Preprints
https://doi.org/10.5194/egusphere-2023-1428
https://doi.org/10.5194/egusphere-2023-1428
11 Aug 2023
 | 11 Aug 2023

Quantifying the migration rate of drainage divides from high-resolution topographic data

Chao Zhou, Xibin Tan, Yiduo Liu, and Feng Shi

Abstract. The lateral movement of drainage divides is co-influenced by tectonics, lithology, and climate, and therefore archives a wealth of geologic and climatic information. Several methods have been proposed to determine the direction of drainage-divide migration. However, how to quantify the migration rate of drainage divides remains challenging. Here, we propose a new approach to calculate the migration rate of drainage divides from high-resolution topographic data. The new method is based on the cross-divide comparison of channel-head parameters, including the critical upstream drainage area and the gradient of channel head, both of which are used to calculate the normalized channel steepness at the channel head. We then apply the new method to an active rift shoulder (Wutai Shan), and a tectonically stable area (a mountain range in the Loess Plateau) in North China, to illustrate the calculation of drainage-divide migration rates. The northward migration rates at the Wutai Shan range from 0.10 to 0.13 mm/yr. The migration rates are approximately zero at the mountain range in the Loess Plateau. This study demonstrates that the migration rate of drainage divides can be determined more accurately once the cross-divide differences in uplift rate are taken into account.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

07 Mar 2024
Quantifying the migration rate of drainage divides from high-resolution topographic data
Chao Zhou, Xibin Tan, Yiduo Liu, and Feng Shi
Earth Surf. Dynam., 12, 433–448, https://doi.org/10.5194/esurf-12-433-2024,https://doi.org/10.5194/esurf-12-433-2024, 2024
Short summary
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
The drainage divide stability provides new insights into both the river network evolution and...
Share