et al. (2002) provides information about topographical sheltering

of individual cells. This
:
.
::::
The index is computed in the prevailing wind direction: northwest for the Izas study site.345

It corresponds to the maximum elevation gradient between the selected cell and all the cells upwind that lie within a

maximum distance of 200 m ;

4. CSMD: the Climatology of Snow Melt-out Date is obtained by averaging the date (day-of-water-year) when the snow

melted out in a selected pixel, extracted from Sentinel-2 fSCA time series provided by the Theia land data center

(Gascoin et al., 2019). Five water years were used (2017-2021).350

The topographic features (points 2 and ?? of the list) are computed with the high-resolution snow-off 2 m DEM to capture

small-scale topographic effects. To match the simulation resolution of 20 m, we use the average of all high-resolution

values
:::
TPIs

:
within each model grid cell. The terrain indexes, their size and direction were selected based on the results

of regression experiments targeting snow depth in the Izas experimental catchment (Revuelto et al., 2014).

Figure 3 shows the spatial distribution of the aforementioned features at the modelled resolution (20 m) in the experimental355

catchment as well as a scatter-plot showing the relation between snow depth and the selected coordinatesand snow depth.

As the dimensions
::
of

:::
the

::::::
feature

:::::
space

:
have different units, each is standardized

:::
and

:::::
made

::::::::::::::
non-dimensional

:
by applying a z-

score, so that the
::::
each set of coordinates has a null mean and

:::
zero

::::::
sample

:::::
mean

::::
and

::::::
sample standard deviation equal to 1. Sec-

ondly,
:::::::
inspired

::
by

:::
the

:::::::
concept

::
of

::::::::
automatic

:::::::::
relevance

:::::::::::
determination

:::::::::::::
(Murphy, 2023)

:
, CSMD coordinates are increased (multi-

plied by 1.5
:
3) to make their relative weight larger as this feature correlates the most with snow depth. This effectively creates a360

space where we can measure
:::::
These

:::::::::
operations

:::::::::
effectively

:::::
create

::
an

:::::::
abstract

::::::::::::
bidimensional

::::::
feature

::::
space

::::
that

:::
we

:::
use

::
to

:::::::
measure

::
the

:
similarity between cells . Covariance localization is

:::::
using

:::::::::
generalized

:::::::::
distances.

:::::
Figure

::
4

::::::
depicts

::::
both

:::
the

::::
cells

::
in

:::
the

:::::
drone

::::::
domain

:::::
(panel

:::
a))

::
as

::::
well

::
as

:::
the

::::
cells

:::::
where

::::::::
ICESat-2

::::::
(panel

::
b))

:::
are

::::::::
available

::
in

:::
the

::::::
feature

:::::
space,

:::::
where

:::
the

::::::::::
coordinates

:::
are

:::
not

::
yet

::::::::::::
standardized.

:::
The

::::::::::
subsequent

:::
step

::
is
::::::::::
localisation,

::::
i.e., the practice of limiting the effect of long-range spurious correlation

(Evensen et al., 2022). We employ the
:::::::::::::::::::::
(Sakov and Bertino, 2011)

:
.
::::
Both

::
to
::::::

define
:::
the

::::
prior

::::::::::
correlations

::::::
matrix

::::
and

::
to

:::::::
perform365

:::::::::
localisation

:::
we

::::::
employ

::
a widely used damping operator in the

::::
form

::
of

:::
the Gaspari and Cohn correlation function (GC; Gaspari

and Cohn, 1999), which is defined by a single hyper-parameter
::::::
distance

::
in

::::::
feature

:::::
space

::::
and

:
a
:::::
single

:::::::::::::
hyperparameter: the corre-

lation length scale . In practice, we define the neighborhood of each cell as the set of cells that are located
:::
that

::
we

:::
set

::
to

:::::::
c= 1.5.

::::
This

:::::::
operator

:::::::
truncates

:::
the

:::::::::::
observations

::::::
located

::::::
further

::::
than

:
a
::::::
radius

::
of

:::
two

:::::
times

:::
the

:::::::::
correlation

::::::
length,

:::::
while

::::::::
including

::
in

:::
the
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Figure 3. Upper panels
:::::
Panels

::
a)

:::
and

::
b): spatial distribution of the three feature dimensions (Climatology of Snow Melt-out Date : (CSMD,

:
)
:::
and

:
Topographical Position index :

:
(TPI, Winstral index: Sx) in the

:::
Izas

:
experimental catchment, outlined with a green line. Lower

panels
::::
Panel

::
c):

:::::
spatial

:::::::::
distribution

::
of
:::::

snow
::::
depth

::::::
derived

:::::
from

::
the

:::::
drone

::::
map

::
of

:::
the

:::
3rd

::
of

:::::::
February.

::::::
Panels

::
d)

:::
and

::
e): the dimension’s

relation with snow depth from the drone map acquired on the 3rd of February (black) and with ICESat-2 for the observed profiles on the 5th

of February (yellow).

::::::::::::
neighbourhood

:::
all

::::::::::
observations

:::::::
located

:::::
within

::::
this

::::::
radius.

::::
Each

::::
cell

::
in

:::
the

:::::::::::::
neighbourhood

::
is

:::::::
assigned

::
a
:::::::
non-zero

::::::::::
correlation370

::::
value

::::::::::
ρ=GC(d),

:::::::::
computed

::
as

:::
the

:::
GC

:::::::
function

::
of

:::
the

:::::::::
generalized

:::::::
distance

:
in the feature space within two times the correlation

length scale. The closer the cells
:::::::::::::::::::::::::::::::::::
(as defined in Alonso-González et al., 2023)

:
.
::::
This

::::::::
definition

::
of

:::::::::::::
neighbourhood

::::
also

:::::
leads

::
to

:
a
::::::::
reduction

:::
in

::::::::::::
computational

::::
cost

:::::::
through

::::::
domain

::::::::::
localisation

::::::::::::::::::::::
(Sakov and Bertino, 2011)

:
,
:::::::
whereby

::::::
fewer

:::::::::::
observations

:::
are

:::::::
included

:::::
when

:::::::::
comparing

::::
state

:::
and

:::::::::::
observations

::
in

:::
the

::::::
update

::::::::::
computation

::::
step

::
of

:::
the

::::::::::
assimilation

:::::::::
algorithm.

::
In

::::
panel

:::
b)

::
of

:::::
Figure

::
4,
:::
we

:::::
show

:::
one

:::::::
example

:::
for

:::
the

::::::::
definition

::
of

::
a

::::::::::::
neighbourhood

:::
and

:::
the

::::::::::
assignment

::
of

:::
the

:::::::::
correlation

:::::
value375

:
ρ
::
to

:::
the

:::::::
included

:::::
cells.

:::
We

:::::::::
exemplify

:
a
:::::::
situation

::::::
where

:
a
:::
cell

::
in
:::
the

:::::::::
catchment

::::
with

:::::
drone

::::
data

::
—

::::::::
depicted

::::::
therein

::::
with

:
a
:::::
cross

::
—

:::
has

::
to

::
be

:::::::
updated.

::::
The

::::
solid

::::::
points

:
in
:::
the

:::::::::
scatterplot

:::
are

:::::::
included

::
in

:::
the

:::::::::::::
neighbourhood,

:::::
hence

::::::::::
information

:
is
:::::::::
transferred

:::::
from

::::
those

::::
cells

::
to

:::
the

:::::
target

:::
cell

::::
(the

:::::
cross)

::
by

::::::
means

::
of

:::
the

::::::
Kalman

::::::
update

:::::::::::::::::::::::::::::::::::::::::::::::::
(see step 11 in Algorithm 1 of Alonso-González et al., 2023)

:
,
::::
used

::
to

::::::::
constrain

:::
the

::::
local

:::::::
forcing

::::::::::
perturbation

::::::::
ensemble

::
of

:::
the

:::::
target

::::
grid

::::
cell.

:::
As

::::
cells

::::::
closer

::
in

::::::
feature

:::::
space

::
to

:
the more

similar the snowpack the system will constrain the cells to be, and the further away the less strict the system will enforce380

similarity. Cells outside each other’s neighborhood will not influence the respective simulation. The correlation length scale

was set to 1.5 after testing several values and making sure the
::::
target

::::
cell

:::::
should

:::::
have

:
a
:::::
larger

:::::::::
influence,

::::
their

:::::::::
correlation

::
ρ

::
is

:::::
larger

::
as

:::
can

:::
be

::::::::::
appreciated

::
by

:::::::
looking

::
at

:::
the

:
size of the resulting neighborhoods was acceptable.

:::::
scatter

::::::
points.

::
In

:::::::
simpler

:::::
words,

:::::
more

::::::::::
information

::
is

:::::::::
transferred

::
to
:::
the

::::::
target

:::
cell

::::
from

:::::
cells

::::
with

::::
large

::
ρ
::::::::
compared

:::
to

::::
cells

::::
with

::::
low

::
ρ,

:::::
which

:::
are

::::
less

::::::
similar

::
in

:::::
terms

::
of

:::
TPI

:::
and

:::::::
CSMD.

::::
The

:::::
shape

::
of

:::
the

::::::::::::
neighbourhood

::
is
::::::
elliptic

::::
due

::
to

:::
the

:::::::::
differential

::::::::
weighting

::
of
:::
the

::::::::
features,385

::
as

:::
we

:::::::
designed

:::
the

:::::::
CSMD

::
to

::::
have

:
a
::::::

larger
:::::
effect.

:::::
Note

:::
that

::
in
::::::

Figure
::
4
:::
the

::::::::::
coordinates

:::
are

:::::
shown

:::::
with

::::
their

:::::::::::::
(non-weighted)

:::::::
physical

::::::::::
dimensions.
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Figure 4.
::::
Panel

:::
a):

:::::::
scatterplot

::::::::
depicting

::
the

::::::
position

::
in
:::
the

:::::
feature

:::::
space

::
of

::
the

::::
cells

::::
from

:::
the

::::
drone

:::::
maps.

:::
This

::::::
feature

::::
space

::
—

::::::
created

::::
with

:::
TPI

:::
and

:::::
CSMD

:::
—

:
is
::::::
adopted

::
to
:::::
define

:::
the

:::::::
similarity

:::::::
between

::::
cells.

:::
The

:::::
points

:::
are

:::::::
coloured

:::::::
according

::
to

:::
the

::::
snow

::::
depth

:::::::
observed

::::
with

:::
the

::::
drone

::
on

:::
the

:::
5th

::
of

:::::::
February.

:::::
Panel

::
b):

:::::::
ICESat-2

::::
snow

:::::
depth

:::::::::
observations

::
in
:::
the

:::::::
extended

::::::::
catchment,

::::::::
displayed

:
in
::::::

feature
:::::
space,

:::
with

:::::
snow

:::::::::
depth-based

::::::::
colouring.

:::
The

::::
cross

::::::::
represents

:::
one

:::
cell

::::
from

::
the

:::::
drone

::::::
domain

:::::
where

:
a
::::
snow

:::::
depth

::
of

:::
150

:::
cm

:::
was

::::::::
measured.

:::
The

::::
solid

:::::
points

::
are

:::::::
ICESat-2

::::
data

:::::
points

::::::
included

::
in

:::
the

:::::::::::
neighbourhood

:::
for

:::
this

:::
cell,

::::
with

::::
their

:::
size

:::::::::
proportional

::
to

:::
the

::::::::
correlation

::
ρ.

3.6 Experiments

Three experiments are carried out where different observations are assimilated for the water year 2020. Only information from

the ICESat-2 snow depth retrievals – located outside the measured drone field as visible in Figure 1 – is spatially propagated, as390

fSCA maps are available for all cells in the model domain. To allow a comparison where we change exclusively the assimilated

variables, we use the same spatially correlated prior
::::::
defined

::
in

:::::
Table

:
1 for all the experiments

:::::::::
simulations. The three experiments

are designed as follows
:
to

::::::
answer

:::
the

::::::::
scientific

::::::::
questions

:::
we

::::::::
presented

::
in

:::::::
Section

:
1
::::
and

:::::::::::
contextualize

:::
the

:::::
value

::
of

::::::::
ICESat-2

::
to

::
the

:::::::
current

:::::::
standard

:::::
snow

:::
DA

:::::::
practices:

– Snow c
:
Cover experiment (C): Temporal assimilation of local fSCA retrievals from Sentinel-2. For each grid cell, all the395

available local (not neighboring
:::::::::::
neighbouring) fSCA observations are assimilated. We use this as a baseline simulation.

– Snow d
::
Depth experiment (D): Spatio-temporal assimilation of

:::::::::::
neighbouring snow depth retrievals from the ICESat-

2 satellite altimeter. The
:::::::
ICESat-2

:
observations of the snowpack on the 5th of February are assimilated. Since the

profiles are located outside the experimental catchment, the information is spatially propagated using the dimensions we

introduced above and depicted in Figure 3
:::::::::
transferred

:::::
using

:::
the

:::::::
methods

::::::::
explained

:::
in

::::::
Section

:::
3.5

::::
and

::::::::::
exemplified

::::
with400

:::::
Figure

::
4.

– Joint assimilation experiment (J): Spatio-temporal assimilation of local fSCA and neighboring
:::::::::::
neighbouring snow depth.

All the observations of experiments (C) and (D) are assimilated, and their respective observation error standard deviations
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:::::
errors are the same as for these experiments. Note that only the sparse snow depth observations are spatially propagated,

while the spatially-complete fSCA observations are not.405

All the experiments are set up with the MuSA system (Alonso-González et al., 2023). The system was already set up for

::::::
capable

::
of

:
jointly assimilating different observed variables

:
at
:::
the

:::::
same

:::::::
location, although joint assimilation was tested only

:::
has

::::::::
previously

::::
only

:::::
been

:::::
tested in a temporal DA setting

:::::
jointly

::::::::::
assimilating

:::::
fSCA

:::
and

::::
skin

::::::::::
temperature

:::
for

:
a
:::::
single

:::
cell

::::::::::
experiment

:::::::::::::::::::::::::
(Alonso-González et al., 2022).

:::::
Here,

:::
for

:::
the

::::
first

:::::
time,

:::
we

:::::::
perform

::
a

:::::::::::::
hyper-resolution

::::::::::::::
spatio-temporal

::::
joint

::::::::::
assimilation

:::
of

::::
snow

:::::
depth

::::
and

:::::
fSCA. Each cell is updated with the local observation (if any), located in the same cell position, together410

with the observations in its neighborhood
::::::::::::
neighbourhood

:
defined as the set of cells located inside a search radius in the

afore-mentioned
::::::
(d < 2c)

::
in
:::
the

:::::::::::::
aforementioned

:
feature space with dimensions TPI, Sx and CSMD (

::::::
Section

:
3.5). This domain

localization
:::::::::
localisation

:
step greatly reduces the computational effort, as it avoids searching through all the simulated cells.

For thisstudy
::::
Only

::::::::::
information

::::
from

:::
the

:::::::::
ICESat-2

::::
snow

:::::
depth

::::::::
retrievals

:::
—

:::
the

::::
blue

:::::
lines

::
in

:::::
panel

::
a)

:::
of

:::::
Figure

::
1
:::::::
located

::
in

::
the

::::::::
extended

:::::::::
catchment

:::
—

::
is

:::::::
spatially

::::::::::
propagated,

:::
as

:::::
fSCA

:::::
maps

:::
are

::::::::
available

:::
for

::
all

:::::
cells

::
in

:::
the

::::::
model

:::::::
domain.

:::
To

:::::
allow415

:::
this, we updated the MuSA system in order

::::
which

:::
is

::::
now

::::
able to select a subset of the available observation types to spa-

tially propagate Alonso-González et al. (2024)
::::::::::
information. This allowed us to exclude fSCA observations (which are spatially

complete )
:::::::
spatially

::::::::
complete

::::::
fSCA

::::::::::
observations

:
from the spatial propagation, which leads to an additional

:
a marked de-

crease in the computational cost.
::
In

::::::::
practice,

:::
that

:::::::
implied

::::::::::
modifying

:::
the

::::::
criteria

:::
for

::::
the

::::::::
selection

::
of

:::
the

:::::::::::
observations

:::
to

::
be

::::::::
included

::
in

:::
the

:::::::::::::
neighbourhood.

::::
The

:::::
code

:::
for

:::
the

:::::::
updated

:::::::
version

::
of

::::::
MuSA

:::::::::
developed

::
in

::::
this

:::::
study

::
is

::::::::
available

::::::
online420

::::::::::::::::::::::::::::::::::::
(MuSA: v2.1, Alonso-González et al., 2024)

:
.

:::
All

:::
the

::::::::::
experiments

:::::
were

::::::::
executed

:::
on

:
a
:::::
local

::::::
server

::::::::
equipped

::::
with

::
a

:
1
::::

TB
:::::::
Memory

::::
and

:::::
using

:::::
about

:::
40

::::::::::
processors.

::::
The

:::::::::::
computational

:::::
time

:::::
varied

::::::
widely

::::
from

::
8
::
to

::
60

::::::
hours,

:::::::::
depending

::::::
mainly

::
on

:::
the

::::::
server

::::
load

:::
and

::
on

:::
the

:::::::
number

::
of

:::::::::::
observations

::
in

:
a
:::::
given

::::::::::
experiment,

::
as

:::
that

:::::::
number

:::::::::
influences

:::
the

::::::
amount

:::
I/O

:::::::::
operations

::::::::
necessary

:::
for

::::
each

:::::::
update.

3.7 Evaluation425

We use the
:::::
twelve drone-based snow depth maps of the Izas experimental catchment (Revuelto et al., 2021) as ground truth

to independently evaluate the relative performance of the DA in the three experiments. Their measurement error is typically

one order of magnitude lower than the uncertainty in the snow-pack reconstruction, as we resample
:
A
:::::
lower

::::::
bound

:::::::::
(assuming

::::::::::
independent

::::::
errors)

::
on

:::
the

:::::::::::
measurement

::::
error

::::
can

::
be

::::::::
estimated

::
at

:::::
about

:
1
:::
cm

::
as

:::
we

::::
have

:::::::::
resampled the snow depth maps to the

modelling resolution (from 1 m to 20 m) with the averaging operator.
::::
This

::
is

:::::::
typically

::::
one

:::::
order

::
of

:::::::::
magnitude

:::::
lower

::::
than

:::
the430

:::::::::
uncertainty

::
in

:::
the

:::::::::
snowpack

::::::::::::
reconstruction.

:
We aim at evaluating the sampled posterior distribution in terms of the resulting

simulated snow depth goodness of fit
:
to

:::::
these

::::::::::
independent

:::::::::::
observations. We evaluate our results in three ways: i) in time, ii)

in space and in terms of snow depth distribution
:
,
:
and iii) for the entire spatio-temporal ensemble distribution. For i), all the

ensemble member snow depth simulations are spatially averaged over the measured experimental catchment for each day in the

simulated water year, and compared to the corresponding spatially averaged drone observations. This
:
In

::::
this way, we can also435

evaluate how well the experiments perform in estimating the total snow
:::::
volume

:
in the catchment. For ii), we visually compare
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the spatial distribution of the simulations against the drone-based map measured on the 11th of March, the closest acquisition

to the seasonal SWE maximum. Since the result of the DA problem is a spatially correlated ensemble representing a statistical

distribution, we show one single ensemble member simulation in order to appreciate the spatial structure embedded in the

simulation. We
::
To

::::::
choose

:::
the

:::::::::::
representative

::::::::
member,

::
we

::::
first

:::::
select

:::
the

:::::::::
simulation

::::
state

:::
on

::::
11th

::
of

::::::
March

::
as

:::
this

::
is

:::
the

::::::
closest440

:::::
drone

:::::::::
acquisition

::
to

:::
the

::::::::::
peak-SWE.

::::
Then

:::
we

:
spatially average the ensemble members

:::::::::
ensembles and pick the member whose

average snow depth state is selected by the median operator for the 11th of March.
::::::
median

:::::::
member

::
of

:::::
those

::::::
spatial

::::::::
averages.

::::
Note

::::
that

:::
the

:::::::
selection

:::
of

:::
one

::::::::
ensemble

:::::::
member

:::::::::
introduces

:::
an

::::::::
objective

:::
but

:::::
casual

::::::::
element,

::
as

::::::::
different

::::::::
ensemble

::::::::
members

::::::
exhibit

:::::::
different

::::::
spatial

:::::::
patterns.

::
In

:::
the

:::::::::::
supplement,

:::
the

::::::::
interested

::::::
reader

:::
will

::::
find

:::::
maps

::
of

:::
the

:::::::::
pixel-wise

::::::::
ensemble

::::::::
medians,

:::::::
showing

:
a
::::::::
smoother

::::::
spatial

::::::::::
distribution.445

To evaluate the
::::::::::
probabilistic

:
inference results of the three experiments (iii), we employ the Continuous Ranked Probability

Score (CRPS Hersbach, 2000)
:::::::::::::::::::
(CRPS; Hersbach, 2000), as this metric evaluates the performance of the inferred distribution

represented by all the ensemble members (rather than a single point-estimate such as the median of the distribution) of each

simulated cell in terms of snow depth compared to the observed reference. In particular, the CRPS quantifies both the precision

(certainty or confidence) and the accuracy (ability to match the observations) of the ensemble as a whole. This is a strictly450

positive score, where a perfect match between the compared distributions would result in a score of 0, while the larger the

CRPS score the worse the result. We compute the CRPS metric for each experiment for all the available drone-based snow

depth maps. To evaluate
:::
the

:::::
spatial

::::::::::
distribution

::
of

:::
the

::::::
errors

:::
we

::::::
present

::::
two

::::
maps

::::
per

:::::::::
experiment

::::
with

:::
the

:::::::
average

:::::
score

:::
for

:::::::::::
accumulation

:::
and

:::::::
melting

::::::
season.

:::
To

:::::::
evaluate

:
how the experiment’s performance varies in time we average the experiment’s

score throughout the measured catchment; while to evaluate the spatial distribution of the errors we present two maps per455

experiment with the average score for accumulation and melting season,
::::
thus

::::::::
receiving

::
a
:::::
single

:::::
score

:::
for

::::
each

:::::::::::
drone-based

::::
snow

:::::
depth

::::
map.

4 Results

Figure??

4.1
::::::::::

Comparison
::::
with

::::::
drone

:::::
maps460

:::::
Figure

::
5 summarizes the results for Experiment

::
all

:::
the

::::::::::
experiments

::::
and

:::::
shows

::
a
::::::::::
comparison

::::
with

:::
the

::::::::::
drone-based

:::::::::
validation

::::
snow

:::::
maps.

::::
We

:::
first

:::::
focus

:::
on

:::::::::
experiment

:
(C)

::::::::::
assimilating

:::::
fSCA

::
as

::
a
:::::::::
benchmark

:::::::::::
representing

:::
the

::::::
current

:::::::::::
best-practice

:::::
snow

:::
DA. The time series in panel a) shows the prior and posterior ensemble members averaged over the Izas catchment

:::::::::::
experimental

::::::::
catchment

:::
for

:::::::::
experiment

::::
(C). The ensemble of simulations is precise (low ensemble spread) and accurate (good match to vali-

dation data) towards the end of the snow season. However, the ensemble spread is larger
:::::
wider in the snow accumulation months465

and the ensemble median overestimates the catchment-average snow depth. From the map in panel b
:
d), it is discernible that

the simulation correctly reconstructs the observed
::::::::::::
drone-observed

:
snow depth patterns in a relative sense (panel c

::::::::::
comparison

::::
with

:::::
panel

:
g)): the areas with larger-than-average snow depth are correctly recognized, as well as the ones with lower-than-
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average snow depth, despite the absolute values not being correct. The histograms in panels d) and e) highlight
:::::::::
Comparing

:::
the

::::::::
histogram

::
in

:::::
panel

::
h)

::::
with

:::
the

::::::::
reference

::
in

::
l)

::::::::
highlights

:
that the simulation average overestimates snow depth at peak SWE by470

47%
:::
51%. In the simulation, only 10%

::::
24%

:
of the simulated cells are inferred to have less than 150 cm of snow, while in the

drone validation about 50%
:::
46%

:
of them are measured in this part of the range.
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Figure 5. Results from experiment (C). Panel
:::::
Panels a): ,

::
b)

:::
and

::
c)

::::
show

:::
the prior (gray) and posterior ensemble simulations (blue

::::::
coloured)

as catchment-average snow depths over the whole water year
::
for

:::::::::
experiment

:::
(C),

:::
(D),

:::
(J),

:::::::::
respectively. The black points are the drone-based

snow map averages serving as validation data. Panel b
:::
The

::::
blue

:::
and

:::::
orange

::::
stars

::::
show

:::
the

:::::
timing

::
of

:::
the

::::
fSCA

:::
and

:::::
snow

::::
depth

::::::::::
observations

:::
that

::
are

:::::::::
assimilated

::
in

::::
each

:::::::::
experiment.

:::::
Panels

::
d),

::
e)

:::
and

:
f): simulated snow depth map

::::
depths

:::
are

:::::
shown

::
as

::::
maps

:
for 11th March 2020

::
the

::::::::
11.03.2020

:
(date shown with a vertical dashed line in panel a

:::::
panels

:::::
above) : the median

::
for

:
a
:::::::::::
representative ensemble with respect

::::::
member

:::
that

:
is
::::::
nearest to the catchment-average peak SWE is selected

:::::::
ensemble

:::::
median

::::::::
catchment

::::::
average

::::
snow

:::::
depth

::
for

:::::::::
experiment

:::
(C), color map

explained in panels d)/e)
::
(D)

:
,
::
(J)

:
,
:::::::::
respectively. Panel c

:
g):

::
the corresponding

::::::::
11.03.2020

:
drone-based snow

::::
depth

:
map at the model’s spatial

resolution (20 m). Panels d
:::::
Bottom

:::::
panels

:::
h),

::
j),

:
k) and e

:
l): snow depth histograms of

:::::::::::
corresponding

:
to
:

the maps in the panels above,
:::::
using

::
the

::::
same

:::::
colour

:::::
scale.

:
µ
:::::::

indicates
:::
the

::::::::::
experimental

::::::::::::::
catchment-average

::::
snow

::::
depth.
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Figure ?? summarizes the results of Experiment
:::
For

:::::::::
experiment (D). Panel a)

:
,
::::
panel

:::
b)

::
in

:::::
Figure

::
5 shows that the assimilation

of the sparse snow depth profile data
::::::
profiles

:
from a single date substantially narrows and improves the posterior distribution

compared to the prior. Notably, during the winter season, the accuracy of the posterior is improved(
:
: the ensemble median475

and the black validation points are closer ) compared to the first experiment
:::::::
compared

:::
to (C), and also

:
.
::::
Also

:
the precision is

improved(
:
: the ensemble spread is lower)

::::::::
narrower

::::::::
compared

::
to

::::
(C). Towards the other end of the season, both accuracy and

precision largely
::::::
slightly

:
decrease compared to the first experiment, despite still improving from

:::
that

:::
of the prior simulation.

Panel b
:
e) shows that the posterior simulation is able to match only some

::::
many

:
of the spatial patterns that the drone map shows

in panel c
:
g), such as in the northeast

:::::::::::
high-elevation

::::::::::::
accumulations

:::::
under

:::
the

:::::
ridge

::
on

:::
the

:::::::
western

::::
side of the catchment. Also,480

the valley
:::::::
patterns

::
in

:::
the

::::::::
north-east

::::
part

::
of

:::
the

::::::::
catchment

:::
are

::::
well

::::::::::
reproduced.

::::::::
However,

:::
the

:::::::
valleys affected by wind drift and

the corresponding wind-blown ridges in the southeast
::::::::
south-east

:
portion of the catchment are partially recognizable. However,

patterns in the high-elevation part of the catchment (west side) are not
::::
only

:::::::
partially reproduced. The histograms in panels d)

and e) show that the simulated snow depths at peak-SWE have similar ranges, despite the mean being
:
j)
::::
and

:
l)
:::::
show

:::
the

:::::
snow

::::
depth

::::::::::::
distributions’

::::::::::
comparison.

:::
The

:::::::::
measured

:::::::::::::::
catchment-average

:::::
snow

:::::
depth

::
is

::::
only over-estimated by 33%

:::
23%. In contrast485

with Experiment
:::::::::
experiment

:
(C), low snow depth areas are represented as in

:::
well

::::::::::
represented

:::
and

::::::
better

::
fit

:::
the

::::::::
histogram

:::
of

the measured map. However , also in this experiment, 32%
::::
25% are simulated with very high snow depth (> 300 cm)despite

the fact that ,
:::::
while

:
in the drone validation only 9% of the cells are measured with such snow depths. Results from Experiments

(D), presented in the same way as in Figure ??.

Figure ?? summarizes the results of Experiment
:::
For

::::::::::
experiment (J) , where we use all the available observations. The

:::
the490

time series in panel a
:::::
Figure

:::
5c) shows that the inference produced a precise result

:::::::
produces

::
a
::::::
precise

::::::::
posterior

::::::::
ensemble (low

spread) throughout the water year. In the accumulation period and up to the peak-SWE, the catchment-average snow depth

is accurately reconstructed. Notably, for the 11th of March
:::::::::
11.03.2020 acquisition the measured and simulated average snow

depth differs only 2
:::::::::::::::
catchment-average

:::::
snow

:::::
depth

:::::
differ

::
by

::::
only

::
7
:
cm. However, there is a negative bias in spring, which we

do not see in experiments (C)
::::::::
(unbiased)

:
or (D)

:::::::
(positive

::::
bias). The comparison of simulated and measured maps in panels495

b) and c
:
f)

:::
and

::
g) shows that the posterior simulation is able to match only some

:::
well

:::::
most of the relative spatial patterns. For

example, the accumulation below the ridge on the western border of the catchment is simulated with higher-than-average snow

depthonly in its center and south portion of the feature, and not in its northern part. Only some of .
:::::::::
Moreover,

:::
the

:::::::
absolute

:::::
snow

::::
depth

::::::
values

:::
are

::::
very

::::::
similar

:::
in

:::
the

::::::
western

:::::
edge

::
of

:::
the

::::::::::
catchment.

:::
The

:::::
cells

::::::
located

::
in

:
the deep valleys and depressions

::
on

::
the

::::::::::::
corresponding

:::::::::
ridgelines in the southand some of the flat ,

::::
and

::::
most

::
of

:::
the

:::::
flatter

:
accumulation areas in the north-east have500

the correct relative snow depth
::::::
patterns. The nearly snow-free south-facing slope in the north is

::::::::::::::
south-east-facing

::::
slope

:::::::
located

::
in

:::
the

:::::::
northern

::::
part

::
of

:::
the

:::::::::
catchment

::
is

:::
also

:
correctly simulated. In terms of distribution, the histograms in panels d) and e

::
k)

:::
and

:
l) show clearly that the simulation reproduces the mean and the frequencies of the

:::
not

::::
only

:::
the

::::
mean

::::
but

:::
also

:::
the

:::::::
general

:::::
shape

::
of

:::
the

::::::::::
distribution,

::::::::
including

:::
the tails. Low snow depths (<150 cm), simulated for 47%

::::
51% of the cells, match

:::
are

::::
only

::::::
slightly

:::::
more

::::
than the number of cells measured with such

::
in

:::
this

:
range (46%); as well as for very high snow accumulation505

values (> 300 cm): 5%
::::
12% of the cells are simulated and 9% measured.
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Results from Experiments (J), presented in the same way as in Figure ??. Scoring the three experiments’ whole ensemble

4.2
::::::::

Ensemble
:::::::::::
quantitative

:::::::::
evaluation

::::::
Scoring

:::
the

:::::
entire

:::::::::::::
spatio-temporal

::::::::
ensemble

::
of

:::
the

::::
three

::::::::::
experiments

:
allows for a more quantitative comparison of the inference510

::::::::::
performance, as panels b) and d)

::::
d)-f) of the previous figures only show one

:::::::::::
representative

:
ensemble member’s simulation.

Figure
:
6 shows the CRPS computed against the drone acquisitions for

::::
using

:::
the

::::::::::
drone-based

:::::
snow

:::::
depth

::::::::
retrievals

::
as

:
a
::::::::
reference

::
for

:::
all the available snow depth maps, averaged in space (left panel

:::::::
focusing

:::
on

:::
the

:::::::
seasonal

:::::
(panel

::
a)), and time (right panels

)
:::::
spatial

::::::
(panels

:::::
d)-i))

::::::::::
distribution. Focusing on the right panel, the right panel shows that for all experiments

::::
time

::::::::
evolution

::
of

:::::::::::::::
catchment-average

:::::
CRPS, the largest errors (largest CRPS )

:::::
CRPS

::::::
values are found during the accumulation season, while the515

errors decrease in the melting season, together with a
:::::::::
reduction

::
in the absolute values of snow depth.

Averaging the CRPSs over
::
In

:
the accumulation season, the

:::::::
average

::
of

:::
the

:::::
CRPS

::::::
values

:::::
show

:::
that

:::
the

:
ICESat-2 assimilation

(D) shows
::
has

:
a similar performance (48± 12

::::::
44± 18 cm) to the fSCA assimilation (C), whose CRPS is 45± 18

::::::
44± 10 cm.

Both these experiments are substantially worse than the joint assimilation (J), scoring 35± 7 cm. Thus, adding the
::::::::
ICESat-2

snow depth profiles to fSCA in the set of assimilated observations lowers (i.e., improves ) the
::::::::
improves

:::
the

::::::
overall error score520

by 22%.

::::
19%

:::
for

:::
the

:::::::::::
accumulation

:::::::
season. In the melting season, the fSCA

:::::::::
experiment

::::
(D)

:::::
scores

:::::
worst

:::
but

::::
still

::::::::
improves

:::
the

:::::
prior

:::::
CRPS

:::
by

::::
25%.

:::::::::
However, experiment (C) has very similar results to

:::::::::
simulations

:::
are

:::
not

::::::::::::
outperformed

:::
by the joint assimila-

tion (J), even being the best for two snow depth maps. The experiment with the ICESat-2 assimilation (D) shows the worst

performance, with the highest CRPS
:
:
::::
their

::::::
results

:::
are

::::::::::
respectively

::::::
14± 11

:::
cm

::::
and

:::::::
16± 11

::
cm.525

Looking at
:::::
Panels

::
d)

::
to
::
i)
::
in

::::::
Figure

:
6
:::::
show the spatial distribution of the errors (right panels in Figure 6), experiment (C) shows

that
:::::
CRPS.

:::
For

::::::::::
experiment

:::
(C)

::::::
(panels

::
d)

::::
and

:::
e)),

:
the CRPS is generally low for both accumulation and melt

:::::
lower

:::
for

:::
the

::::::
melting

:
season. Despite slightly

:::
the higher values in the accumulation season, only 2% of the

:::
7%

::
of

:::
the

::::::::
evaluated

:
cells have

a very high CRPS ( > 100 cm). For the accumulation season, the
:::
The location where large errors cluster are the windblown

ridges in the center-south
::::::::
south-east

::::
and

::
on

::::
the

::::
west of the experimental catchment where a close look at panels b) and c

::
d)530

:::
and

:
g) of Figure?? shows that low snow depth is

:
5
::::::
shows

:::
that

:::::::
medium

:::::
snow

::::::
depths

:::
are inferred instead of snow absence

:::
low

::::
snow

:::::
depth

::
or

:::
no

::::
snow. Experiment (D) performs better during the accumulation season: 10%

::::
only

:::
1%

:
of the cells have a very

high CRPS (> 100
:::
150 cm) in

:::
that

::::::
season,

:::::::::
compared

::
to

:::
4%

::
in the melting season, and these

:
.
::::
Such

:::::
large

:::::
errors are clustered in

the south-west of the catchment. The low elevations on the eastern side of the catchment have lower
:::::
better

:
scores (compared

to higher elevations) in both
:::
the accumulation and melt season. Experiment (J) shows a very similar error pattern distribution535

in both the accumulation and ablation season (in contrast with the other experiments). Less than 4% of the simulated cells

have a very high CRPS (>100 cm) for both
::
the

:
accumulation and melting season. An inspection of

:::
By

:::::::::
comparing

:::::
panels

:::
h)

:::
and

::
i)

::::
with

:::
the

:::::::
absolute

:::::
snow

:::::
depths

:
(panels b) and c)of Figure ??, shows that very high

:
),
::
it
::
is

::::
clear

::::
that

:::
the

::::::
largest errors are

located where very high snow depth
:::::::::::
accumulation

:::
are

::::::
located

:
(> 300 cm)are measured:

:
,
::::
such

::
as the accumulation areas under
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the ridge on the west
:::::::
western side of the border

::::::::
catchment

:
and some of the areas in the valleys in the south of the catchment.540

:::::::::::
Supplemental

::::::
Figure

:
1
:::::::
clarifies

::::
that

::
the

:::::
snow

:::::
depth

::
in

:::
the

:::::::::
mentioned

:::::
areas

:
is
::::::::::::::
underestimated.

Focusing on the use of the novel ICESat-2 snow depth retrievals, the experiments show that adding these observations for

constraining the inference of the seasonal snow evolution has mostly a positive impact on the simulation results. Comparing

the CRPS over the experimental catchment of experiment (D) to the prior (no observation assimilated) shows an improvement

of 7.5 cm (3.5 cm ) for the accumulation (melting) phase of the season
::
20

:::
cm

::
for

:::
the

::::::::::::
accumulation

::::::
season

:::
and

:::
10

:::
cm

:::
for

:::
the545

::::::
melting. When adding snow depth to fSCA in the set of observations – hence comparing experiment

:::::::::
assimilated

:::::::::::
observations

::
—

:::::
hence

:::::::::
comparing

::::::::::
experiments

:
(J) to

:::
and (C) –

::
— the improvement is

::::
clear

::::
with

:
a
:
10 cm clear

:::::
CRPS

::::::::
reduction

:
for the accu-

mulation part of the season. However, there is a slight decrease of 4
::::::
increase

:::
of

:
2 cm in the score

:::::
CRPS

:
for the melting season,

despite the left panel of Figure
:
6 showing experiment (J)’s score being worse only for two of the drone acquisitions.
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Figure 6. The performance of the three assimilation experiments is presented through the Continuous Ranked Probability Score (CRPS),

where a perfect match of the compared distribution would score 0, while the larger the score the worse the result. In the left panel
::
a), the

temporal evolution of the experiments’ results is shown by spatially averaging throughout the experimental catchment. In
::::
Panels

::
b)
::::

and

::
c),

::::
show

:
the upper right

::::
drone

:::::
maps

:::::::
averaged

::
for

:::
the

::::::::::
accumulation

::::
(b))

:::
and

::::::
melting

:::
(c))

::::::
season.

::
In

:
panels

:
d)

::
–
:
i), the spatial distribution

of the errors is shown
::::::

obtained by averaging the CRPS computed for the validation maps acquired during the accumulation season (up to

and including the 11th of March) ; while
::
is

:::::
shown

::
in the lower right

:::::
upper panelsshow the same metric averaged over the validation maps

acquired in
:
,
:::
and

:::
for the melting season

:
in
:::
the

::::
lower

:::::
panels.

5 Discussion550

In this paper, three DA experiments are carried out. For all of them, the assimilation algorithm as well as the prior
:::
All

:::
the

::::::::::
experiments

::::::
employ

:::
the

:::::
same

::::::::::
assimilation

::::::::
algorithm

:::::::::::
(DES-MDA),

::::
and

:::
the

:::::::
spatially

::::::::
correlated

:::::
prior

::::::::::
distributions

::::::
(Table

::
1) are

the same. We use observations of different
::
In

::::
each

::::::::::
experiment

:::
we

::::::::
assimilate

::::::::
remotely

::::::
sensed

:::::::::::
observations

:::::
using

:
a
::::::::
different

:::
mix

::
of

:
snow variables, and all of them

::::::::::
experiments

:
successfully improve the prior simulation by constraining the simulations

with information coming from the observations, obtaining
::::::::
retrievals.

::::::::
However,

:::
we

::::::
obtain

:
very different results depending on555
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the assimilated variable
:::::::
variables. The observations in the three experiments are fSCA retrieved from Sentinel-2 (C)as well as

:
, the novel snow depth retrievals from the laser altimeter ICESat-2 (D), and finally a joint assimilation experiment using both

these retrievals (J). To the best of our knowledge, this is the first example of high-resolution (almost hyper)
:::::::::::::
hyper-resolution

multivariate snow DA. Moreover, this is the first study not only to assimilate the ICESat-2 snow depth observations but also

to show how these observations acquired along profiles located outside the area of interest can be harnessed
::::::
directly

:
through560

spatial propagation of information
::::
using

:::::::::::::
spatio-temporal

:::
DA. This system successfully updates the snowpack states in the Izas

experimental catchment with observations
::::
both

::::
with

::::
local

::::::::
Sentinel-2

:::::
fSCA

:::::::::::
observations

::
as

::::
well

::
as

::::::::
ICESat-2

::::::::::
observations

:::::
from

::::::
profiles

:
located in its proximity, by exploiting

:
.
:::
The

:::::::::::
experiments

::::
with

:::
the

::::::::
ICESat-2

:::::::
profiles

::::::
exploit topographical and snow

climatological similarities
::::::
indexes

:
to define a

:::::::
similarity

::::::::
measure

::::
used

::
in

:::
the correlation function.

In general, DA consists in
:::
DA

:::::::
consists

:::
of combining uncertain information coming from models and observations. In our565

case, the unconstrained model
::::
(i.e.,

:::
the

:::::
prior)

:
shows an overestimation of the snow depth, especially during the melting season

(see gray simulations in panel a) of Figures ??, ??, ??
::::::
Figure

:
5). The errors in the prior can be attributed to two different

sources: the forcing data and the model itself (Raleigh et al., 2015). Errors
::::::::::
Considerable

:::::
errors

:
in the forcing data are to be

expected
:::::::
expected

::
to

::::::::
dominate

:
and thus, by design, the forcing formulation of DA allows for the correction of such errors

:::::::::::::::::
(Evensen et al., 2022). We emphasize that when carrying out high-resolution, spatially-distributed modelling and using coarse570

reanalysis such as ERA5 as forcing information (despite the topographic downscaling), one has to expect large biases
:::::
errors

::::::
despite

:::::::
carefully

::::::
chosen

:::::::
climatic

:::::::
forcing

:::
and

::::::::::
topographic

:::::::::::
downscaling,

:
given that the high spatial heterogeneity of the drivers

of snow accumulation and redistribution processes cannot be explicitly represented in the forward modelling. On the modelling

side, one can expect that some of the parameterized
::::::::::
parametrised

:
processes (e.g. albedo decay or precipitation partitioning) in

FSM2 suffer from errors. Here, some of the snow processes can be substantially different and not well captured by FSM2’s575

parametrizations
::::::::::::::
parametrisations, which were originally implemented on

:::
for a field site in the European Alps (Essery, 2015).

With the given prior
:::
prior

:::::::::
employed in our study , there may be a greater

:::::
(Table

:::
1),

:::::
there

:
is
::::
just

::
as

::::
great

::
a need for information

about the melting season rather than
::
as

::::
well

::
as

:::::
about the accumulation season. The correction of the main errors in the prior

is accomplished through the assimilation of fSCA, and the DA formulation is able to compensate for forcing errors
:::::
fSCA

::::::::::
observations

:::::::
contains

:
a
::::::::::
cumulative

:::::
signal

::
of

::::
both

:::::::::::
accumulation

:::
and

:::::::
melting

::::::::
processes.

:::
On

:::
the

:::::
other

::::
hand,

::::::::
ICESat-2

:::::
snow

:::::
depth580

::::::::::
observations

::::
from

:::
the

:::
5th

:::
of

:::::::
February

::::::
mostly

:::::::
contain

:::::::::::
accumulation

::::::::::::::
processes-related

::::::::::
information. This could also explain the

better performance
::
for

:::
the

:::::::
melting

::::::
season of experiments (C) and (J) compared to (D) , in which only observations from the

accumulation season were assimilated. However, if snow depth profiles were acquired by ICESat-2 later in the season, the

performance during the melting phase might also improve when assimilating only snow depth information.

5.1
:::::::::::

Experiments’
::::::
results585

In experiment (C), we simulate the snowpack and assimilated fSCA to create a baseline. It has been shown that, despite fSCA

exhibiting a lower instantaneous correlation with early season snow depth in a deep snowpack compared to the end of the

season with a melting snowpack (Girotto et al., 2020), the assimilation of fSCA allows for an accurate reconstruction of peak
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SWE (Girotto et al., 2014). Indeed, experiment (C) shows high accuracy and precision towards the end of the season. As the

experiments adopt a smoother approach, such information is also propagated backward in time and the posterior simulation590

offers an a
::::::::
relatively

:
accurate reconstruction for the peak-SWE: the validation is clearly close to the median ensemble spread,

but the reconstruction for this part of the season is less precise compared to experiment (D), and both less precise and accurate

for
::::::::
compared

::
to

:
experiment (J). In terms of relative spatial patterns, experiment (C

:
(J) shows the best visual agreement with

the validation of drone-based maps
::
for

:::::::::
peak-SWE, despite overestimating the absolute values .

::
in

:::
the

:::::::
melting

::::::
season

::::::
(Figure

:::
5).595

In
::::::::
Research

:::::::
question

:::
a)

:::::
asked

:::::
about

:::
the

:::::
value

:::
of

::::::::
ICESat-2

:::::::::::
observations

:::
for

::::::::
inferring

:::::::::::::
catchment-scale

:::::
snow

:::::
depth

::::
and

:::
its

::::::::::
distribution.

:::
We

:::
can

:::::::
answer

:::
this

::::::::
question

::::
with

:::
the

::::::
results

::
of

:
experiment (D),

::::
where

:
we assimilate snow depth observations

from ICESat-2 on two profiles
::::::
outside

:::
the

:::::::::
catchment, spatially propagating this information to the experimental catchment. The

snow depth was acquired on the 5th of February, about a month before peak SWE. As Figure ??
::::
panel

::
a)
::
in
::::::
Figure

::
5 shows, this

information leads to a more precise reconstruction of the catchment-average peak-SWE compared to experiment (C),
::::::
which600

::::::
adopted

:::::::::::::
state-of-the-art

:::::::
methods

:::
for

::::::::
seasonal

:::::
snow

::::::::::::
reconstruction

::::
with

:::
DA. This demonstrates that the spatio-temporal DA

is successful, as the information propagated from observations outside the Izas catchment carries more or at least a similar

amount of information compared to the temporal-only information propagation that happens in experiment (C). Compared to

experiment (C), this simulation has a better agreement with the observed snow depth histogram distribution, as the range of

the snow depth histograms has a better match (panels d) and e), Figure ??)
:::::
spatial

:::::::
transfer

::
of

::::::::::
information

::::::
method

:::::::::::
successfully605

:::::
relates

:::::
snow

:::::
depth

::::
and

:::
the

:::::::
features

:::::
when

:::::::::
averaging

::::
over

:::
the

::::::
whole

:::::
basin. However,

:::
not

:::
all the relative spatial patterns of

the simulation only partially match those of the validation maps (panels b) and c
:
e)

::::
and

:
g), Figure ??). Since the

::
5).

::::
The

observations we use in this experiment are not direct measurements in the catchment, this result is in the end not surprising: the

similarity measure we define is only partially able to propagate snow depth information properly. Nevertheless, single pixels

::::::::::
experimental

::::::::::
catchment,

::
so

:::
the

::::
fact

:::
that

:::
the

::::::
spatial

::::::::::
distribution

::
of

:::
the

:::::::::
simulation

::
is
:::
not

:::::::
entirely

::::::::::
reproduced

:
is
::::

not
:::::::::
surprising.610

:::::
While

:::
the

:::::
entire

::::
area

::::::::::
experiences

::::::
similar

::::
snow

:::::::::
conditions

:::::
there

::
are

:::::
local

:::::::::
differences

::::::
which

:::
can

::
be

::::
only

:::::::
partially

::::::::
captured

::::
with

:
a
:::
low

:::::::::::
dimensional

:::::
space,

:::
as

:::
TPI

::::
and

::::::
CSMD

:::
do

:::
not

::::
fully

:::::::::::
characterize

:::
the

::::
snow

::::::
depth

::::::::::
distribution.

:::
For

::::::::
example,

:::::
single

:::::
cells

with extreme values located in the basin might not be similar (
:::::::::::
experimental

:::::::::
catchment

:::::
might

::
be

::::::
similar

:
in terms of topography

and meltout date) to the ones which are
:::
TPI

:::
and

::::::
CSMD

:::
to

::::
cells observed by ICESat-2 .

::::
with

::::
very

::::
high

:::::
snow

:::::
depth,

:::
but

::::
also

::
to

::::
some

:::::::
medium

:::::
snow

:::::
depth

:::::
cells,

:::
and

::::
thus

:::
will

:::
not

:::::::
receive

::
an

:::::::
optimal

::::::
update.615

Towards the end of the season, both the precision and accuracy of the simulations
:::::::::
experiment

:::
(D) are degraded when compared

to experiment (C), and the CRPS score is almost the same as for the prior for this point of the season. Here, the timing of the

single assimilated observation is an important factor: most of the information of early-season snow depth observations is related

to accumulation processes (precipitation perturbation) rather than melting processes, as found by Guidicelli et al. (2023)
:
in

::::
line

::::
with

:::::::
previous

:::::::
findings

:::
by

:::::::::::::::::::
Guidicelli et al. (2024). The very late melt-out date we obtain with this experiment can mostly be620

attributed to the fact that also the prior simulates the snowpack with such a late melt-out date.
::::::::
Moreover, Margulis et al. (2019)

showed that assimilating snow depth observations later in the season, when more consistent
::::
some ablation processes have taken
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place, could improve the melting season estimates . If the previous suggested improvements would improve the results of the

experiments for this setting, this could be used, in principle, in a forecasting system, as
:::::::
improves

:::
the

:::::
melt

::::::
season

::::::::
estimates

::::::::
compared

::
to

::::::::::
assimilating

::::::
earlier snow depth observationshave instantaneous value; while fSCA are more useful in a reanalysis625

setting. There would be the need to speed-up the
:
.

::
To

:::::::
research

::::::::
question

::
b),

::::::
asking

:::::::
whether ICESat-2 processing for the low-level product, as it is now usually three months

::::
snow

:::::
depths

::
or
::::::

fSCA
::::::::::
observations

:::::::
perform

:::::
better

:::
for

:::::
snow

::::
data

:::::::::::
assimilation,

:::
we

::::::
cannot

::::
give

:
a
:::::
clear

::::::
answer

:::
for

:::
the

::::::
entirety

:::
of

:::
the

::::
snow

:::::::
season.

:::
We

:::::::
showed

:::
that

::::::::::
assimilating

::::::::
ICESat-2

::::::::
provides

:
a
::::::

better
:::::::
estimate

::
of

:::::::
average

:::::
snow

::::::
depths

:::::
during

::::::::::::
accumulation

::::::
season,

:::::
which

::
is

::::
very

:::::::
valuable

:::
for

:::::
water

:::::::::
managers,

:::::
while

::::::::::
assimilating

:::::
fSCA

::::::
results

::
in

:
a
:::::
better

:::::::
relative

::::::
spatial

:::::::::
distribution

::::
and630

::::::
melting

::::::
season

::::::::::::
reconstruction.

In experiment (J), we assimilate all the observations used for the previous two experiments. Note that these
:::::
These two sets of

observations complement each other’s coverage in time and space. ICESat-2 observations occur in February, when a deep snow

pack
::::::::
snowpack

:
causes fSCA relation with snow depth to saturate, and hence provides little or no information

:::::::::::
instantaneous

:::::::::
information

:::::::::::::::::::
(Margulis et al., 2015). However, fSCA is spatially complete and thus nicely

:::::::::
temporally

::::::
denser

:::::
which

::::
thus

:
com-635

plements the sparse, but more direct, snow depth observations of ICESat-2, which are located along two profiles outside the

experimental catchment. We show that executing the joint assimilation leads to higher precision (smaller ensemble spread)

throughout the water year. This simulation
:::::::::
experiment

:::
(J) performs better compared to the experiments (C) and (D) in terms of

the CRPS in the accumulation season,
:::::::
showing

::
a
:::::
better

::::::::::::
representation

::
of

:::
the

:::::
spatial

::::::::::
distribution

::
of

:::::
snow

:::::
depth. For the melting

season, experiment (J) has a comparable score to experiment (C), in which the melting season seems already accurately mod-640

elled. The time series in panel aof Figures ?? and ??
:::::
panels

::
a)

:::
and

::
c)
:::
of

:::::
Figure

::
5 show that in terms of catchment average snow

depth, experiment (C) performs slightly better. However, Figure 6 explains the spatial distribution of the errors and it ’s
:
is
:
clear

that for most of the cells both the simulations have a similar score to (C). It is
:::
only

:
in the large snow drifts that experiment (J)

is not able to simulate large snow depth.

For both experiments (D) and
::::::
depths.

::::
With

::::::::::
experiment

:
(J), improvements in

::
’s

::::::
results

::
in

:::::
mind,

::
it
::

is
::::::::

possible
::
to

:::::::
answer645

:::::::
research

:::::::
question

::
c)
:::

on
:::::::
whether

::::
DA

::
is

::::
able

::
to

:::
use

:::::::::::
information

::::
from

::::
both

:::::
snow

:::::
depth

::::
and

:::::
fSCA

:::::::::
combined.

::::
We

:::::
found

::::
that

::
the

::::::::::
DES-MDA

:::::::::
algorithm

::
is

::::
able

::
to

::::::
jointly

:::::::
leverage

:::::::::::
observations

:::
of

:::::::
different

:::::
snow

::::::::
variables

::
in

:::
the

:::::
same

::::::::::
experiment,

:::::
with

:::::
better

:::::
results

:::::::::
compared

::
to

:::
the

::::::::::
independent

::::::::::
assimilation

::
of

:::::
either

:::::::::::
observation.

5.2
:::::::

Outlook
:::
and

::::::
future

:::::::::::::
developements

:::::::::
Simulating

:::
the

::::::::
snowpack

::::
with

::
a

::::::::::::::
physically-based

:::::
model

::::
(i.e.

::::::
FSM2)

:::::
allows

:::
to

::::
infer

:::::::::
unobserved

:::
but

:::::::
socially

:::::::
relevant

::::::::
variables650

::::
(such

:::
as

:::::
SWE)

:::
or

:::::
fluxes

:::::
(such

:::
as

:::::::::
snowmelt).

::::
The

:::::::::::
assimilation

::
of

:::::
fSCA

::::
has

::::::
already

:::::
been

::::::
shown

::
to

:::::::::
accurately

::::::::::
reconstruct

::
the

:::::
peak

:::::
SWE

:::::::::::::::::
(Girotto et al., 2014)

:
,
:::
and

::::
here

:::
we

:::::
show

::::
that

::::::
adding

:::::
snow

:::::
depth

:::::::::::
observations

:::::
from

::::::::
ICESat-2

::
in

:::
the

::::
pool

:::
of

:::::::::
assimilated

::::::::
variables

::::::::
improves

:::
the

::::
peak

::::::::::::
basin-average

:::::
snow

:::::
depth.

:::::::
Despite

:::
not

:::::
being

::::
able

::
to

:::::::
directly

::::::::::
demonstrate

::
it

:::::::
because

::
of

::::::
missing

::::::::::
large-scale

::::
SWE

:::::::::
validation

::::::::::::
measurements

::
for

:::::
Izas,

:::
we

:::
can

::::::::
postulate

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(based on results on SWE reconstruction experiments using complete snow depth maps Margulis et al., 2019; Ma et al., 2023)655
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:::
that

::::::::::::::::
ICESat-2-retrieved

::::
snow

:::::
depth

:::
can

:::::::
improve

:::
the

::::
total

:::::
water

::::::::
resources

:::::::::
estimation

:::
for

:::::
basins

::
in

:::::::
complex

:::::::
terrain.

:::
The

:::::::
satellite

:::::::
ICESat-2

::::
will

:::::::::
potentially

::::::
collect

::::
data

::::
until

:::
the

::::::::::
mid-2030s,

:::
and

::
it

::
is

::::::::
necessary

::
to

::::::
further

:::::
refine

:::
the

:::::::
methods

::
to
::::::
inform

::::::::
seasonal

::::
snow

:::::::
models

:::
and

::::::
exploit

::::
this

::::::
dataset

:::
for

::::::::
mountain

::::::
water

::::::::
resources

:::::::::::
management.

::::
Our

::::::
results

:::::
show

:::
that

::::
this

::::::
dataset

::::
has

:::
the

:::::::
potential

::
to

:::::::
become

::
a
::::::::
functional

::::
tool

:::
for

:::::
water

:::::::::
managers

::
to

:::::::
estimate

:::
the

:::::::::
maximum

::::::::
seasonal

::::
snow

::::::::::::
accumulation.

:::::::::
However,

::::::::
especially

::::::
within

::
an

::::::::::
operational

::::
snow

:::::::::::
hydrological

::::::::::
forecasting

::::::
context

:::::::::::::::::::
(e.g. Mott et al., 2023),

:::::
there

:
is
::

a
::::
clear

:::::
need

::
to

::::::
reduce660

::
the

::::::::::
processing

::::
time

::
of

:
the spatial distribution are expected in the case of ICESat-2 profiles observing snow in a terrainwith

more similar characteristics. Moreover, herein the process of
::::
data

:::::::
products

:::::
which

::::::::
currently

:::::
takes

:::::::
months,

:::
and

::::::::
ICESat-2

:::::
snow

::::
depth

::::::::::::
measurements

:::::
from

:::
the

:::::::::::
accumulation

::::::
season

::::
may

::::
thus

:::
not

::
be

::::::::
available

:::::
before

:::
the

::::
end

::
of

:::
the

::::
melt

::::::
season.

:

::
In

:::
this

:::::
paper,

:::
the spatial information propagation depends on a feature space defined only with few characteristics

:::
two

:::::::::
dimensions,

that has not been tuned systematically to improve the results, but that was based on previous studies (Revuelto et al., 2014).665

Optimizing or tuning .
::::::::::

Optimizing
:
the selection of the dimensions in the feature space

:::::
feature

:::::
space

::::::::::
dimensions

:
as well as

:::::
tuning

:
their relative weight and the correlation length scale , despite being computationally expensive ,

:::
(the

::::::::::::::
hyperparameters

::
of

::
the

::::::
spatial

:::::::::::
dependence)

:::::
would

::
be

::::::::::::::
computationally

::::::::
expensive

:::
but might lead to better results, as Experiments

::::::::::
experiments II and

III in Alonso-González et al. (2023) show.
:::
For

::::::::
example,

:::
we

:::::
found

:::
that

:::
the

::::::::
exclusion

::
of

:::
the

:::::::
Winstral

:::::
index

::::::::::::::::::
(Winstral et al., 2002)

::::
from

:::
the

::::::::
definition

::
of

:::
the

::::::
feature

:::::
space

::::::::
improved

:::
the

:::::::
inferred

::::::
spatial

:::::::
patterns

::
for

:::
all

:::
the

:::::::::::
experiments. We envision future work670

in which the an optimization process could be fruitful for data-rich
:::
and

:
vast basins such as the repeated measurements in

the western U.S by the ASO (Painter et al., 2016)
::
US

:::
by

:::
the

::::::::
Airborne

:::::
Snow

::::::::::
Observatory

:::::::::::::::::::::::
(ASO, Painter et al., 2016). Despite

the optimization or inference of the aforementioned hyper-parameters
::::::::::::::
hyperparameters being foreseen to be very expensive

in terms of computational resources, we acknowledge that it could be performed off-line for a single season, exploiting the

repeated patterns of the seasonal snow evolution (Revuelto et al., 2014)
:::::::::::::::::::::::::::::::::::::::
(Sturm and Wagner, 2010; Revuelto et al., 2014). In675

terms of methods, we envision the use of hierarchical data assimilation (Katzfuss et al., 2020) for the statistically-optimal in-

ference of the aforementioned hyper-parameters
:::::::::::::
hyperparameters

::::::::::::::::::
(Katzfuss et al., 2020). In simple terms, this would increase

the complexity of the DA system by defining a hyperprior on these
::
the

:
hyperparameters that govern the spatial propagation of

information. The assimilation would lead to the optimal inference of the seasonal snow evolution for the current water year after

having inferred the spatial hyperparameters. Moreover, the learned hyperparameters could conceivably be transferred to other680

water years without the need for a second round of hierarchical inference. To alleviate computational bottlenecks, hyperparam-

eter inference could be achieved using simpler snow models that are now available in MuSA.
:::::::::
Moreover,

:::::::
splitting

:::
the

::::::
spatial

::::::::::
propagation

:::::::
problem

::::
from

::::
the

:::::::
temporal

::::
DA

::
—

::::::::
provided

::::
that

::::::
several

::::::
year’s

::::
snow

:::::
depth

:::::
maps

:::
are

::::::::
available

:::
for

:::::::
training

::::
and

:::::
testing

::::::::::::
independently

:::
the

::::::::::::::
hyperparameters

:::
—

:::::
could

::::
also

:::::::
alleviate

:::
the

::::::::::::
computational

::::
cost

::
by

::::::::
avoiding

:::
the

::::
need

::
to

::::
run

:
a
:::::
snow

:::::
model

::
is

:::::::
another

::::::
option.

::
A

::::::
feature

::::::
space

::::::::
including

::::::
various

::::::
terrain

::::::::::
parameters

:::
and

::::::::::::
geographical,

::::::::
elevation,

::::::::::::::
land-use-related685

:::::::::
coordinates

::
to

:::::
define

:::
the

::::::::
similarity

::
in
:::::
terms

::
of

:::::
snow

:::::
depth

::
or

::::
SWE

:::
has

:::::
been

::::::
adopted

::
in
::::::
several

::::::
recent

::::::::
statistical

::::
snow

:::::::::
modelling

::::::
studies

::::
based

:::
on

::::::
satellite

:::
or

:::::::
airborne

:::
data

::::::::
covering

:::::
larger

:::::::
domains

:::::::::::::::::::::::::::::::::::::::::::::::::::
(Guidicelli et al., 2024; Hultstrand et al., 2022; Liu et al., 2024)

:
.

25



A final note is warranted concerning the very high-resolution (almost hyper)
:::::
spatial

:::::::::
resolution

:
of the experiments (20 m).

We selected this cell size to test the ability to measure
::::::
retrieve

:
snow depth at a hill-slope scale with the photon counting690

:::::::::::::
photon-counting

:
technology that ICESat-2’s ATLAS is equipped with. The results are not clear yet in this sense, as validation

is not available for the measured track. However, some of the larger spatial patterns are reproduced, even with this very

high resolution, in experiment (D). Lower resolutions are also
::
In

::::::::::
experiment

:::
(D),

:::
we

::::::::
partially

:::::::::
reproduced

:::
the

::::::
spatial

:::::::
patterns

:::::::
observed

:::::::
through

:::
the

:::::
drone

:::::
maps.

::::::::
Lowering

:::
the

:::::
spatial

::::::::::
resolutions

::
of

:::
the

::::::::
simulation

::::::
would

:::
still

:::
be adequate for water resources

mapping, and would make the assimilation exercise much easier: many of the accumulation features are averaged out already695

at 100 m resolution. Assimilation of snow depth data at lower spatial resolution has been found to give better results in previous

synthetic ICESat-2 observations propagation with neural networks (Guidicelli et al., 2023)
:::::::::::::::::::
(Guidicelli et al., 2024).

Simulating the snowpack with a physical-based model as we do with FSM2 provides inference on unobserved but socially

relevant variables (such as SWE) or fluxes (such as the snowmelt flux). The assimilation of fSCA has already been shown

to accurately reconstruct the peak SWE (Girotto et al., 2014), and here we show that adding snow depth observations from700

ICESat-2 in the pool of assimilated snow data improves the peak basin-average snow depth. Despite not being able to

demonstrate it because of missing large-scale SWE validation measurements, we can postulate (based on results on SWE reconstruction experiments using complete snow depth maps Margulis et al., 2019; Ma et al., 2023)

that ICESat-2-retrieved snow depth can improve the total water resources estimation for basins in complex terrain.

6 Conclusionsand outlook

In this study,
::
we

::::::
present

:
a
:::::
novel

::::::::
approach

:::::
where

:
ICESat-2 snow depth observations along profiles were used

:::
are

:::::::::
assimilated for705

the first time to update
:::::::
constrain high-resolution snowpack simulations . We exploited

:::::
across

:::
an

:::::
entire

:::::::::
unobserved

::::::::::
catchment.

:::
We

::::::
worked

::::
with the data assimilation system MuSA, which has

:::
had capabilities to propagate information in space and time de-

veloped in Alonso-González et al. (2023), to bridge the observations’sparsity. We perform
:
.
::::::::
However,

:::
we

:::::::
modified

::
it

::
to

::::::
exploit

:::::::::
ICESat-2’s

:::::
sparse

:::::::::::
observations

:::
and

::::::
jointly

:::::::::
assimilate

:
a
::::::::::::::::
spatially-complete

:::::::
variable.

:::
We

:::::::::
performed

:
a set of three experiments

where fSCA,
::::
only

::::::::
Sentinel-2

::::::
fSCA,

::::
only

::::::::
ICESat-2

:
snow depth, and both these observations

:::::::
together, were assimilated while710

keeping the assimilation algorithm and the prior information the same, in order to evaluate the potential of the satellite laser

altimeter ICESat-2 for updating seasonal snow models.

We find that including two snow depth profiles in the set of assimilated observations improves the snowpack simulation in

terms of average snow depth, especially during the accumulation phase of the season –
::
— even though the snow depth profiles

were located completely outside the experimental catchment of Izas (55 ha), where we validate the experiments using drone-715

based snow depth maps. Results show that the
::::::
relative

:
spatial patterns can only partially match the validation drone maps

when assimilating exclusively the snow depth profiles; as ,
:::::
since

:
the snow depth pattern is very sensitive to the design of the

spatially correlated prior covariance which governs
:::::
which

:::::::
governs

:::
the

:
spatial propagation of information. Nevertheless, the

joint assimilation of
::::::::
Sentinel-2 fSCA and snow depth from ICESat-2 bridged such limitations and performed best in terms of

average snow depth as well as
:::::::
capturing

:::
the

:
spatial distribution.720
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These findings indicate that the satellite ICESat-2
::::::
satellite

:
can be exploited to improve the

::::::
current state-of-the-art reanalysis

::::
snow

:::::::::
reanalyses

:
generated by assimilating fSCA. Notably, the proposed workflow exploits globally-available datasets. Pro-

vided a high-resolution DEM –
::
—

:
which the geosciences community generally advocates the need for –

::
—

:
ICESat-2’s surface

elevation measurements can be used to observe snow depth along profiles in inaccessible regions where snow amounts are still

very hard to quantify. As multivariate DA techniques mature, the snow community can begin to exploit the plethora of snow725

observations (e.g. snow depth, fSCA, land surface temperature etc.) to constrain the snow models and to shed light on the
:::
still

unsolved snow hydrology problem of inferring the spatial and temporal distribution of SWE.

Code and data availability. The MuSA code used for the experiments is version 2.1 and can be found at https://zenodo.org/records/11147258.

The ICESat-2 data was downloaded with SlideRule (Shean et al., 2023), the Sentinel-2 data with GEE (Gorelick et al., 2017). The complete

input data for the experiments in the Izas basin can be found in this data repository: https://zenodo.org/records/13860511. Validation maps730

are available at https://doi.org/10.5281/zenodo.7248635 (see the Obs folder).
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