Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js
Preprints
https://doi.org/10.5194/egusphere-2024-2030
https://doi.org/10.5194/egusphere-2024-2030
09 Jul 2024
 | 09 Jul 2024

The aerosol pathway is crucial for observationally constrained climate sensitivity and anthropogenic forcing

Ragnhild Bieltvedt Skeie, Magne Aldrin, Terje K. Berntsen, Marit Holden, Ragnar Bang Huseby, Gunnar Myhre, and Trude Storelvmo

Abstract. Climate sensitivity and aerosol forcing are two of the most central, but uncertain, quantities in climate science that are crucial for assessing historical climate as well as future climate predictions. Here, we use a Bayesian approach to estimate the inferred climate sensitivity and aerosol forcing using observations of temperature and global ocean heat content and prior knowledge of effective radiative forcing (ERF) over the industrial period. Due to limited information on uncertainties related to the time evolution of aerosol forcing, we perform a range of sensitivity analyses with idealized aerosol time evolution. The estimates are sensitive to the aerosol forcing pathway with the mean estimate of inferred climate sensitivity ranging from 2.0 to 2.4 K, present-day (2019 relative to 1750) aerosol ERF ranging from -0.7 to -1.1 W m-2 and anthropogenic ERF ranging from 2.6 to 3.1 W m-2. Using observations and forcing up to and including 2022, the inferred effective climate sensitivity is 2.2 K with a 1.6 to 3.0 K 90 % uncertainty range. Analysis with more freely evolving aerosol forcing between 1950 and 2014 shows a strong negative aerosol forcing trend in the latter part of the 20th century that is not consistent with observations. Although we test our estimation method with strongly idealized aerosol ERF pathways, our posteriori estimates of the climate sensitivities end up in the weaker end of the range assessed in the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR6). As our method only includes climate feedbacks that have occurred over the historical period, it does not include the pattern effect, i.e. where climate feedbacks are dependent on the pattern of warming which will likely change into the future. Adding the best estimate of the pattern effect from IPCC AR6, our climate sensitivity estimate is almost identical to the IPCC AR6 best estimate and very likely range.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

13 Nov 2024
The aerosol pathway is crucial for observationally constraining climate sensitivity and anthropogenic forcing
Ragnhild Bieltvedt Skeie, Magne Aldrin, Terje K. Berntsen, Marit Holden, Ragnar Bang Huseby, Gunnar Myhre, and Trude Storelvmo
Earth Syst. Dynam., 15, 1435–1458, https://doi.org/10.5194/esd-15-1435-2024,https://doi.org/10.5194/esd-15-1435-2024, 2024
Short summary
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
Climate sensitivity and aerosol forcing are central quantities in climate science, uncertain and...
Share