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Abstract. The satellite laser altimeter ICESat-2 provides accurate surface elevation observations across the globe. With a high-

resolution DEM, we can use such measurements to retrieve snow depth profiles even in remote areas where snow amounts are

poorly constrained. However, the adoption of these retrievals remains low since they are very sparse in space, as the satellite

measures along profiles, and in time, as the revisit is 3 months. Data assimilation methods can exploit snow observations to

constrain snow models and provide gap-free distributed simulations. The assimilation of observations related to snow cover is5

well-established, but there are currently no methods to assimilate sparse ICESat-2 snow depth profiles. We propose an approach

that spatially propagates information using – instead of the classic geographical distance – an abstract distance measured in a

feature space defined by a topographical index and the melt-out date climatology.

We demonstrate this framework for a small experimental catchment in the Spanish Pyrenees through three experiments. We

assimilate different snow observations in an intermediate-complexity snow model: fractional snow-covered area retrievals from10

Sentinel-2, snow depth profiles from ICESat-2 located in proximity of the catchment, or both fractional snow-covered area and

depth in a joint assimilation experiment. Results show that assimilating ICESat-2 snow depth profiles successfully updates

the neighbouring unobserved catchment, improving the simulated average snow depth compared to the prior run. Another

encouraging finding is that adding the snow depth profiles to fractional snow-covered area observations leads to an accurate

reconstruction of the snow depth spatial distribution. Evaluating the simulations with a set of independent drone-based snow15

depth maps using a probabilistic skill score, we find that for the accumulation season the joint assimilation’s score improves

by 19% the established approach of only assimilating fractional snow-covered area. The direct but incomplete snow depth

information from ICESat-2 is a key constraint on simulated basin-average snow depth.

This study makes use of globally-available datasets and shows the promise of adopting ICESat-2’s snow depth retrievals in

seasonal snow modelling, especially when also assimilating complementary observations. In light of our encouraging results,20

more research with different experimental designs in varying snow conditions combined with continued methodological devel-

opment is desirable to further catalyse the use of these retrievals in cryospheric and hydrologic applications.
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1 Introduction

Seasonal snow is a crucial element for sustaining life and an essential climate regulator (Sturm et al., 2017). It is characterized

by strong spatial and temporal variability which arise from several processes such as preferential deposition, wind transport, dif-25

ferential radiation and turbulent heat fluxes, and metamorphism (Mott et al., 2018). This is a challenge for spatially-distributed

modelling efforts as point measurements have a limited utility. Remote sensing thus presents a more promising method to

estimate the spatial distribution of snow (Clark et al., 2011). Despite the many approaches involving satellite, airborne and

drone sensors of various different types currently being used, accurately measuring the temporal and spatial variability in

snow amount (i.e., mass or depth) at watershed-scale with remote sensing is still a major scientific challenge (Gascoin et al.,30

2024).

Since October 2018, the ICESat-2 mission measures the Earth’s surface elevation through a 532 nm (green) laser along six

parallel profiles (Markus et al., 2017). The geolocated photons have a centimetric vertical measurement error on flat terrain

(Markus et al., 2017), while the horizontal accuracy is estimated to be between 3 and 4 m (Magruder et al., 2021). ICESat-

2 data products derived from the spatial aggregation of photons over tens to a hundred meters have been used to measure35

snow depth by differencing with a digital elevation model (DEM) acquired during snow-free conditions. From comparison to

airborne lidar snow depth observations, Enderlin et al. (2022) found that the median absolute deviation (MAD), an index of

accuracy, is around 0.2 m for slopes < 5◦, while it increases to be > 1 m for slopes > 20◦. Deschamps-Berger et al. (2023)

found similar results: the random error (precision) was 0.5 m for < 10◦ sloped terrain. Besso et al. (2024) improved the results

in the same basins of the two aforementioned studies by focusing on customized data products generated with the SlideRule40

Earth service (Shean et al., 2023).

The ICESat-2 snow depth retrievals can quantify the snow spatial distribution at the acquisition time. However, they have

limited value in directly estimating snow water resources, a trait they share with other commonly used remotely-sensed ob-

servations such as fractional Snow Covered Area (fSCA). This limitation arises because ICESat-2 observations are only able

to capture a subset of the full state of the snowpack at one to several points in time and space (Alonso-González et al., 2021;45

Margulis et al., 2016). In order to completely capture the spatio-temporal evolution of the snowpack, satellite observations have

been used to constrain snow models with varying complexity. Herein, we focus on an intermediate complexity snow model,

namely the Flexible Snow Model (FSM2; Essery et al., 2024), which is a compromise between a detailed representation of

physical processes that influence the key snow hydrological state variables and parsimonious parametrizations that allow for

increased computational efficiency. The main limitation for large-scale snow modelling is the accuracy of atmospheric forcing50

data (Raleigh et al., 2015). This applies especially to spatially-distributed setups where the forcing needs to be extracted from

large scale atmospheric model outputs such as coarse-resolution (30 km) global atmospheric reanalyses (e.g. ERA5; Hersbach

et al., 2020).

Data Assimilation (DA) offers a wealth of algorithms to fuse noisy observations with uncertain models in a Bayesian framework

(Evensen et al., 2022), to obtain statistically optimal estimates together with a quantification of their uncertainty. This technique55
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has shown considerable promise in the snow science community to meet the reconstruction and forecasting requirements

needed to more accurately map the water storage services that snow provides to downstream ecosystems and communities

(Girotto et al., 2020). Girotto et al. (2020) noted that most snow DA research – with a few exceptions (e.g. De Lannoy et al.,

2012; Magnusson et al., 2014) – has focused on purely temporal DA where the snow in each model grid cell (or more generally

spatial unit) is simulated and updated independently of its neighbouring cells and the observations therein. A greater adoption of60

spatio-temporal multivariate DA is recommended (De Lannoy et al., 2022). Recent studies have demonstrated the added value

of spatio-temporal DA in exploiting spatially sparse snow depth observations by propagating information through covariances

based on geographical distance (Cluzet et al., 2022; Cho et al., 2023). In contrast, Alonso-González et al. (2023) have shown

promising results with a more general technique using a prior covariance matrix dependent on pixel proximity in a multi-

dimensional space based on morphometric terrain features. However, this approach was shown only with high resolution and65

high accuracy UAV data, and has yet to be extended to emerging yet sparse space-borne snow observations such as snow

depth profiles derived from the laser altimeter onboard ICESat-2 (Deschamps-Berger et al., 2023; Besso et al., 2024), as

recommended by comment 6 in Anonymous (2023) and by Gascoin et al. (2024).

In this study, we aim to demonstrate for the first time the value of assimilating snow depth retrieved from the satellite laser

altimeter ICESat-2 in a small experimental catchment. While other studies have focused on evaluating aggregated data products70

from this satellite altimeter (Deschamps-Berger et al., 2023; Enderlin et al., 2022; Besso et al., 2024), we use the geolocated

photon data product ATL03 (Neumann et al., 2019) with finer spatial resolution. The validation of this product is currently

in progress, but preliminary results show good agreement in comparison to drone-based snow depth maps. Because of the

temporal and spatial sparsity of these observations, their utility for direct mapping of snow depth along profiles via temporal

DA is limited. Hence, we showcase the use of ICESat-2 data in a spatio-temporal DA scheme (Alonso-González et al., 2023)75

that enriches this data in that it can now be used to constrain distributed seasonal snow models for an entire catchment where

the majority of grid cells are not observed by ICESat-2.

We also propose the joint assimilation of ICESat-2 snow depth and fSCA from Sentinel-2. This is compared to assimilating

only ICESat-2 data or fSCA data alone, where the latter is widely available and routinely used by the snow DA community

(Largeron et al., 2020). The two datasets have complementary features: ICESat-2 retrieves snow depth directly, but only along80

profiles; while fSCA has an indirect relationship with snow depth, but is spatially-distributed. The novel scientific questions

we aim to answer are:

a) Can information from snow depth profiles retrieved with ICESat-2 be used to provide information about average catchment-

scale snow depth and its complete spatial distribution?

b) Is assimilating sparse ICESat-2 snow depth retrievals better than more commonly used fSCA observations derived from85

optical satellites?

c) Is ensemble-based DA able to leverage information from both observation types when jointly assimilating both fSCA and

sparse snow depth observations?
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An important assumption of this work, shared with other high-resolution DA assimilation studies, can be outlined as follows.

The snow model does not represent some of the lateral processes influencing the snowpack such as wind and gravitational90

redistribution: the atmospheric forcing information that is available at scale is not detailed enough to accurately capture such

processes in a distributed manner. We aim at showing that assimilating information from higher resolution satellite observations

can constrain the spatial distribution of snow, mitigating the effects resulting from missing the aforementioned processes that

are not represented in the snow model.

2 Study Area and Data95

The study area is the Izas experimental catchment, located in the Central Spanish Pyrenees. The elevation ranges between

2075 and 2325 m a.s.l. and the total annual precipitation typically sums up to 2000 mm, with around half of this in the form

of snowfall as is typical for such a sub-alpine environment. Snow usually covers a large fraction of the catchment from late

November to the end of May. The vegetation type is a high mountain steppe where most of the surface is covered by bunch

grass (Revuelto et al., 2017).100

We chose this site because of the availability of several spatially-distributed drone-based snow depth measurements (Alonso-

González, 2022) in the 55 ha sized experimental catchment highlighted with black in Figure 1. The drone surveys were con-

ducted in 2020 on 14/01, 03/02, 24/02, 11/03, 29/04, 3/05, 12/05, 19/05, 26/05, 02/06, 10/06, 21/07 and were already used

in various DA experiments (Alonso-González et al., 2022, 2023). The original spatial resolution is 1 m, and the measurement

error is assumed to have a standard deviation equal to 20 cm. Panel c) of Figure 1 shows the spatial distribution of snow depth105

close to the seasonal peak at the native resolution. Very high snow depths (> 300 cm) are accumulated under the western

ridgeline, in the deep valleys throughout the catchment, and at the foot of the eastern slope. Very low snow depths (< 50 cm)

areas are located on the southeast-facing aspects located on the northern side of the catchment as well as on the wind-blown

ridges located on the southern side of the catchment.

We retrieve snow depth by subtracting the snow-off elevation obtained with a reference DEM to the snow surface elevation110

measured with the ATLAS instrument onboard the National Aeronautics and Space Administration (NASA) satellite ICESat-

2. We use the level 2A product ATL03 (Neumann et al., 2023b), which we downloaded through the SlideRule python-client

(Shean et al., 2023). This low-level product combines the time of flight data with the location of the satellite to obtain the

geolocation of single photons’ reflection events off the snow surface. The ATLAS transmitter generates six beams arranged in

three pairs, with a strong and weak beam located at a distance of 90 m, while the pairs are spaced 3.3 km (Neumann et al.,115

2019). The orbit has a 92◦ inclination. The signal ratio between strong and weak beams is 4 to 1 and a pulse of the 532 nm

laser illuminates a region (footprint) ca. 14 m in diameter. Pulses are transmitted every 1.5 ns, hence the footprints are spaced

0.7 m in the along-profile direction and have a large overlap. The expected number of photons backscattered to the ATLAS

receiver for a single strong beam shot from a reflective surface such as snow ranges from 7 to 3 depending on the slope and

roughness of the surface (Neumann et al., 2019). We select two of the strong beam profiles acquired in the night of the 5th of120
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Figure 1. Panel a): Topography of the extended domain, located in the Pyrenees. The raw DEM data is obtained from the Centro Nacional de

Información Geográfica. Blue lines: ICESat-2 snow depth profiles in 2020 used in the experiments; gray dashed lines: ICESat-2 snow-free

profiles that are used for coregistration purposes; black area: experimental catchment where 12 snow depth maps were acquired during the

2020 snow season. Panel b): the small-scale topography of the Izas experimental catchment, dictating the snow depth patterns. Panel c):

drone-derived snow depth map acquired on 11th of March shown at the original 1 m resolution, obtained from Alonso-González (2022).

February 2020, as they sample snow depth during the accumulation phase. We tested the weak beams but they were not used

as those provided an observation set with fewer returns in the 20 m cell we used as unit, and a consistent vertical shift was

detected. We discard the third strong beam as it is located further away at lower elevations and in forested terrain. ICESat-2’s

next acquisition during the 2020 snow season in the study area is in May, but the cloudy conditions weakened the surface

signal and made these profiles unreliable. Most of the photon events happen on the highly reflective snow surface during the125

snow-covered season, but there is a relevant amount of noise due to atmospheric scattering or double bounces (Neumann et al.,

2023a).

The DEM used as the snow-off reference surface is available thanks to the Spanish government’s Plan Nacional de Orto-

fotografía Aérea (PNOA) airborne lidar initiative and its spatial resolution is 2 m. The accuracy in terms of RMSE for this

lidar-based model is declared to be 20 cm in the vertical direction and 30 cm in the horizontal plane (Centro Nacional de Infor-130

mación Geográfica). We use snow-off ICESat-2 profiles to evaluate the vertical offset between the aforementioned DEM and

the ICESat-2 acquisitions, as detailed in Section 3. We employ 18 profiles depicted with a gray dashed line in Figure 1.

In addition to the ICESat-2’s snow depth data, we also employ snow cover information from high-resolution (∼ 10 m) mul-

tispectral satellite imagery. We used surface reflectances (the Level 2A product) obtained from the MultiSpectral Instrument

(MSI) onboard the Sentinel-2A and Sentinel-2B twin satellites (Drusch et al., 2012) operated by the European Space Agency135

as part of the Copernicus Programme. The Sentinel-2 imagery was downloaded from Google Earth Engine (Gorelick et al.,

2017), which is a cloud-based platform that hosts open Earth observation data from its original source, in this case Copernicus.

By manually selecting cloud-free imagery, we obtained a total of 19 scenes covering the entire study area and snowmelt season.

The acquisition dates of the used scenes are shown with blue stars in panel a) of Figure 5, and are irregularly spaced between
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the 5th of February (before peak snow) and the 17th of July 2022 (complete melt-out), with a median (maximum) spacing of 5140

(33) days.

3 Methods

3.1 Modelling

We simulate the snowpack at 20 m spatial resolution with the Flexible Snow Model (FSM2; Essery, 2015, 2023). This

intermediate-complexity model represents the snowpack with up to three different layers and solves the coupled mass and145

energy balance equations to simulate the seasonal evolution of snow. In FSM2, seven physical processes occurring in the

snowpack are represented with multiple available parameterizations. We choose the most complex representation for all the

processes to obtain a more comprehensive snowpack ensemble simulation. These parametrizations are: albedo decay with

elapsed time since the last significant snowfall, thermal conductivity as a function of snow density, density as a function of

overburden and metamorphism, turbulent fluxes diagnosed using the Monin-Obukhov similarity theory, and melt-water per-150

colation as a function of gravitational drainage, fractional snow cover as an asymptotic function of snow depth. No lateral

processes are represented in FSM2.

We drive the simulations with meteorological forcing derived from the globally-available ERA5 reanalysis (Hersbach et al.,

2020). Because the coarse resolution of 30 km misses the subgrid topography-driven heterogeneity of the atmospheric variables,

we downscale the reanalysis with the widely used hillslope scale topograpy-based downscaling tool TopoSCALE (see Filhol155

et al., 2023, and references therein). This process uses the pressure level data to interpolate the forcing variables to the grid

cell elevation, and radiative fluxes are adjusted by taking into account local and surrounding topography as well as the position

of the sun. The TopoSUB routine included in the downscaling tool allows for efficient semi-distributed spatial downscaling

through topography-based clustering (Fiddes et al., 2019). We select 400 as an appropriate number of clusters to run the semi-

distributed downscaling for the extended domain which has a rather small area of about 5 by 3 km (equal to the extent of160

panel a) of Figure 1). The obtained semi-distributed forcing is then mapped back to a 20 m fully distributed grid covering

the whole extended domain. This globally applicable TopoSCALE method has for example been used in similar settings

to topographically-downscale ERA5 reanalysis data to drive snow models both in hyper-resolution snow data assimilation

experiments (Fiddes et al., 2019) and in nationwide hillslope-scale snow simulations with FSM (Fiddes et al., 2022). The

application of topographically downscaled ERA5 data to force the snow model FSM2 has already been conducted in this area165

in Alonso-González et al. (2022, 2023) – although another downscaling model was used. We now select the cells covering the

drone maps in the Izas experimental catchment (solid black line in Figure 1) and the grid cells in the extended domain that are

intersected by the ICESat-2 tracks (blue lines in panel a), Figure 1), summing up to a total of ∼ 1900 cells where the FSM2

model is run.
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3.2 ICESat-2 snow depth retrieval170

The retrieval of snow depth observations is based on ICESat-2’s accurate surface elevation measurements from individual

photon reflection events. We filter such events by selecting only the ones classified as ground, as results from Besso et al.

(2024) indicate such filtering improves the median absolute error. Moreover, we assign the photon events a weight based on

the local neighbourhood density, using the Yet Another Photon Classifier (YAPC) algorithm. This determines the significance

of individual photon events with a customized inverse-distance weighted kNN algorithm (Sutterley and Gibbons, 2021). The175

neighbourhood is defined with a window length (parallel to the line of flight) of 5 m and a height of 3 m. The rationale behind

this is that photons returning from the ground have a large number of neighbours as it is less likely for photons reflected from

atmospheric particles or objects above the ground to be clustered together. For each ∼ 4 km profile we select 60% of the

photons with the largest significance according to YAPC. In Figure 2, the orange photons’ size is proportional to their YAPC

score, while the filtered-out photons are gray. Before comparing the ATL03 photon events to the snow-free reference surface180

elevation, it is necessary to co-register this dataset with the snow-off DEM. We employ the Nuth-Kääb algorithm to obtain

the horizontal shifts using as input all the selected ICESat-2 photon events and the snow-off DEM elevations (Nuth and Kääb,

2011), implemented in the xdem python library (Dehecq et al., 2021). Every beam is independently co-registered to account

for different horizontal displacement. Individual vertical offsets (expected due to snow cover) are not removed; instead, we

correct with a common offset between the DEM all snow-free ICESat-2 data following established practice (Enderlin et al.,185

2022; Besso et al., 2024).

Snow depth is computed for each selected photon event by subtracting the elevation from the co-registered DEM. We linearly

interpolate the DEM to obtain the snow-off elevation at the location of the photon event. Subsequently, we divide the snow

depth observations into cells with a 20 m spatial resolution, in order to match the spatial resolution of the simulation (see

Section 3.1). On average, 45± 18 individual snow depth measurements per cell are available. Due to ICESat-2’s inclined190

ground track (see panel a) of Figure 1) some of the cells defined by the modelling grid have very few measurements, we hence

filter out cells with less than 10 photon reflection events. In addition, the cells with an average slope greater than 40◦ are also

filtered out, as the horizontal positioning uncertainty makes snow depth retrievals less reliable for steep terrain. In Figure 2, a

400 m transect with a comparison between the co-registered photons and the high-resolution DEM is shown (panel a)) as well

as the snow depth sample distribution available along the transect (panel b)). We sample the obtained snow depth distribution195

to retrieve an observation in each cell with the median operator. To estimate a domain-consistent statistic for the spread of the

snow depth observation error, we compute the standard deviation of snow depth samples in each cell and average it over the

profiles, obtaining σy = 0.92 m.

3.3 Sentinel-2 fSCA retrieval

The fSCA retrieval algorithm is based on surface reflectances estimated from MSI onboard the Sentinel-2 satellites in 6 bands in200

the visible, near-infrared, and shortwave infrared. By comparing the reflectances measured in these bands to modelled spectra

for snow and snow-free endmembers we infer the fSCA using spectral unmixing via a fully constrained least squares algorithm.
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Topographic context

c)b)

a)

Figure 2. Panel a): A 400 m long segment where the photon events selected are compared with the snow-off information obtained from the 2

m resolution DEM. Panel b): the median operator is applied to snow depth observations from the selected photon on a 20 m moving window

and the shaded area represents the 2 standard deviation range around the median. Panel c): the general topography of the ICESat-2 profile

shown.

As shown in Aalstad et al. (2020), this approach can outperform simpler linear regression and thresholding-based approaches

to fSCA retrieval, albeit at a higher computational cost. This unmixing approach to retrieving fSCA from Sentinel-2 imagery

has been successfully applied both in the high-Arctic (Aalstad et al., 2020), as well as at Alpine sites (Pirk et al., 2023) in205

Norway. The retrievals were performed on the native 10 m grid of the visible and near-infrared reflectances from Sentinel-2,

and were subsequently resampled to the 20 m spatial resolution of the simulations by averaging and subsequent inverse distance

weighting. We estimate the observation error for the fSCA retrievals at 20 m resolution to be σ = 0.34. Independent validation

estimated the observation error σN at 100 m resolution to be equal to σN = 0.07 (see Table 2 Aalstad et al., 2020). We obtained

our 20 m σ estimate using that the error from coarser resolutions should increase at higher resolutions according to the central210

limit theorem through σ = σN

√
N , where N = 25 is the number of independent 20 m cells contained in the coarser (100 m)

validation.
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Table 1. Hyperparameters for the extraction of the logit-normally distributed prior perturbation parameters. Numerical entries without units

are implicitly dimensionless. Note that the hyperparameters µ and σ are the mean and standard deviation, respectively, of the associated

normal distributions that the logit-transformed prior perturbation parameters follow.

Variable Type µ σ Lower bound Upper bound

Precipitation Multiplicative −0.9 0.7 0.1 5

Temperature Additive 0 0.5 −8K 8K

Longwave radiation Additive 0 0.5 −8Wm−2 8Wm−2

3.4 Data assimilation

The Multiple Snow DA System (MuSA; Alonso-González et al., 2022) allows the execution of various forms of ensemble-

based snow DA. Therein, the prior distribution — a probabilistic distribution representing uncertainty over the system’s state215

and parameter space before observations are taken into account — is represented by the spread of a finite collection of samples

known as ensemble members. This spread in terms of basin-average snow depth can be seen in the gray trajectories of panels

a), b) and c) of Figure 5. Each prior ensemble member is an FSM2 simulation obtained by perturbing a selection of forcing

variables. In the presented experiments, the perturbed forcing variables are air temperature, precipitation, and downwelling

longwave radiation. The perturbation parameters are time-invariant throughout the water year, and are extracted from a logit-220

normal distribution whose prior hyperparameters can be seen in Table 1. The prior perturbations are obtained by extracting

samples from an associated normal distribution with mean µ and standard deviation σ. Subsequently, the inverse logit transform

(sometimes called expit) with scaling is applied, resulting in a logit-normally distributed sample ranging from the lower to the

upper bound (see section 3.3.1 in Aalstad et al., 2018). We choose the logit-normal distribution over a log-normal or a normal

distribution as the logit-normal restricts the perturbation within defined upper and lower bounds (shown in Table 1), in contrast225

to other distributions which would have respectively only one or no bounds (Aitchison and Shen, 1980). The nature of the

perturbation is multiplicative for the precipitation (in part to prevent non-physical negative values) and additive for the other

variables. The negative-mean parameter of the associated normal distribution in the multiplicative perturbation parameter for

the precipitation results in a right-skewed (left leaning) prior distribution with a median of 1.5.

The ensemble members representing the prior perturbation parameter distribution are updated with a deterministic version230

of the ensemble smoother with multiple data assimilation scheme (DES-MDA; Emerick, 2018). Such iterative ‘multiple data

assimilation’ algorithms mitigate the negative impact of a linear forward model assumption implicit in Kalman methods (Aal-

stad et al., 2018; Alonso-González et al., 2022; Evensen et al., 2022). Since the FSM2 model is non-linear in the mapping

between atmospheric forcing and snow states, we choose four iterations, in line with the aforementioned literature. We select

40 as an appropriate number of ensemble members in order to adequately represent the prior distributions while maintaining a235

reasonable computational cost.
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3.5 Spatial propagation of information

The key to spatially propagate information from local observations in space — that is to other simulated cells — is in the

construction of the prior covariance matrix with spatial dependence (Cressie, 2011). As the spatial distribution of snow depth

is strongly governed by topography, and as the relative patterns are often repeated year after year, we adopt a spatio-temporal240

snow DA approach based on generalized non-dimensional distances (Alonso-González et al., 2023). Details on the practical im-

plementation and the theoretical background of this method can be found in Alonso-González et al. (2023). The key innovation

of this method was to define a generalized prior correlation function dependent on the proximity of cells in a multidimensional

feature space. Herein, we adapt the method to our novel ICESat-2 snow depth DA problem. After a careful assessment of

various predictors, we select the following two features as the dimensions for the feature space:245

1. CSMD: the Climatology of Snow Melt-out Date is obtained by averaging the date (day-of-water-year) when the snow

melted out in a selected pixel, extracted from Sentinel-2 fSCA time series provided by the Theia land data center (Gascoin

et al., 2019). A climatology consisting of five water years was used (2017-2021). This is a new and potentially globally-

available feature that was not used in Alonso-González et al. (2023).

2. TPI: the topographical position index (Weiss, 2001) is computed as the difference of the cell’s elevation compared with250

its neighbourhood defined as a 24 m radius — selected based on the results of regression experiments targeting snow

depth in the Izas experimental catchment (Revuelto et al., 2014). It represents the exposure of the terrain at the mentioned

scale, so that cells with negative TPI are located in a concavity or a valley and positive TPI are cells in convex terrain

such as a ridge relative to its surroundings. The index is computed with the high-resolution snow-off 2 m DEM to capture

small-scale topographic effects. To match the simulation resolution of 20 m, we use the average of all high-resolution255

TPIs within each model grid cell.

Figure 3 shows the spatial distribution of the aforementioned features at the modelled resolution (20 m) in the experimental

catchment as well as the relation between snow depth and the selected coordinates.

As the dimensions of the feature space have different units, each is standardized and made non-dimensional by applying a

z-score, so that each set of coordinates has a zero sample mean and sample standard deviation equal to 1. Secondly, inspired260

by the concept of automatic relevance determination (Murphy, 2023), CSMD coordinates are increased (multiplied by 3) to

make their relative weight larger as this feature correlates the most with snow depth. These operations effectively create an

abstract two dimensional feature space that we use to measure the similarity between cells using generalized distances. Figure

4 depicts both the cells in the drone domain (panel a)) as well as the cells where ICESat-2 (panel b)) are available in the feature

space, where the coordinates are not yet standardized. The subsequent step is localisation, i.e., the practice of limiting the265

effect of long-range spurious correlation (Sakov and Bertino, 2011). Both to define the prior correlations matrix and to perform

localisation we employ a widely used damping operator in the form of the Gaspari and Cohn correlation function (GC; Gaspari

and Cohn, 1999), which is defined by distance in feature space and a single hyperparameter: the correlation length scale that

we set to c= 1.5. This operator truncates the observations located further than a radius of two times the correlation length,
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Figure 3. Panels a) and b): spatial distribution of the feature dimensions Climatology of Snow Melt-out Date (CSMD) and Topographical

Position index (TPI) in the Izas experimental catchment. Panel c): spatial distribution of snow depth derived from the drone map of the 3rd

of February. Panels d) and e): the dimension’s relation with snow depth from the drone map acquired on the 3rd of February (black) and with

ICESat-2 for the observed profiles on the 5th of February (yellow).

while including in the neighbourhood all observations located within this radius. Each cell in the neighbourhood is assigned270

a non-zero correlation value ρ=GC(d), computed as the GC function of the generalized distance in the feature space (as

defined in Alonso-González et al., 2023). This definition of neighbourhood also leads to a reduction in computational cost

through domain localisation (Sakov and Bertino, 2011), whereby fewer observations are included when comparing state and

observations in the update computation step of the assimilation algorithm.

In panel b) of Figure 4, we show one example for the definition of a neighbourhood and the assignment of the correlation value275

ρ to the included cells. We exemplify a situation where a cell in the catchment with drone data — depicted therein with a cross

— has to be updated. The solid points in the scatterplot are included in the neighbourhood, hence information is transferred

from those cells to the target cell (the cross) by means of the Kalman update (see step 11 in Algorithm 1 of Alonso-González

et al., 2023), used to constrain the local forcing perturbation ensemble of the target grid cell. As cells closer in feature space

to the target cell should have a larger influence, their correlation ρ is larger as can be appreciated by looking at the size of the280

scatter points. In simpler words, more information is transferred to the target cell from cells with large ρ compared to cells

with low ρ, which are less similar in terms of TPI and CSMD. The shape of the neighbourhood is elliptic due to the differential

weighting of the features, as we designed the CSMD to have a larger effect. Note that in Figure 4 the coordinates are shown

with their (non-weighted) physical dimensions.

3.6 Experiments285

Three experiments are carried out where different observations are assimilated for the water year 2020. To allow a comparison

where we change exclusively the assimilated variables, we use the same spatially correlated prior defined in Table 1 for all the
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Figure 4. Panel a): scatterplot depicting the position in the feature space of the cells from the drone maps. This feature space — created with

TPI and CSMD — is adopted to define the similarity between cells. The points are coloured according to the snow depth observed with the

drone on the 5th of February. Panel b): ICESat-2 snow depth observations in the extended catchment, displayed in feature space, with snow

depth-based colouring. The cross represents one cell from the drone domain where a snow depth of 150 cm was measured. The solid points

are ICESat-2 data points included in the neighbourhood for this cell, with their size proportional to the correlation ρ.

simulations. The three experiments are designed to answer the scientific questions we presented in Section 1 and contextualize

the value of ICESat-2 to the current standard snow DA practices:

– Snow Cover experiment (C): Temporal assimilation of local fSCA retrievals from Sentinel-2. For each grid cell, all the290

available local (not neighbouring) fSCA observations are assimilated. We use this as a baseline simulation.

– Snow Depth experiment (D): Spatio-temporal assimilation of neighbouring snow depth retrievals from the ICESat-2

satellite altimeter. The ICESat-2 observations of the snowpack on the 5th of February are assimilated. Since the profiles

are located outside the experimental catchment, the information is transferred using the methods explained in Section

3.5 and exemplified with Figure 4.295

– Joint assimilation experiment (J): Spatio-temporal assimilation of local fSCA and neighbouring snow depth. All the

observations of experiments (C) and (D) are assimilated, and their respective observation errors are the same as for these

experiments. Note that only the sparse snow depth observations are spatially propagated, while the spatially-complete

fSCA observations are not.

All the experiments are set up with the MuSA system (Alonso-González et al., 2023). The system was already capable of300

jointly assimilating different observed variables at the same location, although joint assimilation has previously only been

tested in a temporal DA setting jointly assimilating fSCA and skin temperature for a single cell experiment (Alonso-González

et al., 2022). Here, for the first time, we perform a hyper-resolution spatio-temporal joint assimilation of snow depth and fSCA.

Each cell is updated with the local observation (if any), located in the same cell position, together with the observations in

its neighbourhood defined as the set of cells located inside a search radius (d < 2c) in the aforementioned feature space with305
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dimensions TPI, and CSMD (Section 3.5). This domain localisation step greatly reduces the computational effort, as it avoids

searching through all the simulated cells. Only information from the ICESat-2 snow depth retrievals — the blue lines in panel

a) of Figure 1 located in the extended catchment — is spatially propagated, as fSCA maps are available for all cells in the

model domain. To allow this, we updated the MuSA system which is now able to select a subset of the available observation

types to spatially propagate information. This allowed us to exclude spatially complete fSCA observations from the spatial310

propagation, which leads to a marked decrease in the computational cost. In practice, that implied modifying the criteria for

the selection of the observations to be included in the neighbourhood. The code for the updated version of MuSA developed in

this study is available online (MuSA: v2.1, Alonso-González et al., 2024).

All the experiments were executed on a local server equipped with a 1 TB Memory and using about 40 processors. The

computational time varied widely from 8 to 60 hours, depending mainly on the server load and on the number of observations315

in a given experiment, as that number influences the amount I/O operations necessary for each update.

3.7 Evaluation

We use the twelve drone-based snow depth maps of the Izas experimental catchment (Revuelto et al., 2021) as ground truth

to independently evaluate the relative performance of the DA in the three experiments. A lower bound (assuming independent

errors) on the measurement error can be estimated at about 1 cm as we have resampled the snow depth maps to the modelling320

resolution (from 1 m to 20 m) with the averaging operator. This is typically one order of magnitude lower than the uncertainty in

the snowpack reconstruction. We aim at evaluating the sampled posterior distribution in terms of the resulting simulated snow

depth goodness-of-fit to these independent observations. We evaluate our results in three ways: i) in time, ii) in space and in

terms of snow depth distribution, and iii) for the entire spatio-temporal ensemble distribution. For i), all the ensemble member

snow depth simulations are spatially averaged over the measured experimental catchment for each day in the simulated water325

year, and compared to the corresponding spatially averaged drone observations. In this way, we can also evaluate how well the

experiments perform in estimating the total snow volume in the catchment. For ii), we visually compare the spatial distribution

of the simulations against the drone-based map measured on the 11th of March, the closest acquisition to the seasonal SWE

maximum. Since the result of the DA problem is a spatially correlated ensemble representing a statistical distribution, we show

one single ensemble member simulation in order to appreciate the spatial structure embedded in the simulation. To choose the330

representative member, we first select the simulation state on 11th of March as this is the closest drone acquisition to the peak-

SWE. Then we spatially average the ensembles and pick the median member of those spatial averages. Note that the selection

of one ensemble member introduces an objective but casual element, as different ensemble members exhibit different spatial

patterns. In the supplement, the interested reader will find maps of the pixel-wise ensemble medians, showing a smoother

spatial distribution.335

To evaluate the probabilistic inference results of the three experiments (iii), we employ the Continuous Ranked Probability

Score (CRPS; Hersbach, 2000), as this metric evaluates the performance of the inferred distribution represented by all the

ensemble members (rather than a single point-estimate such as the median of the distribution) of each simulated cell in terms of
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snow depth compared to the observed reference. In particular, the CRPS quantifies both the precision (certainty or confidence)

and the accuracy (ability to match the observations) of the ensemble as a whole. This is a strictly positive score, where a perfect340

match between the ensemble and the reference would result in a score of 0, while the larger the CRPS score the worse the result.

We compute the CRPS metric for each experiment for all the available drone-based snow depth maps. To evaluate the spatial

distribution of the errors we present two maps per experiment with the average score for accumulation and melting season.

To evaluate how the experiment’s performance varies in time we average the experiment’s score throughout the measured

catchment, thus receiving a single score for each drone-based snow depth map.345

4 Results

4.1 Comparison with drone maps

Figure 5 summarizes the results for all the experiments and shows a comparison with the drone-based validation snow maps. We

first focus on experiment (C) assimilating fSCA as a benchmark representing the current best-practice snow DA. The time series

in panel a) shows the prior and posterior ensemble members averaged over the Izas experimental catchment for experiment350

(C). The ensemble of simulations is precise (low ensemble spread) and accurate (good match to validation data) towards the

end of the snow season. However, the ensemble spread is wider in the snow accumulation months and the ensemble median

overestimates the catchment-average snow depth. From the map in panel d), it is discernible that the simulation correctly

reconstructs the drone-observed snow depth patterns in a relative sense (comparison with panel g)): the areas with larger-than-

average snow depth are correctly recognized, as well as the ones with lower-than-average snow depth, despite the absolute355

values not being correct. Comparing the histogram in panel h) with the reference in l) highlights that the simulation average

overestimates snow depth at peak SWE by 51%. In the simulation, only 24% of the simulated cells are inferred to have less

than 150 cm of snow, while in the drone validation 46% of them are measured in this part of the range.

For experiment (D), panel b) in Figure 5 shows that the assimilation of the sparse snow depth profiles from a single date

substantially narrows and improves the posterior distribution compared to the prior. Notably, during the winter season, the360

accuracy of the posterior is improved: the ensemble median and the black validation points are closer compared to (C). Also

the precision is improved: the ensemble spread is narrower compared to (C). Towards the other end of the season, both accuracy

and precision slightly decrease compared to the first experiment, despite still improving that of the prior simulation. Panel e)

shows that the posterior simulation is able to match many of the spatial patterns that the drone map shows in panel g), such as

in the high-elevation accumulations under the ridge on the western side of the catchment. Also, patterns in the north-east part365

of the catchment are well reproduced. However, the valleys affected by wind drift and the corresponding wind-blown ridges

in the south-east portion of the catchment are only partially reproduced. The histograms in panels j) and l) show the snow

depth distributions’ comparison. The measured catchment-average snow depth is only over-estimated by 23%. In contrast with

experiment (C), low snow depth areas are well represented and better fit the histogram of the measured map. However 25% are
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Figure 5. Panels a), b) and c) show the prior (gray) and posterior ensemble simulations (coloured) as catchment-average snow depths over

the whole water year for experiment (C), (D), (J), respectively. The black points are the drone-based snow map averages serving as validation

data. The blue and orange stars show the timing of the fSCA and snow depth observations that are assimilated in each experiment. Panels

d), e) and f): simulated snow depths are shown as maps for the 11.03.2020 (date shown with a vertical dashed line in panels above) for

a representative ensemble member that is nearest to the ensemble median catchment average snow depth for experiment (C), (D), (J),

respectively. Panel g): the corresponding 11.03.2020 drone-based snow depth map at the model’s spatial resolution (20 m). Bottom panels h),

j), k) and l): snow depth histograms corresponding to the maps in the panels above, using the same colour scale. µ indicates the experimental

catchment-average snow depth.

simulated with very high snow depth (> 300 cm), while in the drone validation only 9% of the cells are measured with such370

snow depths.

For experiment (J) the time series in Figure 5c) shows that the inference produces a precise posterior ensemble (low spread)

throughout the water year. In the accumulation period and up to the peak-SWE, the catchment-average snow depth is accurately

reconstructed. Notably, for the 11.03.2020 acquisition the measured and simulated catchment-average snow depth differ by only
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7 cm. However, there is a negative bias in spring, which we do not see in experiments (C) (unbiased) or (D) (positive bias).375

The comparison of simulated and measured maps in panels f) and g) shows that the posterior simulation is able to match well

most of the relative spatial patterns. For example, the accumulation below the ridge on the western border of the catchment is

simulated with higher-than-average snow depth. Moreover, the absolute snow depth values are very similar in the western edge

of the catchment. The cells located in the deep valleys and on the corresponding ridgelines in the south, and most of the flatter

accumulation areas in the north-east have the correct relative snow depth patterns. The nearly snow-free south-east-facing slope380

located in the northern part of the catchment is also correctly simulated. In terms of distribution, the histograms in panels k)

and l) show clearly that the simulation reproduces not only the mean but also the general shape of the distribution, including

the tails. Low snow depths (<150 cm), simulated for 51% of the cells, are only slightly more than the number of cells measured

in this range (46%); as well as for very high snow accumulation values (> 300 cm): 12% of the cells are simulated and 9%

measured.385

4.2 Ensemble quantitative evaluation

Scoring the entire spatio-temporal ensemble of the three experiments allows for a more quantitative comparison of the inference

performance, as panels d)-f) of the previous figures only show one representative ensemble member’s simulation. Figure 6

shows the CRPS computed using the drone-based snow depth retrievals as a reference for all the available snow depth maps,

focusing on the seasonal (panel a)), and spatial (panels d)-i)) distribution. Focusing on the time evolution of catchment-average390

CRPS, the largest CRPS values are found during the accumulation season, while the errors decrease in the melting season,

together with a reduction in the absolute values of snow depth. In the accumulation season, the average of the CRPS values

show that the ICESat-2 assimilation (D) has a similar performance (44±18 cm) to the fSCA assimilation (C), whose CRPS is

44±10 cm. Both these experiments are substantially worse than the joint assimilation (J), scoring 35±7 cm. Thus, adding the

ICESat-2 snow depth profiles to fSCA in the set of assimilated observations improves the overall error score by 19% for the395

accumulation season. In the melting season, experiment (D) scores worst but still improves the prior CRPS by 25%. However,

experiment (C) simulations are not outperformed by the joint assimilation (J): their results are respectively 14± 11 cm and

16± 11 cm.

Panels d) to i) in Figure 6 show the spatial distribution of the CRPS. For experiment (C) (panels d) and e)), the CRPS is

generally lower for the melting season. Despite the higher values in the accumulation season, only 7% of the evaluated cells400

have a high CRPS ( > 100 cm). The location where large errors cluster are the windblown ridges in the south-east and on the

west of the experimental catchment where a close look at panels d) and g) of Figure 5 shows that medium snow depths are

inferred instead of low snow depth or no snow. Experiment (D) performs better during the accumulation season: only 1% of the

cells have a very high CRPS (> 150 cm) in that season, compared to 4% in the melting season. Such large errors are clustered in

the south-west of the catchment. The low elevations on the eastern side of the catchment have better scores (compared to higher405

elevations) in both the accumulation and melt season. Experiment (J) shows a very similar error pattern distribution in both

the accumulation and ablation season (in contrast with the other experiments). Less than 4% of the simulated cells have a high
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CRPS (>100 cm) for both the accumulation and melting season. By comparing panels h) and i) with the absolute snow depths

(panels b) and c)), it is clear that the largest errors are located where very high snow accumulation are located (> 300 cm), such

as the accumulation areas under the ridge on the western side of the catchment and some of the areas in the valleys in the south410

of the catchment. Supplemental Figure 1 clarifies that the snow depth in the mentioned areas is underestimated.

Focusing on the use of the novel ICESat-2 snow depth retrievals, the experiments show that adding these observations for

constraining the inference of the seasonal snow evolution has a positive impact on the simulation results. Comparing the CRPS

over the experimental catchment of experiment (D) to the prior (no observation assimilated) shows an improvement of 20 cm

for the accumulation season and 10 cm for the melting. When adding snow depth to fSCA in the set of assimilated observations415

— hence comparing experiments (J) and (C) — the improvement is clear with a 10 cm CRPS reduction for the accumulation

part of the season. However, there is a slight increase of 2 cm in the CRPS for the melting season, despite the left panel of

Figure 6 showing experiment (J)’s score being worse only for two of the drone acquisitions.
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Figure 6. The performance of the three assimilation experiments is presented through the Continuous Ranked Probability Score (CRPS),

where a perfect match of the compared distribution would score 0, while the larger the score the worse the result. In panel a), the temporal

evolution of the experiments’ results is shown by spatially averaging throughout the experimental catchment. Panels b) and c), show the

drone maps averaged for the accumulation (b)) and melting (c)) season. In panels d) – i), the spatial distribution of the errors obtained by

averaging the CRPS computed for the validation maps acquired during the accumulation season (up to and including the 11th of March) is

shown in the upper panels, and for the melting season in the lower panels.

5 Discussion

In this paper, three DA experiments are carried out. All the experiments employ the same assimilation algorithm (DES-MDA),420

and the spatially correlated prior distributions (Table 1) are the same. In each experiment we assimilate remotely sensed obser-

vations using a different mix of snow variables, and all experiments successfully improve the prior simulation by constraining

the simulations with information coming from the retrievals. However, we obtain very different results depending on the as-

similated variables. The observations in the three experiments are fSCA retrieved from Sentinel-2 (C), the novel snow depth

retrievals from the laser altimeter ICESat-2 (D), and finally a joint assimilation experiment using both these retrievals (J). To425
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the best of our knowledge, this is the first example of hyper-resolution multivariate snow DA. Moreover, this is the first study

not only to assimilate the ICESat-2 snow depth observations but also to show how these observations acquired along profiles

located outside the area of interest can be harnessed directly through spatial propagation of information using spatio-temporal

DA. This system successfully updates the snowpack states in the Izas experimental catchment both with local Sentinel-2 fSCA

observations as well as ICESat-2 observations from profiles located in its proximity. The experiments with the ICESat-2 profiles430

exploit topographical and snow climatological indices to define a similarity measure used in the correlation function.

DA consists of combining uncertain information coming from models and observations. In our case, the unconstrained model

(i.e., the prior) shows an overestimation of the snow depth, especially during the melting season (see gray simulations in panel

a) of Figure 5). The errors in the prior can be attributed to two different sources: the forcing data and the model itself (Raleigh

et al., 2015). Considerable errors in the forcing data are expected to dominate and thus, by design, the forcing formulation of DA435

allows for the correction of such errors (Evensen et al., 2022). We emphasize that when carrying out high-resolution, spatially-

distributed modelling one has to expect large errors despite carefully chosen climatic forcing and topographic downscaling,

given that the high spatial heterogeneity of the drivers of snow accumulation and redistribution processes cannot be explicitly

represented in the forward modelling. On the modelling side, one can expect that some of the parametrised processes (e.g.

albedo decay or precipitation partitioning) in FSM2 suffer from errors. Here, some of the snow processes can be substantially440

different and not well captured by FSM2’s parametrisations, which were originally implemented for a field site in the European

Alps (Essery, 2015). With the prior employed in our study (Table 1), there is just as great a need for information in the

melting season as in the accumulation season. The fSCA observations contains a cumulative signal of both accumulation and

melting processes. On the other hand, ICESat-2 snow depth observations from the 5th of February mostly contain accumulation

processes-related information. This could explain the better performance for the melting season of experiments (C) and (J)445

compared to (D) in which only observations from the accumulation season were assimilated.

5.1 Experiments’ results

In experiment (C), we simulate the snowpack and assimilated fSCA to create a baseline. The fSCA generally shows lower

correlation with snow depth earlier in the snow season (when the ground is fully covered by snow) compared to the melting

season (Girotto et al., 2020), but previous works show that assimilating fSCA can allow for an accurate reconstruction of peak450

SWE (e.g. Girotto et al., 2014). Indeed, experiment (C) shows high accuracy and precision especially towards the end of the

season. As the experiments adopt a smoothing approach, the melt-out pattern information contained in the fSCA observations

is also propagated backward in time, and the posterior simulation offers a relatively accurate reconstruction for the peak-SWE:

the validation is clearly close to the median ensemble spread, but the reconstruction for this part of the season is less precise

compared to experiment (D), and both less precise and accurate compared to experiment (J). In terms of relative spatial patterns,455

experiment (J) shows the best visual agreement with the validation of drone-based maps for peak-SWE, despite overestimating

the absolute values in the melting season (Figure 5).
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Research question a) asked about the value of using ICESat-2 observations to infer catchment-scale snow depth and its dis-

tribution. We can answer this question with the results of experiment (D), where we assimilate snow depth observations from

ICESat-2 on two profiles outside the catchment, spatially propagating this information to the experimental catchment. The460

snow depth was acquired on the 5th of February, about a month before peak SWE. As panel a) in Figure 5 shows, this informa-

tion leads to a more precise reconstruction of the catchment-average peak-SWE compared to experiment (C), which adopted

state-of-the-art methods for seasonal snow reconstruction with DA. This demonstrates that the spatial transfer of information

method successfully relates snow depth and the features when averaging over the whole basin. However, not all the relative

spatial patterns of the simulation match those of the validation maps (panels e) and g), Figure 5). The observations we use465

in this experiment are not direct measurements in the experimental catchment, so the fact that the spatial distribution of the

simulation is not entirely reproduced is not surprising. While the entire area experiences similar snow conditions there are local

differences which can be only partially captured with a low dimensional space, as TPI and CSMD do not fully characterize the

snow depth distribution. For example, single cells with extreme values located in the experimental catchment might be similar

in terms of TPI and CSMD to cells observed by ICESat-2 with very high snow depth, but also to some medium snow depth470

cells, and thus will not receive an optimal update.

Towards the end of the season, both the precision and accuracy of the experiment (D) are degraded when compared to exper-

iment (C), and the CRPS score is almost the same as for the prior for this point of the season. Here, the timing of the single

assimilated observation is an important factor: most of the information of early-season snow depth observations is related to

accumulation processes (precipitation perturbation) rather than melting processes, in line with previous findings by Guidicelli475

et al. (2024). The very late melt-out date we obtain with this experiment can mostly be attributed to the fact that also the prior

simulates the snowpack with such a late melt-out date. Moreover, Margulis et al. (2019) showed that assimilating snow depth

observations later in the season, when some ablation processes have taken place, improves the melt season estimates compared

to assimilating earlier snow depth observations. As a recommendation, we note that it would be ideal to add more ICESat-2

observations later in the water year so as to better constrain the melt season. Moreover, further experimenting with different480

spatio-temporal configurations for the assimilated observations in different snow environments could help shed more light on

the utility of ICESat-2 in the context of seasonal snow modelling.

To research question b), asking whether ICESat-2 snow depths or fSCA observations perform better for snow data assimilation,

we cannot give a clear answer for the entirety of the snow season. We showed that assimilating ICESat-2 provides a better

estimate of average snow depths during accumulation season, which is very valuable for water managers, while assimilating485

fSCA results in a better relative spatial distribution and melting season reconstruction.

In experiment (J), we assimilate all the observations used for the previous two experiments. These two sets of observations

complement each other’s coverage in time and space. ICESat-2 observations occur in February, when a deep snowpack causes

fSCA relation with snow depth to saturate, and hence provides little or no instantaneous information (Margulis et al., 2015).

However, fSCA is spatially complete and temporally denser which thus complements the sparse, but more direct, snow depth490

observations of ICESat-2, which are located along two profiles outside the experimental catchment. We show that the joint
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assimilation experiment (J) performs better compared to the experiments (C) and (D) in terms of the CRPS in the accumulation

season, showing a better representation of the spatial distribution of snow depth. For the melting season, experiment (J) has a

comparable score to experiment (C), in which the melting season seems already accurately modelled. The time series in panels

a) and c) of Figure 5 show that in terms of catchment average snow depth, experiment (C) performs slightly better. However,495

Figure 6 explains the spatial distribution of the errors and it is clear that for most of the cells both the simulations have a similar

score to (C). It is only in the large snow drifts that experiment (J) is not able to simulate large snow depths. With experiment

(J)’s results in mind, it is possible to answer research question c) on whether DA is able to use information from both snow

depth and fSCA combined. We found that the DES-MDA algorithm is able to jointly leverage observations of different snow

variables in the same experiment, with better results compared to the independent assimilation of either observation.500

5.2 Outlook and future developements

Simulating the snowpack with a physically-based model (i.e. FSM2) allows us to infer unobserved but socially relevant vari-

ables (such as SWE) or fluxes (such as snowmelt). The assimilation of fSCA has already been shown to accurately reconstruct

the peak SWE (Girotto et al., 2014), and here we show that adding snow depth observations from ICESat-2 in the pool of

assimilated variables improves the peak basin-average snow depth. Despite not being able to directly demonstrate it because505

of missing large-scale SWE validation measurements for Izas, we can postulate (based on results on SWE reconstruction ex-

periments using complete snow depth maps Margulis et al., 2019; Ma et al., 2023) that ICESat-2-retrieved snow depth can

improve the total water resource estimation for basins in complex terrain. The satellite ICESat-2 will potentially collect data

until the mid-2030s, and it is necessary to further refine the methods to inform seasonal snow models and exploit this dataset

for mountain water resources management. Our results show that this dataset has the potential to become a functional tool510

for water managers to estimate the maximum seasonal snow accumulation. However, especially within an operational snow

hydrological forecasting context (e.g. Mott et al., 2023), there is a clear need to reduce the processing time of the ICESat-2

data products which currently takes months, and ICESat-2 snow depth measurements from the accumulation season may thus

not be available before the end of the melt season. Moreover, the proposed method relies on a spatially correlated prior to

propagate the sparse observations. This step requires the inversion of a squared matrix as large as the number of the simulated515

cells. Since this is a computationally expensive process, further research is recommended as approximations might be needed

to extend the proposed methods to larger basins. In addition, larger domains could be split into blocks to reduce the cost of

matrix inversions and thus help make this process more tractable.

In this paper, the spatial information propagation depends on a feature space defined only with two dimensions, that has not

been tuned systematically to improve the results. Optimizing the selection of the feature space dimensions as well as tuning520

their relative weight and the correlation length scale (the hyperparameters of the spatial dependence) would be computationally

expensive but may lead to better results, as experiments II and III in Alonso-González et al. (2023) show. For example, we found

that the exclusion of the Winstral index (Winstral et al., 2002) from the definition of the feature space improved the inferred

spatial patterns for all the experiments. We envision future work in which the optimization process could be fruitful for data-
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rich and vast basins such as the repeated measurements in the western US by the Airborne Snow Observatory (ASO, Painter525

et al., 2016). Despite the optimization or inference of the hyperparameters being foreseen to be very expensive in terms of

computational resources, we acknowledge that it could be performed offline for a single season, exploiting the repeated patterns

of the seasonal snow evolution (Sturm and Wagner, 2010; Revuelto et al., 2014). In terms of methods, we envision the use of

hierarchical data assimilation for the statistically-optimal inference of the aforementioned hyperparameters (Katzfuss et al.,

2020). In simple terms, this would increase the complexity of the DA system by defining a hyperprior on the hyperparameters530

that govern the spatial propagation of information. The assimilation would then lead to an optimal inference of the seasonal

snow evolution for the current water year after inferring the spatial hyperparameters. Moreover, the learned hyperparameters

could conceivably be transferred to other water years without the need for a second round of hierarchical inference. To alleviate

computational bottlenecks, hyperparameter inference could be achieved using simpler snow models that are available in MuSA.

Moreover, another option is splitting the spatial propagation problem from the temporal DA — provided that several years of535

snow depth maps are available for training and testing independently the hyperparameters — to alleviate the computational cost

by avoiding the need to run a snow model for hyperparameter tuning. A feature space including various terrain parameters and

geographical, elevation, land-use-related coordinates to define the similarity in terms of snow depth or SWE has been adopted

in several recent statistical snow modelling studies based on satellite or airborne data covering larger domains (Guidicelli et al.,

2024; Hultstrand et al., 2022; Liu et al., 2024).540

A final note is warranted concerning the spatial resolution of the experiments (20 m). We selected this cell size to test the

ability to retrieve snow depth at a hill-slope scale with the photon-counting technology that ICESat-2’s ATLAS is equipped

with. In experiment (D), we partially reproduced the spatial patterns observed through the drone maps. Lowering the spatial

resolutions of the simulation would still be adequate for mapping water resources and would make the assimilation exercise

much easier: many of the accumulation features are averaged out already at 100 m resolution. Assimilation of snow depth data545

at lower spatial resolution has been found to give better results in previous synthetic ICESat-2 observations propagation with

neural networks (Guidicelli et al., 2024).

6 Conclusions

In this study, we present a novel approach where ICESat-2 snow depth observations along profiles are assimilated for the

first time to constrain high-resolution snowpack simulations across an entire unobserved catchment. We worked with the data550

assimilation system MuSA, which had capabilities to propagate information in space and time developed in Alonso-González

et al. (2023). However, we modified it to exploit ICESat-2’s sparse observations and jointly assimilate a spatially-complete

variable. We performed a set of three experiments where only Sentinel-2 fSCA, only ICESat-2 snow depth, and both these

observations together, were assimilated while keeping the assimilation algorithm and the prior information the same, in order

to evaluate the potential of the satellite laser altimeter ICESat-2 for updating seasonal snow models.555
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We find that including two snow depth profiles in the set of assimilated observations improves the snowpack simulation in

terms of average snow depth, especially during the accumulation phase of the season — even though the snow depth profiles

were located completely outside the experimental catchment of Izas (55 ha), where we validate the experiments using drone-

based snow depth maps. Results show that the relative spatial patterns can partially match the validation drone maps when

assimilating exclusively the snow depth profiles, since the snow depth pattern is very sensitive to the design of the spatially560

correlated prior which governs the spatial propagation of information. Nevertheless, the joint assimilation of Sentinel-2 fSCA

and snow depth from ICESat-2 bridged such limitations and performed best in terms of average snow depth as well as capturing

the spatial distribution.

These findings indicate that the ICESat-2 satellite can be exploited to improve the current state-of-the-art snow reanalyses gen-

erated by assimilating fSCA. Notably, the proposed workflow exploits globally-available datasets. Provided a high-resolution565

DEM — which the geosciences community generally advocates the need for — ICESat-2’s surface elevation measurements

can be used to observe snow depth along profiles in inaccessible regions where snow amounts are still very hard to quantify.

As multivariate DA techniques mature, the snow community can begin to exploit the plethora of snow observations (e.g. snow

depth, fSCA, land surface temperature etc.) to constrain snow models and to shed light on the still unsolved snow hydrology

problem of inferring the spatial and temporal distribution of SWE.570
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