REVIEWER #2

General Comments:

COMMENT # 1.1

This study investigates using ICESat-2 satellite data to improve FSM2 simulations. The
authors employ the DA proposed by Alonso-Gonzales et al. (2023) with a spatial propagation
of the sparse data points from ICESat-2 that tries to compensate the fact that ICESat-2 data
are acquired in profiles with many temporal and spatial gaps. They perform three experiments
to assess the effectiveness of assimilating different data types snow cover area, from Sentinel-
2, snow depth, from ICESat-2 or both. The reported findings indicate that by incorporating
snow cover area data alongside snow depth from ICESat-2 led to the most accurate snowpack
simulations.

Reply:

We appreciate the Reviewer’s interested approach to the paper and are grateful for
the constructive suggestions that have helped us to improve the study. We kindly
point out that the aim of the study is not primarily to improve the FSM2 simulations
in the study catchment per se, but to present a newly developed method that allows
the joint assimilation of snow cover data and novel ICESat-2 snow depth profiles that
are sparse in time and space and thus currently of very limited use for snow mod-
elling. The method presented here is designed to be globally applicable. ICESat-2s
satellite-derived profiles have a very different nature and greater uncertainty than the
experiments assimilating subsampled, within-catchment drone-based snow depth
data presented by ( ). Our method builds on this ear-
lier work and the spatio-temporal data assimilation method therein to show how ac-
tual satellite-derived snow depth data from ICESat-2 can be propagated/transfered
in space and time from outside the catchment using to yield spatio-temporally com-
plete reconstructions of the full snowpack state in the catchment. Moreover, we also
show (to the best of our knowledge) for the first time how to perform joint spatio-
temporal assimilation of both ICESat-2 snow depth and Sentinel-2 fSCA so as to ex-
ploit the highly complementary nature of these two types of observations (

, ). In addition, we provide a thorough uncertainty quantification of the
respective simulations, which is not trivial in the case of spatially propagated infor-
mation from observations located near but outside the study area. The following
provides a point-by-point response to the Reviewer’s Comments.

COMMENT # 1.2
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The authors leverage a data assimilation system (MuSA) from a previous work (Alonso-
Gonzdlez et al., 2023). Moreover, the methodology for spatializing the ICESat-2 data (a point
of significant interest) builds upon concepts presented in the previous work, but without sub-
stantial further development. While the initial findings are interesting, their persuasiveness
could be strengthened through further analysis. This deeper exploration would allow the re-
search to culminate in a more robust and impactful paper.

Reply:

We agree that the core simulations of this paper relies on the MuSA assimilation sys-
tem, which was developed in previous work ( , , ).
However, we disagree with the rest of the Reviewer’s statement while acknowledg-
ing that the novelty of this study could have been better emphasized in the paper.
As such, we would like to highlight the differences and the method development we
have accomplished to make these new experiments possible:

* Despite our short description in Section 3.1, a substantial effort was necessary to
treat the ICESat-2 elevation observations in order to retrieve snow depth obser-
vations, as there is not an established method to do that. Careful data curation
was required to eliminate outliers so that the observations could be ingested
into a data assimilation system.

¢ To the best of our knowledge, this is the first work that goes beyond validating
ICESat-2 data with snow depth measurements from another source, but instead
assimilates them to constrain a snow model.

* The MuSA assimilation system was updated in order to spatially propagate
information coming from a subset of the observations while doing a so-called
joint data assimilation (assimilating multiple different types of observations).
Because of the way we define a neighbourhood, a large number (many hun-
dreds) of cells with fSCA-observed cells would be included in the neighbour-
hood. The computational burden would then increased drastically due to the
resulting large input/output operations to access all neighboring fSCA predic-
tions and observations for every Kalman update. The previous MuSA system,
without the upgrade done in this study, would have required the resources of
a larger supercomputer for such a joint assimilation. The updated assimilation
method was implemented through modifications in the spatial_MuSA module
of the system, changing the subset of observations that are considered to create
a neighbourhood of pixels for domain localization that are considered for the
state update. See the pull requests 14-17 in the MuSA repository.
(https://github.com/ealonsogzl/MuSA /pull/14)
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¢ For this work, we used the MuSA system to perform joint assimilation in a
spatio-temporal setting. While the MuSA system has already been used to per-
form joint assimilation ( , ), there the observations
were land surface temperature and fractional snow-covered area but both were
spatially complete products so this was done for a single pixel in a purely tem-
poral ("1D", or "embarrassingly parallel") setting without any spatial propaga-
tion of information. Here we instead jointly assimilated snow depth and fSCA
in a spatio-temporal setting whereby in the previous works snow depth was
the only observation assimilated in experiments with spatial propagation. To
the best of our knowledge, this is a completely novel snow data assimilation
approach. In the described experiments, the two observation types (fSCA and
snow depth) that we either jointly or individually assimilate have a different
spatial coverage. This made calibrating the relative accuracy of the observations
and the selection of the spatial propagation parameters such as the length scale
a relatively tough exercise since these hyperparameters both have a consider-
able effect on the relative weight of the two sets of observations influencing the
state of the simulations as well as on the spatial distribution of the simulation.

We realise that we may have undercommunicated the methodological develop-
ment and MuSA updates required to achieve the results and framework presented in
this study. In the revised manuscript, we better emphasize in the Introduction, in the
Methods and in the Conclusions the novelty of the approach and how it differs from
previous work.

COMMENT # 1.3

While the current findings are interesting, further analysis could significantly enhance their
persuasiveness. Consider incorporating other inputs data that only ERA-5 (also derived from
in-situ) and also move to other (larger) catchment where distributed HS are available (e.g.,
ASO data if ICESat-2 data are available or Dischma in Switzerland) to solidify the results.

Reply:

We are grateful for your acknowledgment of the interest of our findings and ap-
proach. To a limited extent we agree that further analysis would enhance their per-
suasiveness. We would like to address your suggestions on adding different forcing
data and other study sites separately.

Study site: we appreciate your suggestion to experiment in larger catchments with
distributed snow depth available. However, we propose to keep this as the sole study
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site because of the acknowledged interest of the results shared by you and the other
Reviewer, and expand the analysis on the utility of ICESat-2 observations to infer
snow spatial-distribution point of view in the future (as suggested in Section 5). To
our best knowledge, the locations you suggest are much larger and have not been
surveyed by airborne instruments with the same temporal frequency available in
the current study area (around 12 acquisitions in the studied season). The lower
temporal resolution of distributed snow depth dataset could limit the solidity of the
analysis on accumulation and ablation season. Moreover, high resolution and large
scale DA exercises require substantial further model development or changes to the
output resolution in order to be computationally affordable (e.g., not to simulate in a
tully distributed manner or at a much coarser resolution). We therefore consider this
possibility worthy of a complete new and separate study. Considerations about this
are added in the Discussion.

Forcing data: the second suggestion is about incorporating in the analysis other
input data than only ERA5, such as data derived from in-situ observations. We ac-
knowledge that, if the scope would be to achieve the best possible snow simulation
of this specific basin, it would certainly be the better option to use a continental or
even national reanalysis together with in-situ data from a local meteorological sta-
tion. However, we underline that this study was designed to showcase a globally
applicable workflow where high-resolution forcing data is usually lacking — and the
assimilation of observations is used to achieve distributed result maps. Note that
one of the main motivation for using satellite DA in snow modeling is precisely to
tix errors in the forcing data, so it is particularly worth demonstrating that these
methods are able to work with coarse globally available meteorological forcing in
line with many previous snow DA studies (e.g. , ;

, , ). Moreover, several other DA studies are based solely on one global
reanalysis as input forcing (in these cases MERRA or MERRA-2) such as
( ) or ( ). Hence, we used the current state-of-the-art (in terms of
resolution and accuracy) global atmospheric reanalysis ERAS. Its original spatial res-
olution clearly misses the hillslope scale heterogeneity, this we obtain partly through
a preliminary topographic downscaling routine (TopoSCALE; , ) but
mainly via the information contained in the observations that we assimilate. We con-
sidered this a sufficiently general prior knowledge of the seasonal snow evolution
to be able to claim global applicability of this workflow, as it will arguably be most
useful for other (less studied) areas where large knowledge gaps on snow amounts
are existing and no regional forcing data (let alone in-situ observations) exist. In our
opinion, adding another reanalysis to the experiments would confuse the reader and
not add much value to the study for the following reasons:
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¢ Starting from a higher quality prior knowledge of the seasonal snow evolution
would leave the reader with the question: is this approach of any value for
remote places (e.g. Central Asia) where such improved prior information is not
available?

¢ The hillslope processes (100 m scales and smaller) we aim at simulating would
not be represented in any higher resolution atmospheric reanalysis even using
costly state-of-the art convection permitting atmospheric models which are at
best at the kilometer rather than the hillslope scale.

We realise that we may have not emphasized enough that the suggested workflow
was designed to be globally applicable. In the revised manuscript, we better under-
line this aspect when motivating the methodological choices both in the Introduction
as well as in the Methods.

COMMENT #1.4

Revisit the scientific questions the paper aims to address. Sharpening these questions will
guide the research and ensure the experiments directly address them.

Reply:

Good point, we previously only stated a hypothesis at the end of Section 1. We now
replace it with three specific research questions as we agree this can guide the reader
to understand the idea behind our experiments.

Changes:

The two datasets have complementary features: ICESat-2 retrieves snow depth di-
rectly, but only along profiles; while fSCA has an indirect eorrelation-relationship
w1th snow depth but fhiS—d-&tﬂS@‘FlS spatlally distributed. Q%hype’ehes&t&tha%

evolution—The novel scientific questions we aim to answer are:

e Caninformation from sparse snow depth retrievals from ICESat-2 along profiles
be used to provide information about average catchment-scale snow depth and
its complete spatial distribution?

e [s assimilating sparse ICESat-2 snow depth retrievals better than more commonl
used fSCA observations derived from optical satellites?

¢ [sensemble-based DA able to able to leverage information from both observation
types when jointly assimilating both fSCA and sparse snow depth observations?
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COMMENT # 1.5

Section 3.5 appears to hold the core of the paper contribution. Dedicating more space and
development to this section would allow for a more thorough exploration and potentially lead
to more impactful conclusions.

Reply:

We fully agree with both the Reviewers’ Comments stating that a deeper explanation
of how information from observations is propagated in space is needed. The same
suggestion came from Reviewer 1 in Comment 1.7. We propose to expand of Section
3.5 in the revised version of the manuscript to guide the reader better concerning the
spatial propagation/transfer of information. See Comment 1.7 in this document for
more details.

Detailed comments:

COMMENT # 1.6

The introduction of the paper could benefit from being condensed and sharpened. Focus on
presenting the key scientific questions, the research aims to answer, and clearly outlining the
paper main novelty (difference with previous works). This will ensure the experiments directly
target those questions and guide the research direction. The core innovation of the paper lies
in applying the DA method (from Alonso-Gonzales et al. 2023) to ICESat-2 data. The unique
approach for propagating spatial and climatological information holds significant promise.
However, further development of this methodology is necessary, particularly regarding the
justification for using data outside the area of interest for analyzing snow accumulation and
redistribution (see next points).

Reply:

Agreed, we have revised and shortened the introduction according to the structure
proposed by the Reviewer as well as Comments from Reviewer 1, and also added
research questions that the paper aims at answering. We take care to explain why
we use snow depth observations outside the study area, which we find is one of the
strengths of the proposed approach as it shows the utility of the sparse observations
measured by the satellite ICESat-2 profiles. Our study catchment has only nearby
ICESat-2 observation available, and the situation will be the same for many other
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catchments of interest around the world, but the utility of ICESat-2 in snow modelling
is still of interest.

COMMENT # 1.7

Figure 3, potentially the paper core novelty, requires a more detailed explanation. From the
scatterplot, it appears there might be a weak correlation between snow depth and CSMD (and
TPI24). However, the relationship between snow depth and Sx200 seems less clear, potentially
indicating no significant correlation. At least this is my understanding with the provided text.
If this is not correct, I suggest a clearer description to enhance reader comprehension explicitly
guide them through the correct explanation.

Reply:

We originally included the Winstral index (Sx) because both ( ) and

( ), who carried out studies about the snow spatial distribution in
the Izas experimental catchment, recommended the adoption of the Winstral index
in addition to TPI when predicting snow depth. When exploring what dimensions to
choose, we analysed their interplay in an explorative way and found that although
Sx does not exhibit a linear correlation with SD, in combination with CSMD this di-
mension is a relevant predictor of SD (e.g. no low SD observations with a low Sx).
However, due to the considerable cost of running the DA experiments we did not per-
form a complete factorial exploration of all possible feature dimensions. Nonetheless,
following this particularly astute Reviewer Comment about the weak correlation be-
tween Sx and snow depth, we have now repeated the ensemble simulations for all
DA experiment runs excluding Sx from the dimensions of the feature space. We were
positively surprised to see a slight improvement in the results. We believe that in
our case, the inclusion of that index is not beneficial because of the large amount of
ICESat-2 observations that were located in an area with negative Winstral index, a
characteristic shared with only few cells in the drone domain. It is possible to see this
in the first submission’s Figure 3. It seems that limited representativity of ICESat-2
data for the catchment topography in terms of Sx was leading to smaller correlation
values and, consequently, a small influence of the observations for the cells of the
simulated domain.

Hence, we propose a large change of Section 3.5 as you suggest in Comment 1.5,
to guide the reader in understanding the spatial propagation of information. We
removed Sx from the predictors and also add Figure 1 (see below) to the manuscript.
The Figure exemplifies a situation where a cell in the experimental catchment with
drone data — depicted in panel b) with a cross — has to be updated. The solid points
in the scatterplot are selected to be part of the neighbourhood, and all of them have
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Figure 1: Panel a): scatterplot depicting the position of the cells from the drone maps in the
feature space. This space — created with TPI and CSMD — is adopted to define the similarity
between cells. The points are colored according to the snow depth observed with the drone.
Panel b): ICESat-2 snow depth observations in the extended catchment, displayed in feature
space, with snow depth-based coloring. The cross represents one cell from the drone domain
where a snow depth of 150 cm was measured. The solid points are ICESat-2 data points
included in the neighbourhood for this cell, with their size proportional to the correlation p.

influence on the Kalman update (see step 11 in Algorithm 1 of ,
), used to update the local ensemble of the target grid cell. As cells closer in

teature space to the target cell should have a larger influence, their p is larger, which

can be appreciated by looking at the size of the scatter points.

COMMENT # 1.8

Please revise the text from L276-282 to make more clear (and less compressed).

Reply:

This part of the text has been extended as part of the answer to Comment 1.5. See
above the answer to Comment 1.7 for more details.

COMMENT # 1.9

The paper relies solely on ERA-5 data for atmospheric forcing. While ERA-5 is a valuable
product, acknowledging the existence of other models with potentially significant output vari-
ability (up to 100%) would strengthen the main message of the paper that ICESat-2 data can
be useful and in which situation. A discussion on why ERA-5 was chosen over other op-
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tions would be beneficial. However, for a more robust understanding of the proposed method
I suggest incorporating data from at least a couple of additional models is recommended.
This comparative analysis would highlight the method sensitivity to different forcing data.
In particular, given the small target catchment area (and the high target resolution of 20m),
exploring the use of spatially distributed data from nearby in-situ stations could be highly
valuable. This would provide a more realistic scenario: not sure the first choice to simulate
Sha at a resolution of 20m in an experimental catchment in a European mountain range is
starting from a 30km ERA-5 data.

Reply:

We thank the Reviewer for the suggestion of a better argumentation for choosing
ERAS5 as the (only) source for forcing data. We point to the answer to Comment 1.3
and will not repeat the arguments here.

COMMENT # 1.10

The results of experiment D are puzzling (at least to me in the present form). While Fig-
ure 3 (and related text) suggests that ICESat-2 data captures the relationship between SD
distribution, topography, and climatology using this data alone in experiment D appears to
yield inaccurate snow patterns, whereas it helps in experiment | when used together with
Sentinel-2, what is the main mechanism behind this behavior?

Reply:

We also find this result intriguing and did not find a simple answer. Below, we out-
line what factors likely contribute to the relatively poor result for experiment (D)
but improved performance of experiment (J). The spatial patterns we see in the dis-
tributed maps in the Results are governed by the features that design the spatially
correlated prior. We agree that in experiment (D), the snow patterns are inaccurate
— but the basin average snow depth is greatly improved. The spatial patterns are a
result of the features and their relative weights, which are the hyperparameters of the
prior that were chosen from various tested combinations/variations, but not inferred
or optimized. Adding fSCA observations — and hence moving to experiment (J) —
adds to the local updates for the cells in the drone catchment a cumulative informa-
tion about the accumulation and melt processes. Melt-out patterns are reproduced
into snow patterns in the peak-SWE maps we show, while the snow depth profile
provides information to adjust and improve absolute snow depth values.

COMMENT # 1.11
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A crucial evaluation metric for DA methods is computational time. The paper should explic-
itly report and analyze this metric, ideally providing a detailed profile for each operational
step.

Reply:

The simulations were run on a local server from the Department of Geosciences of
the University of Oslo. It is equipped with a 1TB RAM and 40 processors were used
for this task. However, there was high variance in computational time depending
on the varying load on the server. For the three experiments the computational
time was similar and at best it took 7 hours, or at worst three days. The computa-
tional cost depends on the GC parameter and on the density of observations, so it is
hardly comparable to simulations in other sites. Moreover, we note that the current
implemetation of MuSA is a wrapper around the Fortran implementation of FSM2.
Simply improving FSM2, for example by translating it to the Python programming
language, or other software-side improvements related to the observations use might
greatly improve the computational time. Further development of MuSA with regard
to computational efficiency is planned.

We acknowledge that computational time is a crucial factor for readers to know
about the applicability of the method, and the order of magnitude will be mentioned
in the revised manuscript in Section 3.6. However, technical differences in the imple-
mentation can make the computational time vary dramatically (see above). In this
publication, the focus is on the scientific questions related to the utility of ICESat-2,
and we prefer to avoid a lengthy technical sidetrack.

COMMENT #1.12

Fig 7 can you add the drone maps? Beside demonstrating a significant improvement in an
accuracy score, the scientific community is starting to become interested in understanding
how realistic snow distributions become when observations at high resolution are assimilated
into models. The paper could benefit from a stronger emphasis on this aspect.

Reply:

Two drone maps will be added to Fig 7, depicting the average snow depth for both
the accumulation and melting seasons, so that the reader can compare the results
with the absolute amounts.

COMMENT #1.13
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While Figure 7 presents the CRPS for various scenarios, a deeper analysis could help isolate
the contribution of ICESat-2 data. The similarity between the CRPS with ICESat-2 and the
prior suggests limited influence of ICESat-2. However, the simultaneous improvement in |
(potentially reflecting the contribution of ICESat-2) is intriquing and puzzling at the same
time. Can you better comment on this?

Reply:

We thank the Reviewer for the comment. For our experiments, one should note from
the time series of Figure 4 that the validation maps average (black points) lie very
close to the median of the prior (gray lines) during the accumulation period, hence
the prior simulation already provides an accurate (albeit not precise) simulation in
terms of average snow depth for this period. As a consequence, a gain on the CRPS
score in the accumulation season is in our experiments harder to achieve than in the
melting period, as there the prior average snow depth is quite far from the valida-
tion points and an improvement is thus easier to improve. In experiment (D), there
is a substantial improvement given by the diminishing of the spread of the ensem-
bles. This is shown in the panel a) of the first submission’s Figure 5 in terms of
basin-average snow depth, which corresponds to a CRPS improvement of 14%. We
agree that it’s puzzling that this improvement is not better than what we achieve
with fSCA-only assimilation. In the fSCA case, the basin average snow depth does
not improve (see Figure 4, panel a)), where the blue trajectories overestimate the val-
idation black points overall), but the reduction in CRPS is caused by a better relative
spatial distribution of snow depth. The latter is visible from the similarity of panels
b) and c) of Figure 4 as well as from the mostly uniform CRPS values in the spatially
distributed map for experiment (C) in Figure 7. This is point is crucial: the improve-
ments obtained by assimilating spatially complete fSCA and sparse snow depth are
complementary, hence the large improvement we see in experiment (J). We acknowl-
edge it is important to underline this crucial point and we add this arguments in the
discussions of the revised manuscript.

COMMENT # 1.14

L430: the fact that SCA assimilation doesn’t improve the simulation during the accumulation
period could be attributed to the fact that the area of interest is having 100% snow cover?

Reply:
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The assimilation of fSCA using ensemble-based smoothers is a topic which has re-
ceived many studies (e.g. , . , ) ,
E , F , ). If the assimilation method
acts as a filter, it acts sequentially: the observations modifies the state of the sim-
ulation at the current time, and the past (relative to the current observation) is not
affected. Otherwise, for a batch smoother, (as in the presented experiments herein
and references above), the information from an observation can also propagate back-
wards in time, as all the observations in the current water year are assimilated at
once. It has previously been convincingly shown that f{SCA assimilation can improve
the seasonal snow simulations also in the accumulation season if such a smoother
is employed because fSCA observations contain cumulative information about both
accumulation and melting processes, indeed this is the key behind state-of-the-art
probabilistic snow reanalyses (e.g. , ) and the earlier deterministic
snow reconstruction techniques ( ). However, since the information
is integrated over both accumulation and melting-related parameters, equifinality
problems can arise. That means there is not enough information in the fSCA ob-
servations to infer all the perturbation parameters, and very heterogeneous sets of
parameter can be used to reconstruct the states as they’re observed. This is the likely
cause of the missing improvement in the fSCA experiment in terms of catchment-
average snow depth, but note that there is an improvement in the CRPS score.

COMMENT # 1.15

L439: this does not seem true to me (at least in the present form).
Reply:

We agree, the sentence was a leftover from an earlier version of the results section.
The paragraph will be changed:

Changes:

.. As Figure 5 shows, this information leads to a more precise reconstruction of the
catchment—average peak -SWE compared to experlment (©). This demonstrates that
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d)-and-e), Figure 5} However, the relative spatial patterns of the simulation only

partially match those of the validation maps (panels b) and c), Figure 5).

COMMENT # 1.16

L442: this is in contradiction with L253 where it is stated that the snow depth is strongly
governed by topography, which is also the main hypothesis why the proposed approach has
been applied. This ping pong effects makes it challenging to understand the overall benefit of
ICESat-2 data (and the validity of the presented results).

Reply:

We agree that this is a contradiction, and we propose to modify both the sentences to
remove the challenges for the reader. The consideration at line 1.442 will be modified
to include that part of the feature space occupied by the drone domain is not covered
by ICESat-2 observations.

Changes:

L253: ... As the relative snow depth’s spatial distribution ef snow-depth is strongly
governed by topography, ...

L442: ...Sinee-the The observations we use in this experiment are not direct mea-
surements in the ea%ehme&% m@gmzﬂmtc}wmmthls result is in the end
not surprising:

WW%@WW%&MWMW
experiences the same general snow conditions there are local differences which can
be only partially captured with a low dimensional space, as TPI and CSMD do not
fully characterize the snow depth distribution. For example, single cells with ex-
treme values located in the basin-experimental catchment might not be similar {in
terms of topography-and-meltout-date)to-the-ones-which-are TPl and CSMD to only
cells observed by ICESat-2 with as extreme snow depth values, but also to medium
snow depth observations, not getting the ideal update.

COMMENT # 1.17

L452: speculative, please revise it.
Reply:

We rephrased.

Changes:
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as-it As the ICESat-2 satellite will potentially collect
data until the mid-2030s, and the snow science community is eager to keep on testing
its potential to evaluate mountain water resources, this dataset has the potential
become a functional tool for water managers to estimate the maximum seasonal
snow accumulation. However, especially within an operational snow hydrological
forecasting context (Mott et al.,, 2023), there is a clear need to reduce the processing
time of the geolocated photon low level data which currently takes months.

COMMENT # 1.18

L484: 20 m is not hyper resolution.
Reply:

We acknowledge that the level of spatial resolution is a term relative to the context.
For example, in climate modelling hyper-resolution is kilometric (Wood et al., 2011),
while in non-ensemble forest snow modelling hyper-resolution is submetric. In the
context of snow and hydrology ensemble-based DA where a cell is simulated numer-
ous times, recent studies have defined their resolution as hyper for cell sizes well
below 100 m (Fiddes et al., 2019; Alonso-Gonzélez et al., 2023). In contrast, snow DA
simulations with cell sizes of about 100 m typically define their spatial resolution as
high (i.e., one level coarser than ‘hyper’) (Margulis et al., 2016; Girotto et al., 2020).
Moreover, high resolution is also applied in recent literature to snow DA reconstruc-
tions at kilometric grid cells (Oaida et al., 2019; Brangers et al., 2023). At least within
the context of snow DA, calling ensemble simulations at 20 m hyper resolution is
warranted. In conclusion, we believe that this paper is not the location where an
arguably ill-posed unified interdisciplinary definition of spatial resolution should be
discussed. For such reason, we keep the term hyper in line with previous snow DA
work.

COMMENT #1.19

References are generally ordered alphabetically.

Reply:
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The references were already ordered alphabetically by last name of the first author
of each paper as is the norm, but we appreciate that the reference list is somewhat
confusing given that it also included the full first names of all authors rather than
just initials. The first names in the reference list will be replaced by initials in the final
typeset version of the manuscript.
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