
REVIEWER #1

Major Comments:

COMMENT # 1.1

The article presents the results of three data assimilation studies that incorporate (1) fractional
snow-covered area from Sentinel-2, (2) snow depth from ICESat-2, and (3) both fractional
snow-covered area and snow depth to determine which approach has the greatest improve-
ment on modeled snow depths. The study is performed for a site in the Spanish Pyrenes where
multiple drone-derived DEMs are available to assess the performance of the data-assimilated
modeled outputs. The authors find that the inclusion of both fractional snow-covered area
within the catchment and ICESat-2 snow depths from outside the catchment improve the
model’s ability to capture the distribution of snow depths in the catchment. Model perfor-
mance is particularly improved during the snow accumulation season when ICESat-2 data
are available, and degrades as the dominant processes that dictate snow distribution shift from
accumulation to ablation processes. The results of the study are interesting and the data as-
similation approach appears to be a promising method to make the most use out of the sparse
ICESat-2 tracks. I appreciate the detailed descriptions of agreement and disagreement between
model outputs and observations. However, the writing can be a bit difficult to follow at times
and I recommend that the authors make a number of revisions to the text and the figures in
order to improve the manuscript.

Reply:

We appreciate the Reviewer’s interest, time, and insightful comments. We are very
grateful for the constructive suggestions that have helped us to make study better and
more readable. The following provides a point-by-point response to the Reviewer’s
comments.

Major comments:

COMMENT # 1.2

There are several places where references are located early in sentences and it is unclear if they
apply to the entire sentence, or where there is no reference provided but it should be. I’ve listed
a few lines here but please make sure references are clear throughout the text.

a. lines 17-18: Is Mott et al. (2018) for the entire sentence? If not, you need another
reference to support everything that comes after its current location.

b. Lines 105-107: You say that most DA research on snow has focused on temporal data
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assimilation with a few exceptions. You cite the exceptions but not the “most”.

c. Lines 118-119: The ATL03 data product is still be validated? You need to provide a
reference here or remove the comment.

d. Lines 129-133: You need some references here for information about the watershed, such
as the fraction of precipitation that falls as snow and total precipitation.

e. Lines 147-154: Neuenschwander et al. 2020 (https://doi.org/10.1016/j.rse.2020.112110)
showed strong returns over snow for the weak beams. You should cite them here and I
recommend you re- examine your weak beam data

Reply:

We thank the Reviewer for the detailed reading and checked the whole text for inap-
propriate or unclear references located early in sentences. Following are the detailed
replies to the specific phrases:

a. The reference is for the entire sentence, so we moved it to the end.

b. Added a relevant reference at the end of the phrase where it is stated that most
snow DA research focuses on purely temporal DA (Girotto et al., 2020).

c. We find that ATL03 data can provide snow depths with ca. decimetric accuracy
(see the conference presentation: Treichler et al., 2023). Some of the authors
also have a publication in preparation about the validation of ICESat-2 mea-
surements with drone data. We will either refer to the publication if it becomes
available in time, or remove this part.

d. Moved the citation to Revuelto et al. (2017) to the end of the sentences that refer
to that paper.

e. This is a valid point, we agree with the Reviewer that the weak beams may con-
tain valuable information over bright, snow-covered terrain and should thus
not be generally discarded. In Neuenschwander et al. (2020), ATL08 data is
validated in the Finnish boreal forests, a terrain with little topographic relief.
ATL08 splits photons in 100 m, while we work with 20 m cells, diminishing by a
factor of five the number of photons available in one cell. There are also strong
terrain differences between the mentioned study and the Izas study area, where
a large average slope can negatively impact snow depth estimation in case of
horizontal geolocation inaccuracy (3 to 4 meters; Magruder et al., 2021). Finally,
only a fourth of the photons are available for the weak beams profiles (strong to
weak beam energy ratio is 4; Neumann et al., 2019) compared to strong beams,

2 / 24



making the statistical estimation of snow depth less reliable. Such considera-
tions made us discard the weak beams observations, but we consider adding
them in the revised manuscript if they prove useful to the goals of the study.

COMMENT # 1.3

The introduction is very long. I understand that the authors feel like they need to provide
background on a number of topics in order to justify and explain their work, but the reader
is left wondering where they are going with the work because the introduction is so long. I
recommend that the introduction is shortened considerably. You could base each paragraph
around the following topics: (1) Why it is important to know snow depths across watersheds,
(2) ICESat-2 looks like it can be used to estimate snow depths along its flight tracks, albeit
with fairly large uncertainties, but we need a way to spatially and temporally extrapolate,
(3) data assimilation techniques have shown promise for extrapolation, (4) this study explores
data assimilation of ICESat-2 snow depths and Sentinel-2 snow-covered area. Then you can
move a lot of the extra detail on techniques to measure snow depth (currently lines 33-50 and
then 51-63 on ICESat-2 details) and various data assimilation techniques (currently lines 76-
114) to the supplement so readers who are not familiar with those topics have a resource to
lean on without bogging down the reader who knows plenty about those topics.

Reply:

We made the introduction shorter, and we thank the Reviewer for suggesting a nice
paragraph structure for this section. We believe the introduction is now easier to read
thanks in part to this suggestion.

COMMENT # 1.4

This seems like something pretty minor but all figures should have letter labels. Right now
you need to refer to some of them by location and it would be a lot easier if they were all
consistently lettered.

Reply:

We thank the Reviewer for this practical comment. We added the labels to the panels,
and improved the references to the figures in the text.

COMMENT # 1.5
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When describing the use of ensemble members in the data assimilation section, you state that
you perturb some forcing variables. Why were those specific variables perturbed? You describe
the shape of the perturbation but not the magnitude. What were the ranges of perturbation
magnitudes and how were they selected?

Reply:

We chose these variables (temperature, precipitation and longwave radiation) be-
cause perturbing them allows us to account for uncertainty in the forcing data and
obtain an ensemble with a variety of possible scenarios for the seasonal snow evolu-
tion:

• the precipitation perturbation allows to locally adjust the snow accumulation
or removal processes that are not explicitly modelled (e.g. wind redistribution);

• the perturbation to the temperature allows for different precipitation phase sce-
narios (liquid or solid) and modulates the sensible heat flux;

• the perturbation to the longwave radiation modulates the radiative part of the
energy balance, thus modifying the internal energy and melt processes in the
snowpack.

One should note that it is an equally acceptable choice to abandon the forcing for-
mulation of DA and to instead infer a set of internal parameters of the snow model
(FSM2). However, given our purpose of experimenting with a new set of remotely
sensed observations, the choice of a reasonable set of parameters or another is irrel-
evant for the scope of the paper. The parameters for the perturbation applied to the
forcing to generate the prior were previously only available from the configuration
files uploaded in the zenodo repository Mazzolini et al. (2024), but to clarify we have
now added the following Table 1 to Section 3.4 to fully describe the prior perturba-
tion parameter distribution employed for each of the variables. The parameters were
chosen based on previous studies’ values (Alonso-González et al., 2022, 2023).

Changes:

In the presented experiments, the perturbed forcing variables are air temperature,
precipitation and downwelling longwave radiation. The perturbation parameters
are time-invariant throughout the water year, and the prior perturbation parameters
are extracted via transformations

:::
are

:::::::::::
extracted from a logit-normal distribution rather

than Gaussian , to restrict
:::::::
whose

::::::
prior

:::::::::::::::::::
hyperparameters

:::::
can

:::
be

::::::
seen

:::
in

:::::::
Table

:::
1.

:::
We

:::::::::
choose

:::::
this

:::::::::::::
distribution

::::::
over

::
a
:::::::::::::

log-normal
:::
or

:::
a

:::::::::::
Gaussian

:::::::::::::
distribution

:::
as

:::::
the

:::::::::::::
logit-normal

:::::::::
restricts

:
the perturbation within defined bounds (Aalstad et al., 2018),
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(Guidicelli et al., 2023)
::::::
upper

:::::
and

:::::::
lower

:::::::::
bounds,

:::
in

::::::::::
contrast

::::
the

::::::
other

:::::::::::::::
distributions

:::::::
which

:::::::
would

::::::
have

::::::::::::::
respectively

:::::
only

:::::
one

:::
or

::::
no

:::::::::
bounds

:::::::::::::::::::::::::::::
(Aitchison and Shen, 1980)

. The nature of the perturbation is multiplicative for the precipitation (
:::
in

:::::
part

:
to

prevent non-physical negative values) and additive for the other variables.

Table 1:
::::::::::::::::::
Hyperparameters

:::::
for

:::::::::::
extraction

::::
of

::::
the

:::::::::::::::::
logit-normally

:::::::::::::
distributed

::::::
prior

:::::::::::::
perturbation

::::::::::::::
parameters.

::
A

:::::
note

::::
for

::::
the

::::::::::::
DA-expert

:::::::
reader

::
is

:::::
that

::::
the

:::::::::::::::::
hyperprameters

:
µ
::::::

and
:::
σ

::::
are

:::::
the

:::::::
mean

:::::
and

:::::::::::
standard

::::::::::::
deviation,

:::::::::::::::
respectively,

:::
of

:::::
the

::::::::::::
associated

::::::::::
Gaussian

:::::::::::::::
distributions

:::::
that

:::::
the

::::::::::::::::::::
logit-transformed

::::::
prior

:::::::::::::::
perturbation

:::::::::::::
parameters

:::::::
follow.

::::::::::::
Numerical

::::::::
entries

:::::::::
without

::::::
units

::::
are

:::::::::::
implicitly

::::::::::::::::
dimensionless.

:::::::::::
Perturbed

:::::::::
Variable

:::::
Type

: :
µ

: :
σ
: :::::::

Lower
::::::::
bound

:::::::
Upper

::::::::
bound

::::::::::::::
Precipitation

:::::::::::::::
Multiplicative

:::::
−0.9

:::
0.7

: :::
0.1

:
5
:

::::::::::::::
Temperature

:::::::::
Additive

: :
0
: ::

0.5
:::::
−8K

: :::
8K

:::::::::::
Longwave

:::::::::::
radiation

:::::::::
Additive

: :
0
: :::

0.5
: ::::::::::

−8Wm−2
: ::::::::

8Wm−2

COMMENT # 1.6

The correlation length scale is stated as 1.5 in line 283. That is a unitless number. What does
that equate to in terms of meters? Is it 30 m (1.5 grid cells)? Does that mean there is no
correlation more than two times that distance away based on your explanation in line 280?
There has been a lot of research on spatial correlation of snow depth and you need to tie your
choice for this parameter to the literature. Right now you state that it was chosen to make
the “size of the resulting neighborhoods acceptable”. Acceptable to who or based on what? I
recommend looking at https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2020WR027343
and references therein regarding spatial correlation length scales. You could calculate vari-
ograms for your drone-based snow depths to determine the most appropriate scale for your
study region.

Reply:

We thank the Reviewer for this astute question. This Comment, together with the fol-
lowing Comment and Reviewer 2 Comment 1.5, made it clear that we need to expand
the explanation of the spatial transfer of information from the available ICESat-2 ob-
servations. We offer here an answer that will be incorporated in Section 3.5 of the
revised paper.

The correlation length scale is unitless because it does not correspond to a geo-
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Figure 1: Panel a): scatterplot depicting the position of the cells from the drone maps in the
feature space. This space – created with TPI and CSMD – is adopted to define the similarity
between cells. The points are colored according to the snow depth observed with the drone.
Panel b): ICESat-2 snow depth observations in the extended catchment, displayed in feature
space, with snow depth-based coloring. The cross represents one cell from the drone domain
where a snow depth of 150 cm was measured. The solid points are ICESat-2 data points
included in the neighbourhood for this cell, with their size proportional to the correlation ρ.

graphical distance but to a distance in standardized multi-dimensional feature space,
i.e. the similarity with regard to TPI and CSMD. In simpler words, information is
transferred between cells that have similar convexity and average snow disappearence
date.

To guide the reader in understanding this concept, we add to the revised manuscript
an example showing how the neighbourhood is defined in the feature space, with the
help of Figure 1 that you find below. Focus on panel b): there we exemplify a situ-
ation where a cell in the catchment with drone data – depicted therein with a cross
– has to be updated. The solid points in the scatterplot are selected to be part of the
neighbourhood, and all of them have influence on the Kalman update (see step 11
in Algorithm 1 of Alonso-González et al., 2023), used to update the local ensemble
of the target grid cell. As cells closer in feature space to the target cell should have a
larger influence, their ρ is larger, which can be appreciated by looking at the size of
the scatter points.

COMMENT # 1.7

The model has been described in more detail by the authors in their other publications that are
cited in this manuscript, but it would be helpful to have a bit more detail in- places. For ex-
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ample, in lines 286-287 it is stated that ICESat-2 snow depths are “spatially propagated” but
fSCA information is not. What does this mean exactly? In the spatial propagation section you
describe certain parameters that can be extracted from digital elevation models and how they
are calculated over various distances. But there isn’t a clear explanation of how the ICESat-2
data from outside the drone domain are spatially propagated. There is also no description of
how the data are actually assimilated. Are the downscaled ERA5 data used to estimate snow
patterns and then FSM2 adjuststunable parameters to better match the fSCA maps? Is this
what you are trying to explain in line 302? Everything is fairly disconnected as is and the
reader needs to have a general idea of how the modeling works without having to go back and
read multiple other journal articles.

Reply:

We thank the Reviewer for this constructive critique. The detailed explanation of the
unclear topics greatly helped us to expand Section 3.5. Below, we try to answer the
Reviewer’s individual questions:

• "For example, in lines 286-287 it is stated that ICESat-2 snow depths are “spatially
propagated” but fSCA information is not. What does this mean exactly?" In purely
temporal (no spatial propagation) ensemble-based data assimilation, the obser-
vation located in a cell is used for a comparison with the corresponding observ-
able state variable to compute a direct update to the prior’s forcing perturba-
tion parameter via an (ensemble) Kalman analysis step. For a more detailed
explanation of this, see equation 6.37 to 6.39 in Evensen et al. (2022). In spatio-
temporal data assimilation, the observations taken into account for updating
the state in a certain cell, are all those that are located in the neighbourhood of
the cell (see the updated Section 3.5 for an explanation of how the neighbour-
hood is defined). However, fSCA observations are spatially complete: hence
every cell (or almost) has multiple observations of fSCA. As a consequence, we
do not use other fCSA observations other than the local ones located in the cell
itself to update the parameters in that cell. We hope to have clarified this in the
updated version of Section 3.5

• "But there isn’t a clear explanation of how the ICESat-2 data from outside the drone
domain are spatially propagated." In contrast to what we just said about fCSA,
we stated that we spatially propagate information from ICESat-2 observations.
This means that when we update the perturbation’s parameter for any cell in
the experimental catchment, part of the ICESat-2 observations (the ones falling
into its neighbourhood) are used. Algorithm 1 in Alonso-González et al. (2023)
contains the practical equations used for the spatio-temporal assimilation with
the DES-MDA scheme. Here we highlight that when a cell is updated, the ob-
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servations located in a cell which is close in the feature space will have a large
correlation ρ, and hence have a large influence on the update, while observa-
tions located in a cell which is far (but still inside the neighbourhood) will have
a small ρ and hence have limited influence in the update. We hope to have clar-
ified this in the updated version of Section 3.5, and a visual example of this is
offered in Figure 1.

• "There is also no description of how the data are actually assimilated." We use the as-
similation algorithm DES-MDA, which is an iterative (‘multiple data assimila-
tion’ or MDA) and so-called deterministic (non stochastic) version of the ES. In
short, this iterative assimilation algorithm performs a form of likelihood tem-
pering by inflating the observation’s standard deviation, so as to divide the
update in multiple iterative smaller update steps – without violating Bayes’
theorem – and leading to better performance with nonlinear models. The de-
terministic (also known as square root) nature of this ensemble Kalman scheme
simplifies the numerics since it does not involve perturbations in observation
space while also leading to improved performance with a smaller ensemble
size. We will modify Section 3.4 to point the reader to Alonso-González et al.
(2022) and Alonso-González et al. (2023) where the practical implementation of
this algorithm is described.

• "Are the downscaled ERA5 data used to estimate snow patterns and then FSM2 ad-
justs the tunable parameters to better match the fSCA maps? Is this what you are try-
ing to explain in line 302?" ERA5 data is topographically downscaled and used
(together with the prior perturbation parameters) to run an ensemble of FSM2
simulations in every cell. In the assimilation of fSCA it is possible to imagine
every cell independently from its neighbours. As we are using what is usu-
ally called forcing formulation of DA, the updates (or you can think of them
as adjustments) are applied directly to the forcing perturbation’s parameters
and subsequently indirectly to the model states by re-running the model with
updated perturbed forcing. We try to give a practical example with how the
assimilation of fSCA would influence the perturbation parameters. First, an en-
semble of FSM2 simulations is run over a cell. We will take the time point of
the observation, and use the distribution (represented by the ensemble) of pre-
dicted fSCA to compare with the observed fCSA. At this point an update of the
perturbation parameters is computed in such a way that the updated perturba-
tions will be sampled around those perturbations values that led to a predicted
fSCA similar to the observed fSCA. The ensemble simulation with the updated
perturbation parameters will lead to a fSCA simulation closer to the observa-
tion. While this is only an example, DA algorithms such as the ES-MDA we use
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have already been tested for assimilating various snow observations in many
studies (see Alonso-González et al., 2022, and references therein).

COMMENT # 1.8

Figure 4-6: I really like that all the ensemble member’s basin-averaged snow timeseries are
shown in these figures, I like the color palette for the maps, and I like that the colors from
the maps carry over into the histograms. That said, I think it is a bit of wasted space to
keep showing the done map and histogram in every figure, especially since the map is also in
Figure 1. I recommend showing a different map in Figure 1 to provide some added context
and then merging these three figures into one multi-panel figure. In the merged figure, you
could have the first column contain the legend for all the basin-averaged ensemble time series
(which should be the same for all experiments but it is not) and then the drone peak snow map
in the middle and drone peak snow histogram at the bottom. Then columns 2-4 would be the
basin-averaged ensemble time series on top, snow depth map in the middle, and snow depth
histogram on the bottom for experiments (C), (D), and (J). This would minimize redundancy
and allow the reader to visually compare results a lot more easily.

Reply:

We thank the Reviewer for this Comment and agree that the multi-panel Figure 2 (in-
cluded below) is a better way to compare the three experiments’ results while avoid-
ing redundancy. The map in the original manuscript’s Figure 1 has a finer resolution
than the one shown in the results, we believe it provides the most useful information
in this context compared to snow depth maps from other time steps.

Minor Comments:

COMMENT # 1.9

Line 17: “by strong” and a comma after “processes”

Reply:

Changed, see answer for Comment 1.10

COMMENT # 1.10

Line 18: “and metamorphism”

Reply:
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Figure 2: Panels a), b) and c) show the prior (gray) and posterior ensemble simulations (col-
ored) as catchment-average snow depths over the whole water year for experiment C, D, J,
respectively. The black points are the drone-based snow map averages serving as validation
data. The blue and orange stars show the timing of the fSCA and/or snow depth observa-
tions, respectively, that are assimilated in each experiment. Panels d), e) and f): simulated
snow depths are shown as heat maps for the 11.03.2020 (date shown with a vertical dashed
line in panels above) for a representative ensemble member that is nearest to the ensemble
median catchment average snow depth for experiment C, D, J, respectively. Panel d): the
corresponding 11.03.2020 drone-based snow depth heat map at the model’s spatial resolution
(20 m). Panels h), j), k) and l) below showing snow depth histograms corresponding to the
(and defining the color maps of) the heat maps in the panels above.

The introduction has largely changed and the corresponding part is rewritten as fol-
lows:

Changes:

Seasonal snow is characterized by a
:
a

:::::::
crucial

::::::::::
variable

:::
for

::::::::::::
sustaining

::::::::
human

::::
life

:::::
and

:::
an

:::::::::
essential

:::::::::
climate

::::::::::
regulator

:::::::::::::::::::::
(Sturm et al., 2017)

:
.
::
It

:::
is

:::::::::::::::
characterized

:::
by

:
strong spa-

tial and temporal variability (Mott et al., 2018) arising
:::::::
which

::::::
arises

:
from several pro-
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cesses such as preferential deposition, wind transport, differential radiation and heat
fluxes , metamorphism

::::
and

:::::::::::::::::
metamorphism

:::::::::::::::::::
(Mott et al., 2018).

COMMENT # 1.11

Lines 23-24: Either remove this sentence with the Dozier reference or rephrase. Currently it
doesn’t fit with the rest of the paragraph.

Reply:

Removed.

COMMENT # 1.12

Lines 34-37: Something odd seems to have happened with the formatting here. The Foster
reference seems to be thrown into the middle of this very long sentence and the sentence does
not make sense.

Reply:

We thank the Reviewer for spotting this. This part of the introduction has been
greatly condensed.

COMMENT # 1.13

Lines 36-37: “where mountain regions are masked out” hangs on at the end of this sentence
like an afterthought but it is an important point. Rephrase to emphasize.

Reply:

The description of the state-of-the-art snow remote sensing has been removed from
the introduction as suggested in Comment 1.3.

COMMENT # 1.14

Line 49: The coarse footprint of ICESat?

Reply:

Yes, that’s what we meant. This part of the introduction has been rewritten.
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COMMENT # 1.15

Line 52: Significantly better sensor characteristics than what?

Reply:

We meant that ICESat-2 has better characteristics than its predecessor ICESat in terms
of spatial resolution. However, we removed this phrase from the introduction.

COMMENT # 1.16

Line 56: Rephrase to “measurement error on flat terrain” instead of having part of the de-
scription in parentheses.

Reply:

Thank you, we modified this as follows:

Changes:

The geolocated photons have a centimetric vertical measurement error (although on
flat terrain (Markus et al., 2017) and ,

:::::::
while the horizontal accuracy is estimated at 3

to 4 m (Magruder et al., 2021).

COMMENT # 1.17

Lines 64-83: There is a lot of extra information packed into parentheses in these paragraphs.
Revise the sentences so that most information is written into the sentence. The use of paren-
theses makes it more difficult to read. For example, just say “obtaining statistically optimal
estimates” on line 77.

Reply:

We improved readability in the revised manuscript by avoiding parentheses: We re-
moved the phrase between parentheses at line 65-66 and removed the parentheses at
line 77. Lines 80-84 were removed in the larger restructuring of the introduction.

COMMENT # 1.18

Line 89: Either keep “despite” or “thanks to” in the sentence but do not include them both
with one in parentheses

Reply:
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This phrase was removed in the larger restructuring of the introduction.

COMMENT # 1.19

Line 110: Rephrase to “In contrast, Alonso-González et al. (2023) have shown. . . ”

Reply:

Rephrased as suggested.

COMMENT # 1.20

Line 114: Add a space after ICESat-2.

Reply:

We thank the Reviewer for spotting it, added.

COMMENT # 1.21

Figure 1: The use of dashed lines to show the zoomed in areas is confusing because the ICESat-
2 tracks are also dashed lines. I recommend using solid lines for the zooms or the tracks.

Reply:

We thank the Reviewer for this suggestion, we will change the line style in the figure
to improve readability.

COMMENT # 1.22

Lines 141-160: There is a lot of information repeated here that was already in the introduction.
You don’t need to provide all the details of ICESat-2, just the ones that are important for your
work. Then you only need to include them in one place.

Reply:

The Reviewer is right, in the revised manuscript we take care to avoid repetitions. We
introduce ICESat-2 briefly in the introduction and provide further details essential to
understand the method in the data section.
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COMMENT # 1.23

Line 170: Replace “harvests” with “hosts”

Reply:

Replaced.

COMMENT # 1.24

Line 184: Why select 60%? How sensitive are your results to a different threshold?

Reply:

The 60% mark was chosen after inspecting the photon snow depth profiles visually
and applying several thresholds. For the two profiles in our study, it was found to
effectively remove noise photons having few neighbours while preserving most pho-
tons reflected from the snow surface – as photons cluster along the continuous sur-
face. Noise photons stemming from the atmosphere, double bounces, and photons
scattered in the snowpack before being reflected back to ICESat-2 are removed. Keep-
ing a larger proportion of the photons leads to a more complete profile, but at the cost
of a increasing the number of outliers, and keeping fewer photons would produce
data gaps in the snow surface profile. The profiles used in this study are relatively
short and were thus thoroughly checked for quality and completeness. However, we
recommend a sensitivity test or possibly multiple thresholds for future applications
in larger study sites where ICESat-2 profiles from different overpasses are included
and manual checks of all data is not possible. The 60% was as an appropriate pro-
portion for the specific average slope and solar radiation at the time of acquisition
but may not fit other sites and acquisition conditions (e.g., night acquisitions, haze or
blowing snow conditions, different slopes or snow reflectivity).

COMMENT # 1.25

Line 195: Why bring up the orbit of the satellite here? What do you mean by“footprint”?

Reply:

The orbit was mentioned to remind the reader that the profiles are not directed north-
south but slightly inclined. The footprint is the size of the Earth’s surface illuminated
by one pulse of the ICESat-2 laser (ca. 14 m in diameter), we adjusted the text in
section 2 to clarify this. Here, we point to this to remind the reader of the width of
the profile. Line 195 has been rewritten to clarify how the photons, grid and profile
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geometries fit together.

COMMENT # 1.26

Line 197-198: This is an incomplete thought. You filter out the cells with steep slopes?

Reply:

Apologies, this phrase was not complete.

Changes:

In addition,
:::::
also

::::
the cells with an average slope larger than 40◦

:::
are

:::::::::
filtered

::::
out, as

the horizontal positioning uncertainty makes snow depth retrievals less reliable for
steep terrain.

COMMENT # 1.27

Figure 2: I like the idea of this figure but I cannot see the gray “ground photons” in the top
panel. Consider revising the figure so the very top panel shows all the data, a middle panel
shows all the photon differences with respect to the DEM, and the bottom panel stays as is.
You would remove the right panel.

Reply:

Thank you for this suggestion. We will revise the figure.

COMMENT # 1.28

Line 211: “20 m spatial resolution of the simulations 3.6”? I think the 3.6 should be totally
removed but this also makes me realize that you describe all the data you will assimilate before
you really describe the basic model. You might want to flip that order, moving 3.3 to the top of
the methods, because you refer to the spatial resolution of the simulations before you describe
them.

Reply:

We thank the reviewer, we removed the 3.6 reference from line 211 and also flip the
subsections, as we agree it makes the paper more readable.

COMMENT # 1.29
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Lines 213-217: These sentences on the uncertainty are very confusing. You list a sigma of
0.34 on line 213 and then again on line 217. Are these the same uncertainty metric or are
they different metrics that miraculously have the same value? If they are the same, only list it
once.

Reply:

Yes, the metrics were the same. We aimed at showing how we computed our uncer-
tainty estimate. We remove 0.34 from line 217 and simplify this part:

Changes:

We estimate the observation error for the fSCA retrievals at 20 m resolution to be
σ = 0.34. As independent

::::::::::::::
Independent validation estimated the observation error

σN at 100 m resolution to be equal to σN = 0.07 (see Table 2 Aalstad et al., 2020), we
expect .

:::::
We

::::::::::
obtained

::::
our

:::
20

:::
m

::
σ

::::::::::
estimate

::::::
using

:::::
that

:
the error at coarser resolution

to improve
::::::::::::
resolutions

::::::::
should

:::::::::
increase

:::
at

:::::::
higher

::::::::::::
resolutions

:
according to the central

limit theorem σN = σ√
N

, where N
:::::::::
through

::::::::::::
σ = σN

√
N,

:::::::
where

::::::::
N = 25 is the number of

independent 20 m cells being aggregated
::::::::::
contained

:
in the coarser (100 m) validation.

validation (N = 25 in this case). Thus, the disaggregated observation error at 20 m
resolution for these fSCA retrievals should be on the order σ = σN

√
N ≃ 0.34 from

which we obtained our estimate.

COMMENT # 1.30

Line 222: Replace “7” with “seven”

Reply:

Replaced.

COMMENT # 1.31

Line 222: Do you mean that you select the most spatially detailed versions of parameteriza-
tions that you can use? Or the most mathematically complex? Or something else?

Reply:

FSM2 has two or three levels of representation for each of the physical process we
mention in the lines 223-226, where one is very simple and the other is more complex.
To explain this better we change the phrase to:

Changes:
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To obtain a more comprehensive snowpack representation, 7
::
In

:::::::
FSM2,

::::::
seven physical

processes are parameterized with the most detailed process representation among
those available in the snow model.

::::::::::::
represented

::::::
with

::::::::::
multiple

:::::::::::
available

:::::::::
process

::::::::::::::::::::
parameterizations.

::::
We

::::::::
choose

::::
the

::::::
most

:::::::::
complex

::::::::::::::::
representation

::::
for

:::
all

::::
the

:::::::::::
processes

::
to

:::::::
obtain

::
a
::::::
more

:::::::::::::::::
comprehensive

:::::::::::
snowpack

:::::::::::
ensemble

:::::::::::::
simulation.

COMMENT # 1.32

Lines 223-226: For all of these parameterizations, I would simply say “as a function of” rather
than “depending on”, “influenced by”, “diagnosed by”, etc.

Reply:

Agreed, we change the phrasing except for the statement about the turbulent fluxes
where the inputs to the coupled functional relationships in the Monin-Obukhov sim-
ilarity theory are omitted for brevity.

Changes:
These parametrizations are: albedo decay with elapsed time since the last significant
snowfall, thermal conductivity depending on

::
as

:::
a

:::::::::
function

:::
of snow density, den-

sity influenced by
::
as

::
a

:::::::::
function

:::
of overburden and metamorphism, turbulent fluxes

diagnosed using the Monin-Obukhov similarity theory, and melt-water percolation
depending on

:::
as

::
a

:::::::::
function

:::
of gravitational drainage, fractional snow cover asymp-

totic to snow depth.

COMMENT # 1.33

Line 232: Why is 400 appropriate?

Reply:

We thank the Reviewer for the question. We downscale the ERA5 forcing to the ex-
tended catchment (see panel a) of Figure 1 in the original manuscript), approximately
sized 5 km by 3 km. The topographical downscaling works by grouping the cells in
a number of clusters with similar topographic metrics such as complexity, aspect,
slope and others. You can see more details about this in Fiddes and Gruber (2012). In
that work, it was shown that an entire ERA5 grid cell (25 km) was split in as little as
100 clusters while capturing first order hillslope scale variability in the atmospheric
forcing and the resulting cryospheric simulations. Our choice of 400 clusters is a con-
siderably larger number and is chosen to confidently ensure that hillslope-induced
variability in the forcing data is captured for a considerably smaller area than an
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entire ERA5 grid cell. Note that this number doesn’t influence the later snow simula-
tions, but is only used for downscaling to generate the atmospheric forcing.

COMMENT # 1.34

Line 236: I am a bit confused by this sentence. If you are looking at figure 1, do you mean
that you downscale for each cell in that large spatial domain in the left-most map? Based on
your number of cells it seems unlikely. Your description does not sound like you only cover
the small drone-based area. Do you also downscale to all the cells underlying all the ICESat-2
tracks or just those two highlighted tracks?

Reply:

We thank the Reviewer for the question. TopoSCALE downscales the forcing in a
semi-distributed manner, so the forcing is downscaled for a number of clusters with
a certain topographic signature each (400 here), representing the entire domain. These
can then be mapped back to the full grid — but only some cells are simulated by the
snow model, the drone-mapped area and the two ICESat-2 highlighted tracks.

Changes:

The obtained semi-distributed forcing is then mapped back to the
::
a 20 m fully dis-

tributed grid . Such a combination of topographic downscaling
::::::::::
covering

::::
the

:::::::
whole

::::::::::
extended

:::::::::
domain

:::::::::::
providing

::::::::
forcing

:::::
data

::::
for

::
a

::::::::::
selection

:::
of

:::::
cells.

:::::
We

:::::
now

::::::
select

::::::
only

:::
the

::::::
cells

::::::::::
covering

::::
the

:::::::
drone

:::::::
maps

:::
in

::::
the

:::::
Izas

:::::::::::::::
experimental

::::::::::::
catchment

::::::
(solid

:::::::
black

::::
line

:::
in

::::::::
Figure

::
1)

:::::
and

::::
the

::::::
grid

:::::
cells

:::
in

::::
the

:::::::::::
extended

:::::::::
domain

:::::
that

::::
are

::::::::::::
intersected

::::
by

:::
the

::::::::::
ICESat-2

:::::::
tracks

::::::
(blue

::::::
lines

:::
in

:::::::
Figure

:::
1),

:::::::::::
summing

::::
up

:::
to

:
a
::::::
total

:::
of

:::::::
∼ 1900

:::::
cells

::::
for

:::::::
which

:::
the

:::::::
FSM2

:::::::
model

:::
is

:::::
run.

:::
. . .

COMMENT # 1.35

Line 239: This is the first mention of “the prior”. Presumably this means the model simulation
with zero data assimilation. That needs to be defined either in this data assimilation section
or in the more generic modelling section.

Reply:

We thank the Reviewer for noticing this. We added a definition at the beginning of
Section 3.4 that can be seen in the answer to Comment 1.41.
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COMMENT # 1.36

Line 242: “log-normal” instead of “logit-normal”?

Reply:

We have used a logit-normal (also known as a logistic normal) distribution Aitchison
and Shen (1980), which is a distribution with both upper and lower bounds, while a
log-normal distribution would only have a lower bound — which is not as useful for
parameters that have multiple physical constraints. A table showing the distribution
hyper-parameters was added to the manuscript and in the reply to Comment 1.5.

Changes:

. . . The perturbation parameters are time-invariant throughout the water year, and
the prior perturbation parameters are extracted via transformations from a logit-
normal distribution rather than Gaussian , to restrict

:::::::
whose

::::::
prior

::::::::::::::::::::
hyper-parameters

::::
can

:::
be

:::::
seen

:::
in

::::::
Table

:::
1.

::::
We

::::::::
choose

::::
this

::::::::::::::
distribution

:::::
over

::
a
:::::::::::::
log-normal

::
or

::
a
:::::::::::
Gaussian

:::::::::::::
distribution

:::
as

::::
the

::::::::::::::
logit-normal

::::::::::
restricts

:
the perturbation within defined bounds

(Aalstad et al., 2018; Guidicelli et al., 2023)
::::::
upper

:::::
and

:::::::
lower

:::::::::
bounds,

:::
in

::::::::::
contrast

::::
the

:::::::
others

:::::::
which

:::::::
would

::::::
have

:::::::::::::
respectively

:::::
only

::::
one

:::
or

:::
no

:::::::::
bounds

::::::::::::::::::::::::::::
(Aitchison and Shen, 1980)

.

COMMENT # 1.37

Line 247: How is it “clearly non-linear”? Is that an interpretation based on manual inspec-
tion? Is that explained in previous literature?

Reply:

The modeled relation between input forcing and observable state (fSCA or snow
depth) realized through FSM2 is non-linear in several ways. One example is the
snow/water phase change at zero degrees, as can be illustrated by the following
example of the relation between longwave radiation and snow depth. A positive
perturbation (i.e. more incoming radiation) has no effect on the snow depth until the
point in the season when the snowpack becomes isothermal and starts melting, while
it has a large impact after this point in time. Another example is the non-linear re-
lationship between the temperature perturbation parameter and snow depth: a pos-
itive temperature perturbation leading to liquid precipitation will cause snowdepth
to remain null or decrease due to changes in density, while with more and more neg-
ative temperature perturbations (and, consequently, solid precipitation) no further
increases in snowdepth are caused. Another way to verify the non-linearity can be
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found in Essery (2015), where one can see how many non-linear functions are used
to define the relation between atmospheric input and observable states such as fSCA
and snow depth.

COMMENT # 1.38

Figure 3: Rearrange the panels, and add letter labels, so that they go from left to right accord-
ing to the order that each variable is described in the text: TPI, Sx, then CSMD.

Reply:

Changed

COMMENT # 1.39

Line 311: Explicitly state their measurement uncertainty.

Reply:

We can estimate the uncertainty for the drone maps at 20 m resolution with the central
limit theory, obtaining conservatively a centimetric accuracy. Note that this estima-
tion implies the hypothesis of independent identically distributed measurement er-
rors, which is not respected when the errors are spatially correlated. So we degraded
the estimation of 1 order of magnitude, obtaining a "conservative" estimate.

Changes:
Their measurement error is typically one order of magnitude lower than the uncertainty
in the snow-pack reconstruction, as we resample

::::
can

::::::::::::::::
conservatively

:::
be

:::::::::::
estimated

:::
at

::::::
about

::
1

::::
cm

::
as

::::
we

::::::
have

::::::::::::
resampled the snow depth maps to the modelling resolution

(from 1 m to 20 m) with the averaging operator.

COMMENT # 1.40

Line 321: “selected by the median operator”? Does this mean the map with the median snow
depth out of all ensemble members?

Reply:

Yes, the Reviewer is correct. We realize the phrasing here was a bit complicated, and
tried to clarify this in the text. The spatially distributed median of all ensemble mem-
bers is not a representative model output since it would show values from a different
member for each point in space, hence mixing up different model runs. To pick a
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single model ensemble member, we compute the spatial average of all the member’s
maps for the 11th of March, and then pick the median snow depth member. This en-
sures that the reference member is representative for the model ensemble mean while
corresponding to an actual model run.

Changes:

Since the result of the DA problem is a spatially correlated ensemble representing
a statistical distribution, we show one single ensemble member simulation in order
to appreciate the spatial structure embedded in the simulation. We

:::
To

::::::::
choose

::::
the

:::::::::::::::
representative

::::::::::
member,

::::
we

:::::
first

:::::::
select

::::
the

::::::::::::
simulation

:::::
state

::::
on

::::
the

:::::
11th

:::
of

::::::::
March

:::
as

::::
this

::
is

::::
the

::::::::
closest

:::::::
drone

::::::::::::
acquisition

:::
to

::::
the

::::::::::::
peak-SWE.

::::::
Then

::::
we

:
spatially average the

ensemble members and pick the member whose average snow depth state is selected
by the median operator for the 11th of March.

::::::::
median

:::
of

::::::
those

::::::::
spatial

::::::::::
averages.

COMMENT # 1.41

Lines 409-242: Here is where “the prior” comes up repeatedly but it was never well defined.
Please address my earlier comment so the reader can more easily follow this discussion.

Reply:

We added a definition of prior simulation at the beginning of Section 3.4 so the reader
can now follow:

Changes:

. . . Therein, the prior uncertainty
:::::::::::::
distribution

::
–

:
a
::::::::::::::
probabilistic

:::::::::::::
distribution

::::::::::::::
representing

::::::::::::
uncertainty

::::::
over

::::
the

::::::::::
system’s

::::::
state

:::::
and

::::::::::::
parameter

:::::::
space

::::::::
before

:::::::::::::::
observations

::::
are

::::::
taken

:::::
into

::::::::
account

::
–
:
is represented by the spread of the

:
a
::::::
finite

:::::::::::
collection

:::
of

:::::::::
samples

:::::::
known

::::
as

:
ensemble members. Each

::::
This

::::::::
spread

:::
in

:::::::
terms

:::
of

::::::::::::::::
basin-average

:::::::
snow

::::::
depth

:::::
can

:::
be

::::::
seen

::
in

:::::
the

:::::
gray

:::::::::::::
trajectories

::
of

::::::::
panels

::::
a),

:::
b)

::::
and

:::
c)

:::
of

::::::::
Figure

::
2.

:::::::
Each

:::::
prior

:::::::::::
ensemble member is an FSM2 simulation obtained by perturbing a selection of

forcing variables.

COMMENT # 1.42

Lines 475-490: I am not a data assimilation expert so found the repeated use of “hyper” to
be confusing here. You mention hyperparameters as earlier in the text, which is fine, but you
also refer to a hyperprior and say the experiments are almost hyper. Does this all just mean
high spatial resolution?

Reply:
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We thank the Reviewer for this comment, hyper was used with two different mean-
ings for model parameters and spatial resolution. In modelling, hyperparameters
refer to high level parameters controlling the statistical distribution of lower level
parameters. In the paper, this is used for the prior hyperparameters that control the
extraction of the spatially correlated prior. Due to computational limitations snow
models are often run at a spatial resolution that may seem coarse to the observa-
tion/field measurements community. In this context, 20 m corresponds to a very high
resolution that is often referred to as hyper-resolution. We opt for keeping these two
meanings, but the reader will be able to distinguish the two contexts as in the first
is written without hyphenation (hyperparameter), while we add the hyphen when
talking about spatial resolution (e.g. hyper-resolution).
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REVIEWER #2

General Comments:

COMMENT # 1.1

This study investigates using ICESat-2 satellite data to improve FSM2 simulations. The
authors employ the DA proposed by Alonso-Gonzales et al. (2023) with a spatial propagation
of the sparse data points from ICESat-2 that tries to compensate the fact that ICESat-2 data
are acquired in profiles with many temporal and spatial gaps. They perform three experiments
to assess the effectiveness of assimilating different data types snow cover area, from Sentinel-
2, snow depth, from ICESat-2 or both. The reported findings indicate that by incorporating
snow cover area data alongside snow depth from ICESat-2 led to the most accurate snowpack
simulations.

Reply:

We appreciate the Reviewer’s interested approach to the paper and are grateful for
the constructive suggestions that have helped us to improve the study. We kindly
point out that the aim of the study is not primarily to improve the FSM2 simulations
in the study catchment per se, but to present a newly developed method that allows
the joint assimilation of snow cover data and novel ICESat-2 snow depth profiles that
are sparse in time and space and thus currently of very limited use for snow mod-
elling. The method presented here is designed to be globally applicable. ICESat-2’s
satellite-derived profiles have a very different nature and greater uncertainty than the
experiments assimilating subsampled, within-catchment drone-based snow depth
data presented by Alonso-González et al. (2023). Our method builds on this ear-
lier work and the spatio-temporal data assimilation method therein to show how ac-
tual satellite-derived snow depth data from ICESat-2 can be propagated/transfered
in space and time from outside the catchment using to yield spatio-temporally com-
plete reconstructions of the full snowpack state in the catchment. Moreover, we also
show (to the best of our knowledge) for the first time how to perform joint spatio-
temporal assimilation of both ICESat-2 snow depth and Sentinel-2 fSCA so as to ex-
ploit the highly complementary nature of these two types of observations (Gascoin
et al., 2024). In addition, we provide a thorough uncertainty quantification of the
respective simulations, which is not trivial in the case of spatially propagated infor-
mation from observations located near but outside the study area. The following
provides a point-by-point response to the Reviewer’s Comments.

COMMENT # 1.2
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The authors leverage a data assimilation system (MuSA) from a previous work (Alonso-
González et al., 2023). Moreover, the methodology for spatializing the ICESat-2 data (a point
of significant interest) builds upon concepts presented in the previous work, but without sub-
stantial further development. While the initial findings are interesting, their persuasiveness
could be strengthened through further analysis. This deeper exploration would allow the re-
search to culminate in a more robust and impactful paper.

Reply:

We agree that the core simulations of this paper relies on the MuSA assimilation sys-
tem, which was developed in previous work (Alonso-González et al., 2022, 2023).
However, we disagree with the rest of the Reviewer’s statement while acknowledg-
ing that the novelty of this study could have been better emphasized in the paper.
As such, we would like to highlight the differences and the method development we
have accomplished to make these new experiments possible:

• Despite our short description in Section 3.1, a substantial effort was necessary to
treat the ICESat-2 elevation observations in order to retrieve snow depth obser-
vations, as there is not an established method to do that. Careful data curation
was required to eliminate outliers so that the observations could be ingested
into a data assimilation system.

• To the best of our knowledge, this is the first work that goes beyond validating
ICESat-2 data with snow depth measurements from another source, but instead
assimilates them to constrain a snow model.

• The MuSA assimilation system was updated in order to spatially propagate
information coming from a subset of the observations while doing a so-called
joint data assimilation (assimilating multiple different types of observations).
Because of the way we define a neighbourhood, a large number (many hun-
dreds) of cells with fSCA-observed cells would be included in the neighbour-
hood. The computational burden would then increased drastically due to the
resulting large input/output operations to access all neighboring fSCA predic-
tions and observations for every Kalman update. The previous MuSA system,
without the upgrade done in this study, would have required the resources of
a larger supercomputer for such a joint assimilation. The updated assimilation
method was implemented through modifications in the spatial_MuSA module
of the system, changing the subset of observations that are considered to create
a neighbourhood of pixels for domain localization that are considered for the
state update. See the pull requests 14-17 in the MuSA repository.
(https://github.com/ealonsogzl/MuSA/pull/14)
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• For this work, we used the MuSA system to perform joint assimilation in a
spatio-temporal setting. While the MuSA system has already been used to per-
form joint assimilation (Alonso-González et al., 2022), there the observations
were land surface temperature and fractional snow-covered area but both were
spatially complete products so this was done for a single pixel in a purely tem-
poral ("1D", or "embarrassingly parallel") setting without any spatial propaga-
tion of information. Here we instead jointly assimilated snow depth and fSCA
in a spatio-temporal setting whereby in the previous works snow depth was
the only observation assimilated in experiments with spatial propagation. To
the best of our knowledge, this is a completely novel snow data assimilation
approach. In the described experiments, the two observation types (fSCA and
snow depth) that we either jointly or individually assimilate have a different
spatial coverage. This made calibrating the relative accuracy of the observations
and the selection of the spatial propagation parameters such as the length scale
a relatively tough exercise since these hyperparameters both have a consider-
able effect on the relative weight of the two sets of observations influencing the
state of the simulations as well as on the spatial distribution of the simulation.

We realise that we may have undercommunicated the methodological develop-
ment and MuSA updates required to achieve the results and framework presented in
this study. In the revised manuscript, we better emphasize in the Introduction, in the
Methods and in the Conclusions the novelty of the approach and how it differs from
previous work.

COMMENT # 1.3

While the current findings are interesting, further analysis could significantly enhance their
persuasiveness. Consider incorporating other inputs data that only ERA-5 (also derived from
in-situ) and also move to other (larger) catchment where distributed HS are available (e.g.,
ASO data if ICESat-2 data are available or Dischma in Switzerland) to solidify the results.

Reply:

We are grateful for your acknowledgment of the interest of our findings and ap-
proach. To a limited extent we agree that further analysis would enhance their per-
suasiveness. We would like to address your suggestions on adding different forcing
data and other study sites separately.

Study site: we appreciate your suggestion to experiment in larger catchments with
distributed snow depth available. However, we propose to keep this as the sole study
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site because of the acknowledged interest of the results shared by you and the other
Reviewer, and expand the analysis on the utility of ICESat-2 observations to infer
snow spatial-distribution point of view in the future (as suggested in Section 5). To
our best knowledge, the locations you suggest are much larger and have not been
surveyed by airborne instruments with the same temporal frequency available in
the current study area (around 12 acquisitions in the studied season). The lower
temporal resolution of distributed snow depth dataset could limit the solidity of the
analysis on accumulation and ablation season. Moreover, high resolution and large
scale DA exercises require substantial further model development or changes to the
output resolution in order to be computationally affordable (e.g., not to simulate in a
fully distributed manner or at a much coarser resolution). We therefore consider this
possibility worthy of a complete new and separate study. Considerations about this
are added in the Discussion.

Forcing data: the second suggestion is about incorporating in the analysis other
input data than only ERA5, such as data derived from in-situ observations. We ac-
knowledge that, if the scope would be to achieve the best possible snow simulation
of this specific basin, it would certainly be the better option to use a continental or
even national reanalysis together with in-situ data from a local meteorological sta-
tion. However, we underline that this study was designed to showcase a globally
applicable workflow where high-resolution forcing data is usually lacking – and the
assimilation of observations is used to achieve distributed result maps. Note that
one of the main motivation for using satellite DA in snow modeling is precisely to
fix errors in the forcing data, so it is particularly worth demonstrating that these
methods are able to work with coarse globally available meteorological forcing in
line with many previous snow DA studies (e.g. Fiddes et al., 2019; Alonso-González
et al., 2022, 2023). Moreover, several other DA studies are based solely on one global
reanalysis as input forcing (in these cases MERRA or MERRA-2) such as Cortés et al.
(2016) or Liu et al. (2021). Hence, we used the current state-of-the-art (in terms of
resolution and accuracy) global atmospheric reanalysis ERA5. Its original spatial res-
olution clearly misses the hillslope scale heterogeneity, this we obtain partly through
a preliminary topographic downscaling routine (TopoSCALE; Filhol et al., 2023) but
mainly via the information contained in the observations that we assimilate. We con-
sidered this a sufficiently general prior knowledge of the seasonal snow evolution
to be able to claim global applicability of this workflow, as it will arguably be most
useful for other (less studied) areas where large knowledge gaps on snow amounts
are existing and no regional forcing data (let alone in-situ observations) exist. In our
opinion, adding another reanalysis to the experiments would confuse the reader and
not add much value to the study for the following reasons:
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• Starting from a higher quality prior knowledge of the seasonal snow evolution
would leave the reader with the question: is this approach of any value for
remote places (e.g. Central Asia) where such improved prior information is not
available?

• The hillslope processes (100 m scales and smaller) we aim at simulating would
not be represented in any higher resolution atmospheric reanalysis even using
costly state-of-the art convection permitting atmospheric models which are at
best at the kilometer rather than the hillslope scale.

We realise that we may have not emphasized enough that the suggested workflow
was designed to be globally applicable. In the revised manuscript, we better under-
line this aspect when motivating the methodological choices both in the Introduction
as well as in the Methods.

COMMENT # 1.4

Revisit the scientific questions the paper aims to address. Sharpening these questions will
guide the research and ensure the experiments directly address them.

Reply:

Good point, we previously only stated a hypothesis at the end of Section 1. We now
replace it with three specific research questions as we agree this can guide the reader
to understand the idea behind our experiments.

Changes:

The two datasets have complementary features: ICESat-2 retrieves snow depth di-
rectly, but only along profiles; while fSCA has an indirect correlation

:::::::::::::
relationship

with snow depth, but this dataset is spatially distributed. Our hypothesis is that
the joint assimilation will be able to exploit these to better infer the seasonal snow
evolution.

:::::
The

::::::
novel

::::::::::
scientific

:::::::::::
questions

:::
we

:::::
aim

:::
to

::::::::
answer

:::::
are:

•
::::
Can

:::::::::::::
information

::::::
from

:::::::
sparse

::::::
snow

:::::::
depth

::::::::::
retrievals

::::::
from

::::::::::
ICESat-2

::::::
along

:::::::::
profiles

::
be

::::::
used

:::
to

::::::::
provide

::::::::::::::
information

::::::
about

:::::::::
average

:::::::::::::::::
catchment-scale

:::::::
snow

::::::
depth

:::::
and

::
its

:::::::::::
complete

:::::::
spatial

:::::::::::::::
distribution?

•
::
Is

:::::::::::::
assimilating

:::::::
sparse

::::::::::
ICESat-2

::::::
snow

:::::::
depth

::::::::::
retrievals

:::::::
better

:::::
than

::::::
more

::::::::::::
commonly

:::::
used

::::::
fSCA

::::::::::::::
observations

:::::::::
derived

::::::
from

::::::::
optical

:::::::::::
satellites?

•
::
Is

:::::::::::::::::
ensemble-based

::::
DA

:::::
able

:::
to

:::::
able

::
to

::::::::::
leverage

:::::::::::::
information

:::::
from

::::::
both

:::::::::::::
observation

::::::
types

::::::
when

:::::::
jointly

::::::::::::::
assimilating

:::::
both

::::::
fSCA

:::::
and

:::::::
sparse

::::::
snow

:::::::
depth

:::::::::::::::
observations?
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COMMENT # 1.5

Section 3.5 appears to hold the core of the paper contribution. Dedicating more space and
development to this section would allow for a more thorough exploration and potentially lead
to more impactful conclusions.

Reply:

We fully agree with both the Reviewers’ Comments stating that a deeper explanation
of how information from observations is propagated in space is needed. The same
suggestion came from Reviewer 1 in Comment 1.7. We propose to expand of Section
3.5 in the revised version of the manuscript to guide the reader better concerning the
spatial propagation/transfer of information. See Comment 1.7 in this document for
more details.

Detailed comments:

COMMENT # 1.6

The introduction of the paper could benefit from being condensed and sharpened. Focus on
presenting the key scientific questions, the research aims to answer, and clearly outlining the
paper main novelty (difference with previous works). This will ensure the experiments directly
target those questions and guide the research direction. The core innovation of the paper lies
in applying the DA method (from Alonso-Gonzales et al. 2023) to ICESat-2 data. The unique
approach for propagating spatial and climatological information holds significant promise.
However, further development of this methodology is necessary, particularly regarding the
justification for using data outside the area of interest for analyzing snow accumulation and
redistribution (see next points).

Reply:

Agreed, we have revised and shortened the introduction according to the structure
proposed by the Reviewer as well as Comments from Reviewer 1, and also added
research questions that the paper aims at answering. We take care to explain why
we use snow depth observations outside the study area, which we find is one of the
strengths of the proposed approach as it shows the utility of the sparse observations
measured by the satellite ICESat-2 profiles. Our study catchment has only nearby
ICESat-2 observation available, and the situation will be the same for many other
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catchments of interest around the world, but the utility of ICESat-2 in snow modelling
is still of interest.

COMMENT # 1.7

Figure 3, potentially the paper core novelty, requires a more detailed explanation. From the
scatterplot, it appears there might be a weak correlation between snow depth and CSMD (and
TPI24). However, the relationship between snow depth and Sx200 seems less clear, potentially
indicating no significant correlation. At least this is my understanding with the provided text.
If this is not correct, I suggest a clearer description to enhance reader comprehension explicitly
guide them through the correct explanation.

Reply:

We originally included the Winstral index (Sx) because both Revuelto et al. (2014) and
Mendoza et al. (2020), who carried out studies about the snow spatial distribution in
the Izas experimental catchment, recommended the adoption of the Winstral index
in addition to TPI when predicting snow depth. When exploring what dimensions to
choose, we analysed their interplay in an explorative way and found that although
Sx does not exhibit a linear correlation with SD, in combination with CSMD this di-
mension is a relevant predictor of SD (e.g. no low SD observations with a low Sx).
However, due to the considerable cost of running the DA experiments we did not per-
form a complete factorial exploration of all possible feature dimensions. Nonetheless,
following this particularly astute Reviewer Comment about the weak correlation be-
tween Sx and snow depth, we have now repeated the ensemble simulations for all
DA experiment runs excluding Sx from the dimensions of the feature space. We were
positively surprised to see a slight improvement in the results. We believe that in
our case, the inclusion of that index is not beneficial because of the large amount of
ICESat-2 observations that were located in an area with negative Winstral index, a
characteristic shared with only few cells in the drone domain. It is possible to see this
in the first submission’s Figure 3. It seems that limited representativity of ICESat-2
data for the catchment topography in terms of Sx was leading to smaller correlation
values and, consequently, a small influence of the observations for the cells of the
simulated domain.

Hence, we propose a large change of Section 3.5 as you suggest in Comment 1.5,
to guide the reader in understanding the spatial propagation of information. We
removed Sx from the predictors and also add Figure 1 (see below) to the manuscript.
The Figure exemplifies a situation where a cell in the experimental catchment with
drone data – depicted in panel b) with a cross – has to be updated. The solid points
in the scatterplot are selected to be part of the neighbourhood, and all of them have
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Figure 1: Panel a): scatterplot depicting the position of the cells from the drone maps in the
feature space. This space – created with TPI and CSMD – is adopted to define the similarity
between cells. The points are colored according to the snow depth observed with the drone.
Panel b): ICESat-2 snow depth observations in the extended catchment, displayed in feature
space, with snow depth-based coloring. The cross represents one cell from the drone domain
where a snow depth of 150 cm was measured. The solid points are ICESat-2 data points
included in the neighbourhood for this cell, with their size proportional to the correlation ρ.

influence on the Kalman update (see step 11 in Algorithm 1 of Alonso-González et al.,
2023), used to update the local ensemble of the target grid cell. As cells closer in
feature space to the target cell should have a larger influence, their ρ is larger, which
can be appreciated by looking at the size of the scatter points.

COMMENT # 1.8

Please revise the text from L276-282 to make more clear (and less compressed).

Reply:

This part of the text has been extended as part of the answer to Comment 1.5. See
above the answer to Comment 1.7 for more details.

COMMENT # 1.9

The paper relies solely on ERA-5 data for atmospheric forcing. While ERA-5 is a valuable
product, acknowledging the existence of other models with potentially significant output vari-
ability (up to 100%) would strengthen the main message of the paper that ICESat-2 data can
be useful and in which situation. A discussion on why ERA-5 was chosen over other op-
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tions would be beneficial. However, for a more robust understanding of the proposed method
I suggest incorporating data from at least a couple of additional models is recommended.
This comparative analysis would highlight the method sensitivity to different forcing data.
In particular, given the small target catchment area (and the high target resolution of 20m),
exploring the use of spatially distributed data from nearby in-situ stations could be highly
valuable. This would provide a more realistic scenario: not sure the first choice to simulate
5ha at a resolution of 20m in an experimental catchment in a European mountain range is
starting from a 30km ERA-5 data.

Reply:

We thank the Reviewer for the suggestion of a better argumentation for choosing
ERA5 as the (only) source for forcing data. We point to the answer to Comment 1.3
and will not repeat the arguments here.

COMMENT # 1.10

The results of experiment D are puzzling (at least to me in the present form). While Fig-
ure 3 (and related text) suggests that ICESat-2 data captures the relationship between SD
distribution, topography, and climatology using this data alone in experiment D appears to
yield inaccurate snow patterns, whereas it helps in experiment J when used together with
Sentinel-2, what is the main mechanism behind this behavior?

Reply:

We also find this result intriguing and did not find a simple answer. Below, we out-
line what factors likely contribute to the relatively poor result for experiment (D)
but improved performance of experiment (J). The spatial patterns we see in the dis-
tributed maps in the Results are governed by the features that design the spatially
correlated prior. We agree that in experiment (D), the snow patterns are inaccurate
– but the basin average snow depth is greatly improved. The spatial patterns are a
result of the features and their relative weights, which are the hyperparameters of the
prior that were chosen from various tested combinations/variations, but not inferred
or optimized. Adding fSCA observations – and hence moving to experiment (J) –
adds to the local updates for the cells in the drone catchment a cumulative informa-
tion about the accumulation and melt processes. Melt-out patterns are reproduced
into snow patterns in the peak-SWE maps we show, while the snow depth profile
provides information to adjust and improve absolute snow depth values.

COMMENT # 1.11
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A crucial evaluation metric for DA methods is computational time. The paper should explic-
itly report and analyze this metric, ideally providing a detailed profile for each operational
step.

Reply:

The simulations were run on a local server from the Department of Geosciences of
the University of Oslo. It is equipped with a 1TB RAM and 40 processors were used
for this task. However, there was high variance in computational time depending
on the varying load on the server. For the three experiments the computational
time was similar and at best it took 7 hours, or at worst three days. The computa-
tional cost depends on the GC parameter and on the density of observations, so it is
hardly comparable to simulations in other sites. Moreover, we note that the current
implemetation of MuSA is a wrapper around the Fortran implementation of FSM2.
Simply improving FSM2, for example by translating it to the Python programming
language, or other software-side improvements related to the observations use might
greatly improve the computational time. Further development of MuSA with regard
to computational efficiency is planned.

We acknowledge that computational time is a crucial factor for readers to know
about the applicability of the method, and the order of magnitude will be mentioned
in the revised manuscript in Section 3.6. However, technical differences in the imple-
mentation can make the computational time vary dramatically (see above). In this
publication, the focus is on the scientific questions related to the utility of ICESat-2,
and we prefer to avoid a lengthy technical sidetrack.

COMMENT # 1.12

Fig 7 can you add the drone maps? Beside demonstrating a significant improvement in an
accuracy score, the scientific community is starting to become interested in understanding
how realistic snow distributions become when observations at high resolution are assimilated
into models. The paper could benefit from a stronger emphasis on this aspect.

Reply:

Two drone maps will be added to Fig 7, depicting the average snow depth for both
the accumulation and melting seasons, so that the reader can compare the results
with the absolute amounts.

COMMENT # 1.13
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While Figure 7 presents the CRPS for various scenarios, a deeper analysis could help isolate
the contribution of ICESat-2 data. The similarity between the CRPS with ICESat-2 and the
prior suggests limited influence of ICESat-2. However, the simultaneous improvement in J
(potentially reflecting the contribution of ICESat-2) is intriguing and puzzling at the same
time. Can you better comment on this?

Reply:

We thank the Reviewer for the comment. For our experiments, one should note from
the time series of Figure 4 that the validation maps average (black points) lie very
close to the median of the prior (gray lines) during the accumulation period, hence
the prior simulation already provides an accurate (albeit not precise) simulation in
terms of average snow depth for this period. As a consequence, a gain on the CRPS
score in the accumulation season is in our experiments harder to achieve than in the
melting period, as there the prior average snow depth is quite far from the valida-
tion points and an improvement is thus easier to improve. In experiment (D), there
is a substantial improvement given by the diminishing of the spread of the ensem-
bles. This is shown in the panel a) of the first submission’s Figure 5 in terms of
basin-average snow depth, which corresponds to a CRPS improvement of 14%. We
agree that it’s puzzling that this improvement is not better than what we achieve
with fSCA-only assimilation. In the fSCA case, the basin average snow depth does
not improve (see Figure 4, panel a)), where the blue trajectories overestimate the val-
idation black points overall), but the reduction in CRPS is caused by a better relative
spatial distribution of snow depth. The latter is visible from the similarity of panels
b) and c) of Figure 4 as well as from the mostly uniform CRPS values in the spatially
distributed map for experiment (C) in Figure 7. This is point is crucial: the improve-
ments obtained by assimilating spatially complete fSCA and sparse snow depth are
complementary, hence the large improvement we see in experiment (J). We acknowl-
edge it is important to underline this crucial point and we add this arguments in the
discussions of the revised manuscript.

COMMENT # 1.14

L430: the fact that SCA assimilation doesn’t improve the simulation during the accumulation
period could be attributed to the fact that the area of interest is having 100% snow cover?

Reply:
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The assimilation of fSCA using ensemble-based smoothers is a topic which has re-
ceived many studies (e.g. Girotto et al., 2014; Margulis et al., 2015; Aalstad et al.,
2018; Fiddes et al., 2019; Alonso-González et al., 2021). If the assimilation method
acts as a filter, it acts sequentially: the observations modifies the state of the sim-
ulation at the current time, and the past (relative to the current observation) is not
affected. Otherwise, for a batch smoother, (as in the presented experiments herein
and references above), the information from an observation can also propagate back-
wards in time, as all the observations in the current water year are assimilated at
once. It has previously been convincingly shown that fSCA assimilation can improve
the seasonal snow simulations also in the accumulation season if such a smoother
is employed because fSCA observations contain cumulative information about both
accumulation and melting processes, indeed this is the key behind state-of-the-art
probabilistic snow reanalyses (e.g. Margulis et al., 2016) and the earlier deterministic
snow reconstruction techniques Girotto et al. (2014). However, since the information
is integrated over both accumulation and melting-related parameters, equifinality
problems can arise. That means there is not enough information in the fSCA ob-
servations to infer all the perturbation parameters, and very heterogeneous sets of
parameter can be used to reconstruct the states as they’re observed. This is the likely
cause of the missing improvement in the fSCA experiment in terms of catchment-
average snow depth, but note that there is an improvement in the CRPS score.

COMMENT # 1.15

L439: this does not seem true to me (at least in the present form).

Reply:

We agree, the sentence was a leftover from an earlier version of the results section.
The paragraph will be changed:

Changes:
. . . As Figure 5 shows, this information leads to a more precise reconstruction of the
catchment-average peak-SWE compared to experiment (C). This demonstrates that
the spatio-temporal DA is successful, as the information propagated from observations
outside the Izas catchment carries more or at least a similar amount of information
compared to the temporal-only information propagation that happens in experiment
(C).-

:::::::
spatial

:::::::::
transfer

:::
of

::::::::::::::
information

:::::::::
method

::::::::::::
succesfully

::::::::
relates

::::::
snow

:::::::
depth

:::::
and

::::
the

:::::::::
features,

::::
but

:::::
only

:::::::
when

:::::::::::
averaging

:::::
over

::::
the

:::::::
whole

::::::
basin,

:::
as

::::
the Compared to experiment

(C), this simulation has a better agreement with the observed snow depth histogram
distribution, as the range of the snow depth histograms has a better match (panels
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d) and e), Figure 5). However, the relative spatial patterns of the simulation only
partially match those of the validation maps (panels b) and c), Figure 5).

COMMENT # 1.16

L442: this is in contradiction with L253 where it is stated that the snow depth is strongly
governed by topography, which is also the main hypothesis why the proposed approach has
been applied. This ping pong effects makes it challenging to understand the overall benefit of
ICESat-2 data (and the validity of the presented results).

Reply:

We agree that this is a contradiction, and we propose to modify both the sentences to
remove the challenges for the reader. The consideration at line L442 will be modified
to include that part of the feature space occupied by the drone domain is not covered
by ICESat-2 observations.

Changes:

L253: . . . As the
::::::::
relative

::::::
snow

:::::::::
depth’s spatial distribution of snow depth is strongly

governed by topography, . . .
L442: . . . Since the

::::
The

:
observations we use in this experiment are not direct mea-

surements in the catchment,
::::::::::::::
experimental

::::::::::::
catchment,

::::
so

:
this result is in the end

not surprising: the similarity measure we define is only partially able to propagate
snow depth information properly. Nevertheless, single pixels

:
.
:::::::
While

::::
the

:::::::
entire

:::::
area

::::::::::::
experiences

::::
the

:::::::
same

::::::::
general

:::::::
snow

:::::::::::
conditions

::::::
there

::::
are

::::::
local

::::::::::::
differences

:::::::
which

:::::
can

::
be

::::::
only

::::::::::
partially

::::::::::
captured

:::::
with

::
a
:::::
low

::::::::::::::
dimensional

:::::::
space,

:::
as

:::::
TPI

::::
and

::::::::
CSMD

::::
do

::::
not

:::::
fully

::::::::::::::
characterize

::::
the

::::::
snow

::::::::
depth

::::::::::::::
distribution.

:::::
For

::::::::::
example,

:::::::
single

::::::
cells

:
with ex-

treme values located in the basin
:::::::::::::
experimental

::::::::::::
catchment

:
might not be similar (in

terms of topography and meltout date) to the ones which are
::::
TPI

::::
and

::::::::
CSMD

::
to

::::::
only

:::::
cells observed by ICESat-2

:::::
with

:::
as

:::::::::
extreme

::::::
snow

:::::::
depth

::::::::
values,

::::
but

:::::
also

:::
to

::::::::::
medium

::::::
snow

:::::::
depth

::::::::::::::
observations,

::::
not

::::::::
getting

::::
the

::::::
ideal

::::::::
update.

COMMENT # 1.17

L452: speculative, please revise it.

Reply:

We rephrased.

Changes:
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If the previous suggested improvements would improve the results of the experiments
for this setting, this could be used, in principle, in a forecasting system, as snow
depth observations have instantaneous value; while fSCA are more useful in a reanalysis
setting. There would be the need to speed-up the ICESat-2 processing for the low-level
product, as it is now usually three

:::
As

::::
the

::::::::::
ICESat-2

:::::::::
satellite

:::::
will

::::::::::::
potentially

::::::::
collect

:::::
data

:::::
until

::::
the

::::::::::::
mid-2030s,

:::::
and

:::
the

:::::::
snow

::::::::
science

::::::::::::
community

:::
is

::::::
eager

::
to

::::::
keep

:::
on

::::::::
testing

::
its

:::::::::::
potential

:::
to

::::::::::
evaluate

:::::::::::
mountain

:::::::
water

::::::::::::
resources,

:::::
this

::::::::
dataset

:::::
has

::::
the

:::::::::::
potential

::::::::
become

::
a
::::::::::::

functional
:::::
tool

::::
for

:::::::
water

::::::::::::
managers

:::
to

::::::::::
estimate

::::
the

::::::::::::
maximum

::::::::::
seasonal

::::::
snow

::::::::::::::::
accumulation.

:::::::::::
However,

:::::::::::
especially

::::::::
within

:::
an

:::::::::::::
operational

:::::::
snow

::::::::::::::
hydrological

::::::::::::
forecasting

::::::::
context

:::::::::::::::::::
(Mott et al., 2023)

:
,
::::::
there

::
is

::
a
::::::
clear

::::::
need

:::
to

::::::::
reduce

::::
the

::::::::::::
processing

:::::
time

::
of

::::
the

::::::::::::
geolocated

:::::::::
photon

::::
low

::::::
level

:::::
data

:::::::
which

:::::::::::
currently

::::::
takes months.

COMMENT # 1.18

L484: 20 m is not hyper resolution.

Reply:

We acknowledge that the level of spatial resolution is a term relative to the context.
For example, in climate modelling hyper-resolution is kilometric (Wood et al., 2011),
while in non-ensemble forest snow modelling hyper-resolution is submetric. In the
context of snow and hydrology ensemble-based DA where a cell is simulated numer-
ous times, recent studies have defined their resolution as hyper for cell sizes well
below 100 m (Fiddes et al., 2019; Alonso-González et al., 2023). In contrast, snow DA
simulations with cell sizes of about 100 m typically define their spatial resolution as
high (i.e., one level coarser than ‘hyper’) (Margulis et al., 2016; Girotto et al., 2020).
Moreover, high resolution is also applied in recent literature to snow DA reconstruc-
tions at kilometric grid cells (Oaida et al., 2019; Brangers et al., 2023). At least within
the context of snow DA, calling ensemble simulations at 20 m hyper resolution is
warranted. In conclusion, we believe that this paper is not the location where an
arguably ill-posed unified interdisciplinary definition of spatial resolution should be
discussed. For such reason, we keep the term hyper in line with previous snow DA
work.

COMMENT # 1.19

References are generally ordered alphabetically.

Reply:
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The references were already ordered alphabetically by last name of the first author
of each paper as is the norm, but we appreciate that the reference list is somewhat
confusing given that it also included the full first names of all authors rather than
just initials. The first names in the reference list will be replaced by initials in the final
typeset version of the manuscript.
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