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Abstract 11 

The lateral movement of drainage divides is co-influenced by tectonics, 12 

lithology, and climate, and therefore archives a wealth of geologic and climatic 13 

information. It also has wide-ranging implications for topography, the sedimentary 14 

record, and biological evolution, thus has drawn much attention in recent years. 15 

Several methods have been proposed to determine drainage divides’ migration state 16 

(direction and rate), including geochronological approaches (e.g., 10Be) and 17 

topography-based approaches (e.g., χ-plots or Gilbert metrics). A key object in these 18 

methods is the channel head, which separates the hillslope and channel. However, due 19 

to the limited resolution of topography data, the required channel-head parameters in 20 

the calculation often cannot be determined accurately, and empirical values are used 21 
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in the calculation, which may induce uncertainties. Here, we propose two methods to 22 

calculate the migration rate of drainage divides, based on the relatively accurate 23 

channel-head parameters derived from high-resolution topographic data. We then 24 

apply the methods to an active rift shoulder (Wutai Shan) in the Shanxi rift, and a 25 

tectonically stable area (Yingwang Shan) in the Loess Plateau, to illustrate how to 26 

calculate drainage-divide migration rates. Our results show that the Wutai Shan 27 

drainage divide is migrating northwestward at a rate between 0.21 to 0.27 mm/yr, 28 

whereas the migration rates at the Yingwang Shan are approximately zero. This study 29 

indicates that the drainage-divide stability can be determined more accurately using 30 

high-resolution topographic data. Furthermore, this study takes the cross-divide 31 

differences in the uplift rate of channel heads into account in the measurement of 32 

drainage-divide migration rate for the first time.  33 
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1. Introduction 37 

The evolution of the Earth’s surface is jointly controlled by tectonics, lithology, 38 

and climatic conditions (e.g., Molnar and England, 1990; Whipple, 2009; Gallen, 39 

2018; Bernard et al., 2021; Hoskins et al., 2023), providing a basis for reconstructing 40 

the past tectonic (Pritchard et al., 2009; Kirby and Whipple, 2012; Shi et al., 2021) or 41 
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climatic processes (Tucker and Slingerland, 1997; Hancock et al., 2002; Schildgen et 42 

al., 2022) through topography. The evolution of unglaciated terrestrial terrains is 43 

fundamentally coupled with changes in drainage systems through river’s vertical 44 

(changes in river long profile) and lateral movements (drainage divide migration and 45 

river captures) (Whipple, 2001; Clark et al., 2004; Bonnet, 2009; Willett et al., 2014). 46 

Previous studies have extensively investigated how river channel profiles respond to 47 

tectonic uplift (Whipple, 2001; Crosby and Whipple, 2006; Kirby and Whipple, 48 

2012), lithological differences (Duvall et al., 2004; Safran et al., 2005; Forte et al., 49 

2016), and precipitation perturbations (Schlunegger et al., 2011; Bookhagen and 50 

Strecker, 2012). River long profiles have been used to study earthquake events (e.g., 51 

Burbank and Anderson, 2001; Wei et al., 2015) and the spatio-temporal variations of 52 

uplift (e.g., Whipple et al., 1999; Kirby et al., 2003; Pritchard et al., 2009; Goren et 53 

al., 2014). Recent studies show that the widespread lateral movement of river basins 54 

driven by geological and/or climatic disturbance (Yang et al., 2019; Zondervan et al., 55 

2020; Zhou et al., 2022a; Bian et al., 2024) also interacts with the adjustment of 56 

channel profiles (Willett et al., 2014). Drainage-divide migration, one form of river 57 

lateral movement, may not only carry information on geological and/or climatic 58 

disturbance (Su et al., 2020; Zondervan et al., 2020; He et al., 2021; Shi et al., 2021; 59 

Zhou et al., 2022a; Zeng and Tan, 2023) but also influence the extraction of tectonic 60 

information from channel profiles (Goren et al., 2014; Ma et al., 2020; Jiao et al., 61 

2022). Moreover, it has multi-facet consequences for landscape evolution 62 

(Scheingross et al., 2020; Stokes et al., 2023), sedimentary processes (Clift & 63 
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Blusztajn, 2005; Willett et al., 2018; Deng et al., 2020; Zhao et al., 2021), and 64 

biological evolution (Waters et al., 2001; Zemlak et al., 2008; Hoorn et al., 2010; 65 

Musher et al., 2021). For this reason, the stability of drainage divides has drawn more 66 

and more attention in recent years (e.g., Authemayou et al., 2018; Vacherat et al., 67 

2018; Chen et al., 2021; Shelef and Goren, 2021; Sakashita and Endo, 2023; Bian et 68 

al., 2024). 69 

Drainage-divide migration is essentially controlled by the cross-divide 70 

difference in erosion and topographic slope (Beeson et al., 2017; Dahlquist et al., 71 

2018; Chen et al., 2021; Zhou et al., 2022a). The erosion rates are routinely derived 72 

from geochronological techniques, such as cosmogenic nuclides (e.g., 10Be) 73 

concentration measurements (Mandal et al., 2015; Struth et al., 2017; Young and 74 

Hilley, 2018; Sassolas-Serrayet et al., 2019), which can be used to calculate the 75 

migration rates of drainage divides (Beeson et al., 2017; Godard et al., 2019; Hu et al., 76 

2021). However, these techniques are usually based on samples collected from a 77 

catchment outlet that is several, or even tens of, kilometers away from the drainage 78 

divide and thus may not represent the erosion rates close to the drainage divide 79 

(Sassolas-Serrayet et al., 2019; Zhou et al., 2022a). Besides, the high cost of sample 80 

processing makes it challenging to determine the drainage divide’s motion by 81 

measuring the erosion rates throughout the large landscapes. Hence, it would be ideal 82 

to find an accessible and efficient method that can be applied to the entire landscape 83 

and make full use of the 10Be-derived erosion rates. 84 

The advancement of the digital elevation model (DEM) has promoted the 85 
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development of geomorphic analysis, making it possible to determine the drainage 86 

divide’s transient motion through topography analysis. For example, Willett et al. 87 

(2014) applied the χ method to map the dynamic state of river basins. Forte and 88 

Whipple (2018) proposed the cross-divide comparison of “Gilbert metrics” (including 89 

channel heads’ relief, slope, and elevation) to determine a drainage divide’s migration 90 

direction. Others adopted the comparison of slope angle or relief of the hillslopes 91 

across a drainage divide to deduce its stability (Scherler and Schwanghart, 2020; Ye et 92 

al., 2022; Zhou et al., 2022b). These geomorphic techniques, so far, could only 93 

determine the migration direction of drainage divides. Braun (2018) provided an 94 

equation that considers both alluvial and fluvial areas to calculate the migration 95 

velocity of an escarpment (also a drainage divide). Zhou et al. (2022a) developed a 96 

technique to calculate the migration rate through the high base-level χ values on both 97 

sides of a drainage divide. These new approaches require channel-head parameters to 98 

calculate the migration rate. However, the location of the channel heads sometimes 99 

cannot be accurately identified because of the limitation in the resolution of DEMs in 100 

natural cases. For this reason, empirical values of channel-head parameters are used in 101 

these studies, which may induce uncertainties. 102 

This study aims to establish an approach to derive the migration rate of drainage 103 

divides, at a high precision and low cost, based on topographic analysis. We choose a 104 

tectonically active area (i.e., the Wutai Shan in the Shanxi Rift) and a tectonically 105 

inactive area (i.e., the Yingwang Shan in the Loess Plateau) to demonstrate how to 106 

quantify drainage-divide migration rates (Fig. 1). We use the aerial photography 107 
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acquired by unmanned aerial vehicles (UAVs) and the Structure from Motion (SfM) 108 

technology to obtain the high-resolution DEM data of these two areas (0.67 m and 109 

0.84 m spatial resolution in the Wutai Shan and the Yingwang Shan, respectively). 110 

Benefiting from the high-resolution data, the location of channel heads can be 111 

identified more accurately. We then develop two methods to calculate the drainage-112 

divide migration rates. One is based on the measured channel-head parameters, and 113 

the other is based on an improved method of Zhou et al (2022a). Combining with the 114 

geological and low-temperature thermochronology studies of the Wutai Shan 115 

(Middleton et al., 2017; Clinkscales et al., 2020), we also quantify the cross-divide 116 

difference in uplift rates to improve the precision of drainage-divide migration rate. 117 

 118 

2. Methods 119 

2.1 Channel-head-point method 120 

According to the detachment-limited stream power model (Howard and Kerby, 121 

1983; Howard, 1994), the channel’s erosion rate (E) can be expressed as: 122 

𝐸 = 𝐾𝐴𝑚𝑆𝑛                                                         (1) 123 

where K is the erosion coefficient, A is the upstream drainage area, S is the gradient of 124 

the river channel, and m and n are empirical constants.  125 

Because of thresholds such as erosion threshold (the shear stress of overland flow 126 

must exceed the threshold of the cohesion of bed material to generate river incision) 127 

(Howard and Kerby, 1983; Perron et al., 2008) or landslide threshold (landslides 128 
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occur when the threshold of soil or rock strength is exceeded in high relief region) 129 

(Burbank et al., 1996; Tucker and Bras, 1998), river channels (following Eq. 1) 130 

emerge at a certain distance from the drainage divide. The region between the channel 131 

head and the drainage divide is referred to as the hillslope area, where the erosion is 132 

controlled by landslide, collapse, and diffusion processes (Carson and Kirkby, 1972; 133 

Stock and Dietrich, 2006; Stark, 2010; Braun et al., 2018; Dahlquist et al., 2018). The 134 

channel-head point is the highest and the closest point to the drainage divide on a 135 

river channel (Clubb et al., 2014). Therefore, the erosion rate at channel-head points 136 

(Ech) can be described as: 137 

𝐸𝑐ℎ = 𝐾𝐴𝑐𝑟
𝑚𝑆𝑐ℎ

𝑛                                                          (2) 138 

where Ech is the erosion rate at channel-head points, Acr is the critical upstream 139 

drainage area of a channel-head point (Duvall et al., 2004; Wobus et al., 2006), and 140 

Sch is the channel-head gradient measured along the channel near the channel-head 141 

point. Eq. 2 indicates that the side of a drainage divide with a higher Acr or Sch can 142 

have a higher erosion rate than the other side, and is more likely to pirate the opposite 143 

drainage basin. Besides, a high erosion coefficient can amplify the drainage basin’s 144 

erosion rate. 145 

Drainage-divide migration is essentially controlled by the cross-divide difference 146 

in erosion rates and topographic slope (Beeson et al., 2017; Dahlquist et al., 2018; 147 

Chen et al., 2021; Zhou et al., 2022a; Stokes et al., 2023). Furthermore, the 148 

differential uplift should also be considered when using the cross-divide erosion rates 149 

at the channel heads to calculate the erosion difference across the divide, especially in 150 
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the case of tectonic tilting uplift (Zhou et al., 2022a). The drainage-divide migration 151 

rate (Dmr) can be obtained according to the cross-divide difference in erosion rate and 152 

uplift rate and the slopes across the divide (Zhou et al., 2022a): 153 

𝐷𝑚𝑟 =
∆𝐸𝑐ℎ−∆𝑈𝑐ℎ

𝑡𝑎𝑛𝛼+𝑡𝑎𝑛𝛽
                                                       (3) 154 

where ∆Ech is the difference in erosion rate between the two sides (annotated as α and 155 

β) of the drainage divide (∆Ech = Echα − Echβ). The choice of α or β is arbitrary, and the 156 

positive direction of the migration rate is assigned from the α to the β side whereas the 157 

negative is the opposite. ∆Uch is the cross-divide difference in uplift rate (∆Uch = Uchα 158 

− Uchβ), and tanα and tanβ are the average gradients (along the normal-divide 159 

direction) upslope of the channel head (not including the hilltop part) on the α side 160 

and the β side, respectively. Assuming the erosion coefficient (K) is the same on both 161 

sides of a drainage divide, Eqs. 2 and 3 allow us to derive the equation of drainage 162 

divide’s migration rate according to the parameters at the channel-head points: 163 

𝐷𝑚𝑟 =
𝐾[(𝐴𝑐𝑟

𝑚𝑆𝑐ℎ
𝑛 )

𝛼
−(𝐴𝑐𝑟

𝑚𝑆𝑐ℎ
𝑛 )

𝛽
]−∆𝑈𝑐ℎ

𝑡𝑎𝑛𝛼+𝑡𝑎𝑛𝛽
                                     (4) 164 

If the exact value of K is unknown, the drainage divide’s unilateral erosion rate 165 

can be used as a substitution: 166 

𝐷𝑚𝑟 =

𝐸𝛼[1− 
(𝐴𝑐𝑟
𝑚𝑆𝑐ℎ

𝑛 )
𝛽

(𝐴𝑐𝑟
𝑚𝑆𝑐ℎ

𝑛 )
𝛼

]−∆𝑈𝑐ℎ

𝑡𝑎𝑛𝛼+𝑡𝑎𝑛𝛽
                                         (5) 167 

or: 168 

𝐷𝑚𝑟 =

𝐸𝛽[
(𝐴𝑐𝑟
𝑚𝑆𝑐ℎ

𝑛 )
𝛼

(𝐴𝑐𝑟
𝑚𝑆𝑐ℎ

𝑛 )
𝛽

 −1]−∆𝑈𝑐ℎ

𝑡𝑎𝑛𝛼+𝑡𝑎𝑛𝛽
                                         (6) 169 

Eα and Eβ are the erosion rates of the α and the β side of the drainage divide, 170 

respectively, which can be derived through cosmogenic nuclides (10Be) concentration 171 
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measurements (Beeson et al., 2017; Godard et al., 2019; Hu et al., 2021). The regional 172 

average erosion rate (�̅� =
𝐸𝛼+𝐸𝛽

2
) can also be used to calculate the migration rate: 173 

𝐷𝑚𝑟 =

2�̅�[
(𝐴𝑐𝑟
𝑚𝑆𝑐ℎ

𝑛 )
𝛼
−(𝐴𝑐𝑟

𝑚𝑆𝑐ℎ
𝑛 )

𝛽

(𝐴𝑐𝑟
𝑚𝑆𝑐ℎ

𝑛 )
𝛼
+(𝐴𝑐𝑟

𝑚𝑆𝑐ℎ
𝑛 )

𝛽

]−∆𝑈𝑐ℎ

𝑡𝑎𝑛𝛼+𝑡𝑎𝑛𝛽
                                         (7) 174 

Based on Eqs. 4-7, the migration rate of drainage divides can be estimated using 175 

channel-head parameters combined with one of the erosion-related parameters, 176 

erosion coefficient (K), erosion rate at one side of a drainage divide (Eα or Eβ), or 177 

regional average erosion rate (�̅�). 178 

 179 

2.2 Channel-head-segment method 180 

A channel-head segment is the channel segment just below the channel head 181 

(Zhou et al., 2022a). Zhou et al. (2022a) developed a method based on the cross-182 

divide χ contrast of channel-head segments to calculate the migration rate of drainage 183 

divides. The essence of the method is the cross-divide comparison of the channel-184 

head segments’ normalized channel steepness (ksn) values. ksn is a widely used index 185 

(Whipple et al., 1999; Wobus et al., 2006; Hilley and Arrowsmith, 2008; Kirby and 186 

Whipple, 2012) that is quantitatively related to E and K (𝑘𝑠𝑛 = (
𝐸

𝐾
)

1

𝑛
). χ is an integral 187 

function (𝜒 = ∫ (
𝐴0

𝐴(𝑥)
)

𝑚

𝑛𝑥

𝑥𝑏
𝑑𝑥) of a channel’s upstream area (A) to horizontal distance 188 

(x) (Royden et al., 2000; Perron and Royden, 2012), and A0 is an arbitrary scaling area 189 

to make the integrand dimensionless.  190 

In the method of Zhou et al. (2022a), the location of channel heads cannot be 191 

accurately identified, because it is limited by the resolution of DEM. Therefore, an 192 
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empirical value of Acr = 105 m2 was used in the calculation. Benefiting from the high-193 

resolution DEM in this study, we improve the method in Zhou et al. (2022a) and use 194 

the real location of channel heads to calculate the migration rate. When the regional 195 

erosion coefficient (K) is known and unchanged in the vicinity of the drainage divide, 196 

the drainage-divide migration rate can be estimated by the following equation:  197 

𝐷𝑚𝑟 =
𝐾[𝑘𝑠𝑛(𝛼)

𝑛−𝑘𝑠𝑛(𝛽)
𝑛]−∆𝑈𝑐ℎ

𝑡𝑎𝑛𝛼+𝑡𝑎𝑛𝛽
 =

𝐾{[
(𝑧𝑐ℎ−𝑧𝑏)𝛼

𝜒𝛼
]

𝑛

−[
(𝑧𝑐ℎ−𝑧𝑏)𝛽

𝜒𝛽
]

𝑛

}−∆𝑈𝑐ℎ

𝑡𝑎𝑛𝛼+𝑡𝑎𝑛𝛽
              (8) 198 

where zch is the elevation of the channel head, zb is the elevation of catchment outlet 199 

(at the top part of the channel to make the elevation-χ profiles quasi-linear between 200 

the channel head and the outlet), and subscripts α and β denote the two rivers across a 201 

divide. The detailed derivation of Eq. 8 is in Supplementary Materials. The drainage 202 

divide’s unilateral erosion rate (Eα or Eβ) can also be used as a substitution for the K 203 

value: 204 

𝐷𝑚𝑟 =
𝐸𝛼{1−(

𝜒𝛼
𝜒𝛽
)

𝑛

[
(𝑧𝑐ℎ−𝑧𝑏)𝛼
(𝑧𝑐ℎ−𝑧𝑏)𝛽

]

−𝑛

}−∆𝑈𝑐ℎ

𝑡𝑎𝑛𝛼+𝑡𝑎𝑛𝛽
                                 (9) 205 

or: 206 

𝐷𝑚𝑟 =
𝐸𝛽{(

𝜒𝛼
𝜒𝛽
)

−𝑛

[
(𝑧𝑐ℎ−𝑧𝑏)𝛼
(𝑧𝑐ℎ−𝑧𝑏)𝛽

]

𝑛

−1}−∆𝑈𝑐ℎ

𝑡𝑎𝑛𝛼+𝑡𝑎𝑛𝛽
                              (10) 207 

Alternatively, one can use the regional average erosion rate (�̅�) to calculate the 208 

migration rate: 209 

𝐷𝑚𝑟 =

2�̅�

{
 
 

 
 
[
(𝑧𝑐ℎ−𝑧𝑏)𝛼
(𝑧𝑐ℎ−𝑧𝑏)𝛽

]

𝑛

−(
𝜒𝛼
𝜒𝛽

)

𝑛

 

[
(𝑧𝑐ℎ−𝑧𝑏)𝛼
(𝑧𝑐ℎ−𝑧𝑏)𝛽

]

𝑛

+(
𝜒𝛼
𝜒𝛽

)

𝑛

}
 
 

 
 

−∆𝑈𝑐ℎ

𝑡𝑎𝑛𝛼+𝑡𝑎𝑛𝛽
                               (11) 210 

Based on Eqs. 8-11, the drainage-divide migration rate can be estimated using the χ 211 



11 

 

values of high-base-level channel segments combined with one of the erosion-related 212 

parameters, erosion coefficient (K), erosion rate at one side of a drainage divide (Eα or 213 

Eβ), or regional average erosion rate (�̅�).  214 

 215 

2.3 Parameter extraction 216 

In this study, we apply the erosion coefficient (K) related equations (Eqs. 4 & 8) 217 

to two natural examples in North China, the Wutai Shan in the Shanxi Rift and the 218 

Yingwang Shan in the Loess Plateau, to demonstrate how to calculate the drainage-219 

divide migration rates (Fig. 1). We calculated the K, according to the equation, 𝐾 =220 

𝐸

𝑘𝑠𝑛
𝑛, the erosion rate obtained by chronological methods, the ksn, and the assumed 221 

slope exponent (n = 1). The ksn is calculated based on S and A (𝑘𝑠𝑛 = 𝑆𝐴
𝑚

𝑛 ) extracted 222 

from ALOS DEM (downloaded from https://search.asf.alaska.edu/) using 223 

TopoToolbox (Schwanghart and Scherler, 2014), and the interpolation uses the 224 

Kriging method on ArcGIS (Fig. 2). We use a small four-rotor Unmanned Aerial 225 

Vehicle (UAV), the DJI Phantom 4, to acquire stereo images of the areas. Based on 226 

the Structure-from-Motion (SfM) method and PhotoScan software, we obtained the 227 

DEMs with a spatial resolution of 0.67 m in the Wutai Shan and 0.84 m in the 228 

Yingwang Shan (can be download from https://doi.org/10.5069/G98C9TGT). Both 229 

regions are semi-arid, and the vegetation is dominated by shrubs. We did not compare 230 

the elevations to the standard GPS points, which may bring errors on the elevations. 231 

 Based on the high-resolution topography data, we first extract river channels and 232 

https://search.asf.alaska.edu/
https://doi.org/10.5069/G98C9TGT
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drainage divide, using a single-flow-direction algorithm (D8). Then we extract the 233 

relevant parameters, and calculate the drainage-divide migration rate. Data analysis 234 

including slope-area plots, χ-plots, river's long profiles and topographic swath 235 

profiles, are based on the Matlab toolbox TAK (Forte and Whipple, 2019) and 236 

TopoToolbox (Schwanghart and Scherler, 2014). According to the breaking point of 237 

the slope-area regression line, we obtain the value of the critical upstream drainage 238 

area (Acr) of each river channel (Duvall et al., 2004). According to these values, we 239 

mark the position (and its elevation, zch) of the channel heads on the χ-plots and the 240 

topography map. An elevation of the catchment outlet (zb) can be assigned at the top 241 

part of the channel to make the elevation-χ profiles quasi-linear between the channel 242 

head and the outlet. The slope of the channel head (Sch) is calculated, according to the 243 

100 m long channel on the river's long profiles around the channel head (50 m 244 

upstream and downstream). Topographic gradient (tanα or tanβ) is calculated through 245 

the average slope (in the normal-divide direction) of the hillslope segment (not 246 

including the hilltop part, because of its lower gradient). The cross-divide uplift 247 

difference in the channel-head points (∆Uch) is estimated according to the location of 248 

the each channel head and the tectonic uplift trend. 249 

 250 
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3. Applications to natural cases  251 

 252 

Figure 1. Locations and tectonic background of the two nature cases in North China. 253 

The figure is modified from Fig. 7 in Shi et al. (2021). (A) Red lines represent the 254 

main active faults. Black rectangles show the locations of the two nature cases. Red 255 

curve denotes active fault, sourced from https://www.activefault-datacenter.cn/. The 256 

topography data (ALOS DEM) is downloaded from the Alaska Satellite Facility 257 

(ASF) Data Search (https://search.asf.alaska.edu/). (B) The satellite image downloaded 258 

from Google Earth. White rectangles show the location of Panel A.  259 

 260 

3.1 Wutai Shan 261 

The Wutai Shan is a tilted fault block on the shoulder of the Shanxi Rift System 262 

located in the central North China craton (Fig. 1) (Xu et al., 1993; Su et al., 2021). 263 

https://www.activefault-datacenter.cn/
https://search.asf.alaska.edu/
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The tilting uplift of the Wutai Shan is controlled by the Northern Wutai Shan fault, 264 

and there is no active fault along the south edge of the Wutai Shan horst (Fig. 2). The 265 

bedrock of the Wutai Shan area consists mainly of metamorphic and igneous 266 

basement rocks (Clinkscales et al., 2020) and there is no obvious variation in rock 267 

erodibility and precipitation in this area (Fig. S2 & S3). Zhou et al. (2022b) reveal that 268 

the Wutai Shan drainage divide is migrating northwestward due to the tilting uplift 269 

and predicts the drainage divide will move ~10 km to the northwest to achieve a 270 

steady state if all geological conditions remain. Geomorphic evidence also exhibits a 271 

northwestward migration of the drainage divide (Fig. 3). The plan and satellite views 272 

show several abnormally high junction angles around the Wutai Shan drainage divide, 273 

which indicate that the tributaries formerly part of the northern drainage have become 274 

part of the southern drainage (Fig. 3A&B). The χ-plots analysis shows the southern 275 

side of the drainage divide has steeper channels, higher ksn, and lower χ. The χ-plots 276 

of paired rivers illustrate obvious characteristics of shrinking-expanding and captured-277 

beheaded rivers (Fig. 3C). 278 

To derive the erosion coefficient of the Wutai Shan area, we calculate the 279 

channel steepness (ksn) of this region, assuming n = 1 and m = 0.45 (Wobus et al., 280 

2006; DiBiase et al., 2010; Perron and Royden, 2012; Wang et al., 2021). We then use 281 

the Kriging interpolation method to generate the ksn distribution map (Fig. 2B). In 282 

addition, results under the assumptions of m = 0.35 and 0.55, respectively, are shown 283 

in Supplementary Materials (Fig. S4). The average ksn value of the upthrown side near 284 

the Northern Wutai Shan fault is ~80 m0.9 (Fig. 2D). Middleton et al. (2017) showed 285 
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that the Quaternary throw rates of the Northern Wutai Shan fault are 0.8-1.6 mm/yr. 286 

Clinkscales et al. (2020) showed, using low-temperature thermochronology, that the 287 

time-averaged long-term throw rates in the late Cenozoic is about 0.25 mm/yr, and 288 

there is an accelerated activity in the Wutai Shan area. According to these studies, we 289 

assume a 0.50 ± 0.25 mm/yr uplift/erosion rate in the northern margin of the Wutai 290 

Shan (in the footwall of the Northern Wutai Shan fault). Combining with the equation, 291 

𝐾 =
𝐸

𝑘𝑠𝑛
𝑛, and following the approach of previous studies (Kirby and Whipple, 2001; 292 

Kirkpatrick et al., 2020; Ma et al., 2020), the erosion coefficient (K) is calculated to 293 

be (6.25 ± 3.13)×10-6 m0.1yr-1 in this area. Because there is no obvious variation in 294 

rock erodibility and precipitation in this area (Figs. S2 & S3), we use this value as the 295 

erosion coefficient (K) of the Wutai Shan area. 296 

We then apply the two new methods (Eqs. 4 & 8) to calculate the migration rate 297 

of the drainage divide in the Wutai Shan. We first choose three pairs of rivers (Fig. 298 

4A) and acquire their slope-area plots (Figs. 4B, E, H) and the χ-plots (Figs. 4C, F, I). 299 

According to the breaking point of the slope-area regression line (Duvall et al., 2004) 300 

(Figs. 4B, E, H), we obtain the values of the critical upstream drainage area (Acr). 301 

According to these values, we separate hillslope and channel areas and mark the 302 

position of the channel heads on the χ-plots and the topography map (Fig. 4A). For 303 

the χ-plots (Figs. 4C, F, I), we obtain the elevations of channel heads (zch) and χ values 304 

based on the coordinate of the channel-head points. According to the location of the 305 

channel heads on the river's long profiles, we calculate the channel-head gradient 306 

(Sch). Topographic gradient (tanα or tanβ) is calculated through the average slope (in 307 
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the normal-divide direction) of the hillslope segment (not including the hilltop part, 308 

Figs. 4D, G, J). 309 

According to the previous studies (Middleton et al., 2017; Clinkscales et al., 310 

2020) and the ksn distribution (Fig. 2D), we assume the rock uplift rate decreases 311 

linearly from 0.5 to 0 mm/yr from northwest to southeast of the Wutai Shan horst 312 

(~40 km wide). Then we can obtain that the cross-divide uplift difference in the 313 

channel-head points (∆Uch) (the distance perpendicular to the direction of the 314 

boundary fault is ~600 m) is ~0.008 mm/yr. After determining these parameters, we 315 

adopt the channel-head-point (Eq. 4) and channel-head-segment (Eq. 8) methods, 316 

respectively, to calculate the migration rates. The required data for calculation and the 317 

migration rates are shown in Table 1. The calculated results for m/n = 0.35 and 0.55, 318 

respectively, are shown in Supplementary Materials (Table S1). The migration rates 319 

are higher when m/n = 0.35 and lower when m/n = 0.55, which indicates the m/n value 320 

is sensitive to the result. 321 

The rivers have different characteristics on both sides of the drainage divide, as 322 

illustrated on their slope-area plots (Figs. 4B, E, H) and the χ-plots (Figs. 4C, F, I). 323 

For the first site (Fig. 4D), the migration rates calculated by the channel-head-point 324 

and channel-head-segment methods are 0.21 mm/yr and 0.26 mm/yr, respectively. For 325 

the second site (Fig. 4G), the migration rates are 0.23 mm/yr and 0.27 mm/yr, 326 

respectively. For the third site (Fig. 4J), 0.21 mm/yr and 0.22 mm/yr, respectively. The 327 

drainage divides of all three points are migrating northwestward, which is consistent 328 

with the previous result inferred by the cross-divide contrast of slopes in this area 329 
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(Zhou et al., 2022b). Furthermore, the migration rates calculated by the two methods 330 

are comparable in all three sites.  331 

 332 

 333 

Figure 2. Topography (A) and normalized channel steepness (ksn) (B) distribution of 334 

the Wutai Shan horst and surrounding area in the Shanxi Rift System. The black 335 

dashed line shows the location of the main drainage divide. Red lines show the main 336 

active faults. The black lines show the location of profiles E-E’ and F-F’. Black 337 

rectangles show the area of Fig. 3B & 4A. Gray boxes show the area of the swath 338 

profiles in Panels C and D. Green dots denote the locations of the low-temperature 339 

thermochronology samples in Clinkscales et al. (2020). The ksn is calculated based on 340 

S and A extracted from ALOS DEM (𝑘𝑠𝑛 = 𝑆𝐴
𝑚

𝑛 ) and a uniform m/n (0.45) using 341 

TopoToolbox (Schwanghart and Scherler, 2014), and the interpolation uses the 342 

Kriging method on ArcGIS. (C) Topography swath profile along E-E’. See location in 343 

Panel A. (D) ksn swath profile along F-F’. See location in Panel B. The swath profiles 344 
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are extracted using TopoToolbox (Schwanghart and Scherler, 2014). The red dashed 345 

lines show the location of the main active normal faults, and the black arrow shows 346 

the location of the main drainage divide. Both swath profiles are 20 km wide (10 km 347 

on each side).  348 

 349 

 350 

Figure 3. Perspective views and χ map of the drainage divide in the Wutai Shan (see 351 

Fig. 2 for location). (A) Perspective views of a captured area and the channels mapped 352 

with ksn. The south side of the drainage divide has steeper channels and higher ksn than 353 

the north side. Magenta arrows show drainage divide migration directions. The 354 
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satellite image is from Google Earth. (B) χ map of this area with the outlet elevation 355 

of 1300 m. The south side of the drainage divide has lower χ values than the north 356 

side. It should be noted that the catchment outlet at the north side of the drainage 357 

basins (the 1300 m contour) is out of the map. The χ-plots of the rivers in bold lines 358 

are shown in Panel C. (C) χ-plots of the three paired rivers in Panel B. The blue and 359 

red curves correspond to the rivers on the south and north sides, respectively. The χ-360 

plot of River 1 is steeper on the south side, indicating that the river on the south side 361 

is expanding and the river on the north side is shrinking. The χ-plots of Rivers 2 and 3 362 

in the captured area show obvious characteristics of the captured and beheaded rivers. 363 

The χ-plot is extracted using TAK (Forte and Whipple, 2019) and TopoToolbox 364 

(Schwanghart and Scherler, 2014). 365 

 366 
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 367 

Figure 4. Analytical results of the Wutai Shan drainage divide. (A) High-resolution 368 

hill-shade map (0.67 m spatial resolution) of the Wutai Shan. The black dashed line 369 
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shows the location of the main drainage divide. Colored lines show the three pairs of 370 

selected channels used for analysis. The black dots are the channel heads. Black 371 

rectangles show the location of the cross-divide topography swath profiles. The black 372 

arrows show the direction of drainage-divide migration (B, E, H) Slope-area plots of 373 

the three pairs of selected channels. The blue and orange dots are the slope-area plots 374 

of the north (α) and south (β) sides of the drainage divide respectively. The black dots 375 

represent the channel heads. (C, F, I) χ-plots of the selected channels. The blue and 376 

orange lines are the χ-plots of the north (α) and south (β) sides of the drainage divide 377 

respectively. The black dots represent the channel heads. (D, G, J) Cross-divide 378 

topography swath profiles with the drainage-divide migration rates. The locations of 379 

the profiles are in Panel A. The light and dark blue arrows are the drainage-divide 380 

migration rates calculated by the channel-head-point (Eq. 4) and channel-head-381 

segment (Eq. 8) methods respectively. 382 

 383 

3.2 Yingwang Shan 384 

The Loess Plateau is hosted by the tectonically stable Ordos Block of the North 385 

China craton (Yin, 2010; Su et al., 2021). Over the past 2.6 million years, it has 386 

accumulated tens to hundreds of meters of eolian sediments (Yan et al., 2014), 387 

draping preexisting topography (Xiong et al., 2014). There is no active fault and little 388 

to no variation in rock erodibility and precipitation within the area (Shi et al., 2020; 389 

Zhou et al., 2022b). 390 
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We apply the two methods to Yingwang Shan of Loess Plateau to calculate the 391 

drainage-divide migration rate. Similar to the Wutai Shan site, we obtain the slope-392 

area plots (Figs. 5 B, E, H), the χ-plots (Figs. 5 C, F, I), and extract the values of Acr, 393 

Sch, zb, zch, χ, tanα and tanβ of the rivers. The rate of soil erosion in the study area is 394 

about 500 t·km-2yr-1 according to the distribution of silt discharge (Fu, 1989). 395 

Combining with the assumption of the density of loess, 1.65 t·m-3, the present-day 396 

erosion rate in the study area is calculated to be 0.3 mm·yr-1. Because there is no 397 

obvious unequal uplift in this region, we assign that ∆Uch is zero. We also assume n = 398 

1 and m = 0.45 in the calculation (Wobus et al., 2006; DiBiase et al., 2010; Perron and 399 

Royden, 2012; Wang et al., 2021). Then, we use the methods of channel-head 400 

parameters (Eq. 7) and channel segments (Eq. 11) to calculate the drainage-divide 401 

migration rates. The required data for calculation and the migration rates are shown in 402 

Table 1.  403 

All results of the three points show that the drainage-divide migration rate here is 404 

close to zero, no matter which method is used in the calculation. The results show that 405 

the drainage divide of the study site is in topographical equilibrium, which is 406 

consistent with the inference in previous studies (Willett et al., 2014, Zhou et al., 407 

2022b). 408 

 409 
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 410 

Figure 5. Analytical results of the Yingwang Shan in the Loess Plateau. (A) High-411 
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resolution hill-shade map (0.84 m spatial resolution). The black dotted line shows the 412 

location of the main drainage divide. Colored lines show the three pairs of selected 413 

channels used for analysis. The black dots represent the channel heads. Black 414 

rectangles show the location of the cross-divide topography swath profiles. (B, E, H) 415 

Slope-area plots of the three pairs of selected channels. The blue and orange dots are 416 

the data of the north (α) and south (β) sides of the drainage divide respectively. The 417 

black dots represent the channel heads. (C, F, I) χ-plots of the selected channels. The 418 

blue and orange lines are the χ-plots of the north (α) and south (β) sides of the 419 

drainage divide respectively. The black dots represent the channel heads. (D, G, J) 420 

The cross-divide topography swath profiles. The locations of the swath profiles are in 421 

Panel A.  422 

 423 
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Table 1. Channel parameters and migration rates of drainage divides in two field cases. 424 

Natural Cases No. 
Acr 

Sch 
zb zch 

χ tanα tanβ 
ΔUch Dmr (mm/yr) Dmr (mm/yr) 

(×105m2) (m) (m) (mm/yr) (Channel-head-point method) (Channel-head-segment method) 

Wutai Shan 

Fig. 4 Iα 1.75 0.16 1631 1792 6.4 
0.14 0.66 ~ 0.008 -0.21±0.10 -0.26±0.12 

Fig. 4 Iβ 0.26 0.63 1347 1723 6.6 

Fig. 4 IIα 0.79 0.23 1630 1815 5.4 
0.24 0.70 ~ 0.008 -0.23±0.11 -0.27±0.13 

Fig. 4 IIβ 0.30 0.67 1351 1809 6.1 

Fig. 4 IIIα 0.67 0.29 1633 1860 5.0 
0.28 0.65 ~ 0.008 -0.21±0.10 -0.22±0.10 

Fig. 4 IIIβ 0.39 0.63 1352 1875 6.9 

Yingwang Shan 

Fig. 5 Iα 0.54 0.21 1111 1224 5.8 
0.21 0.31 0 ~ 0.03 ~ -0.01 

Fig. 5 Iβ 0.20 0.32 1126 1225 5.0 

Fig. 5 IIα 0.24 0.36 1111 1257 7.4 
0.39 0.33 0 ~ 0.02  ~ -0.01 

Fig. 5 IIβ 0.30 0.31 1117 1224 5.4 

Fig. 5 IIIα 0.29 0.46 1089 1256 8.6 
0.49 0.35 0 ~ 0.02 ~ -0.01 

Fig. 5 IIIβ 0.56 0.37 1096 1203 5.3 

425 
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4. Discussion 426 

4.1 Location of channel heads 427 

Willett et al. (2014) pioneered the use of cross-divide χ contrast to gauge the 428 

horizontal motion of drainage divides. According to their method, drainage divides 429 

are predicted to move toward the side with a higher χ value to achieve geomorphic 430 

equilibrium. However, in a region with spatially variable uplift rates, lithology, or 431 

precipitation, χ contrast may fail to reflect the drainage-divide migration (Willett et 432 

al., 2014; Whipple et al., 2017; Forte and Whipple, 2018; Wu et al., 2022; Zhou and 433 

Tan, 2023). In a tectonically active area, the cross-divide χ contrast can only be used 434 

in a small area where rock type, precipitation, and uplift rate are nearly uniform 435 

(Willett et al., 2014). Combining the advantages of the χ and Gilbert metrics methods, 436 

Zhou et al. (2022a) proposed to use the χ contrast with a high base level to calculate 437 

the ksn values at the channel heads on both sides of a drainage divide, and quantified 438 

the migration rate of drainage divides at the eastern margin of Tibet.  439 

To reduce the cross-divide difference in uplift rate, precipitation, and rock 440 

strength, the Gilbert metrics or χ-comparison method in Zhou et al. (2022a) should 441 

compare the parameters of points (slope, relief, elevation, and ksn) on both sides of the 442 

divide as closely as possible. As the hillslope area (above the channel head) does not 443 

follow Eq. 1 (Stock and Dietrich, 2006; Stark, 2010; Braun et al., 2018; Dahlquist et 444 

al., 2018), the channel heads are the closest point to the divide, following Eq. 1. 445 

Channel heads, therefore, are suitable for measuring the drainage-divide stability with 446 



27 

 

parameters of the upstream drainage area and channel gradient (Forte and Whipple, 447 

2018; Zhou et al., 2022a). However, limited by the resolution of DEM, the location of 448 

the channel heads cannot always be accurately identified. The channel head 449 

parameters for calculating the migration rates are usually based on empirical values 450 

(both sides are the same value) in previous studies (e.g., Acr = 105 m2 in Zhou et al. 451 

(2022a)), which may induce uncertainties.  452 

In this study, we advocate the use of high-resolution DEM to determine a more 453 

accurate position and related parameters of the channel head. The use of UAVs to 454 

obtain the local DEM has become highly efficient. We advance the theory to calculate 455 

the drainage-divide migration rate based on the measured channel-head parameters. 456 

With the help of the aerial photography of UAVs and the SfM techniques, it is 457 

possible to obtain the high-resolution topography data of drainage divides (Figs. 4A & 458 

5A) and get the required parameters through topography analysis. The key parameters 459 

includes the exact locations (usually have different Acr across the divides) and the 460 

gradients of the channel heads (Scr), which could improve the quantitative research on 461 

the drainage-divide migration. Furthermore, the method provides a new avenue to 462 

combine with catchment-wide 10Be erosion rate or low-temperature 463 

thermochronology data to calculate the migration rate, which has great potential for 464 

application in places where some variables are hard to be constrained. 465 

 466 
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4.2 Cross-divide difference in the uplift rate of the channel heads  467 

Although the channel heads across the divide are very close on the spatial scale of 468 

an orogenic belt, differential uplift between the channel heads (∆Uch) could still exist, 469 

especially in a tilting horst, such as the Wutai Shan. The cross-divide difference in 470 

uplift rate could impact the calculation of the migration rate of drainage divides (Zhou 471 

et al., 2022a).  472 

In this study, we quantify the influence of the cross-divide difference in rock 473 

uplift rate (∆Uch) on the calculation of the migration rate of drainage divides at the 474 

Wutai Shan, benefiting from the available tectonic and chronological research 475 

(Clinkscales et al., 2020) and the newly obtained high-resolution topographic data. In 476 

the Wutai Shan horst, ∆Uch across the drainage divide is ~0.008 mm/yr. We estimate 477 

the influence of ∆Uch on the drainage-divide migration rate in this case study, which 478 

can reduce the error theoretically. If ∆Uch is ignored, the drainage-divide migration 479 

rate would decrease by ~4% in the Wutai Shan case. Although ~4% seems to be 480 

negligible, such a ratio will increase if the mountain belt is narrower, the tilting uplift 481 

is stronger, or the divide is closer to the steady state (i.e., the migration rate is lower) 482 

(Whipple et al., 2017; Ye et al., 2022). In other words, the differential uplift may play 483 

a significant influence on the measurement of drainage-divide stability in some 484 

situations. If we consider an extreme example where the main drainage divide of a 485 

tilting mountain range (relatively narrow in width) is at a steady state, the gradient, 486 

relief, and elevation of the channel heads (collectively called “Gilbert metrics”) (Forte 487 

and Whipple, 2018) will show a systematic cross-divide difference in theory. In this 488 



29 

 

case, the drainage divide would be considered unstable if ∆Uch were neglected. 489 

Therefore, this study highlights that ∆Uch should be taken into account, either in a 490 

qualitative or a quantitative evaluation of the stability of drainage divides using the 491 

parameters on the channel heads. 492 

 493 

4.3 Limitations and uncertainties 494 

This study develops the method to calculate the drainage-divide migration rate 495 

based on the measured channel-head parameters. However, uncertainties still exist 496 

because of the limitations of this technique. First, we assume the erosion coefficient 497 

(K) is the same on both sides of a drainage divide in the derivation of the equations. If 498 

there are differences in rock erodibility or precipitation across the divide, uncertainties 499 

should exist in the results. Second, the calculation of migration rate is based on the 500 

erosion rates at the channel area in this study. However, the occurrence of drainage-501 

divide migration is directly driven by the differential erosion of the hillslope area 502 

across the divide, mainly via the processes including landslide, collapse, and diffusion 503 

(Stock and Dietrich, 2006; Stark, 2010; Braun et al., 2018; Dahlquist et al., 2018). 504 

Such discontinuous processes in the hillslope area make it challenging to constrain 505 

erosion rates over such short timescales. Over a relatively longer period (i.e., spanning 506 

multiple seismic and climatic cycles), the erosion rate at the channel head area in this 507 

study can be comparable with that at the hillslope area (Hurst et al., 2012; Godard et 508 

al., 2020).  509 

The accuracy of the data and parameters can also impact the reliability of the 510 
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results. First, we use the uniform values of n = 1 and m/n = 0.45 in the two natural 511 

cases to calculate the migration rate, because it is the best choice to align tributaries 512 

with the main stem on the χ-plots in a drainage basin at the northern Wutai Shan (Fig. 513 

6) (Perron and Royden, 2012). If the actual values deviate from the assumption, errors 514 

would be introduced into the results. For this reason, we have added the cases of m/n 515 

= 0.35 and 0.55 in Supplementary Materials. Further estimation of these values 516 

(Mudd et al., 2018) could improve the accuracy of the results. Second, in the case of 517 

the Wutai Shan, we refer to the geological and low-temperature thermochronology 518 

studies and assume a 0.50±0.25 mm/yr erosion rate at the northern margin of the 519 

Wutai Shan (i.e., the footwall of the North Wutai Shan fault). Combining with the 520 

present-day ksn, we calculate the erosion coefficient (K) and derive the migration rates 521 

of the drainage divide. If the present-day erosion rate deviates from the assumption, 522 

errors would be inevitable in the results. Moreover, the horizontal and vertical errors 523 

of the DEM data, as well as the calculation errors in slope, upstream area and channel 524 

steepness can also affect the reliability of the results. In the case study of the 525 

Yingwang Shan, the lush vegetation may bring errors to the DEM data based on the 526 

SfM technology. The application of airborne light detection and ranging (LiDAR) 527 

technology may help reduce this error. Future studies should take these challenges 528 

into account and overcome them. 529 
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 530 

Figure 6. (A) Drainage basin in the northern Wutai Shan. (B) χ-plots of channel profiles 531 

in the drainage basin, using A0 = 1 m2 and m/n = 0.35, 0.45, and 0.55. The χ-plots show 532 

the best choice of m/n is 0.45, because the tributaries have systematically higher (m/n 533 

= 0.35) or lower (m/n = 0.55) elevations than the main stem for other values of m/n 534 

(excluding the channels in the headwaters). 535 

 536 

5. Conclusions 537 

We have developed a new method (called the "channel-head-point method") to 538 

calculate the migration rate of drainage divides based on channel-head parameters. We 539 

have also improved the previously proposed "channel-head-segment method" (Zhou 540 

et al., 2022a) to adapt the theory to areas where the parameters of channel-heads can 541 

be accurately determined. 542 
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Using the new methods and high-resolution topographic data, we determined the 543 

exact locations of the channel heads on both sides of the drainage divide and 544 

quantified the drainage-divide migration rates in two natural cases in North China: 545 

Wutai Shan in the Shanxi Rift, and Yingwang Shan in the Loess Plateau. The 546 

migration rates of the study sites in the Wutai Shan are 0.21-0.27 mm/yr 547 

(northwestward). The rates are close to zero in the Yingwang Shan.  548 

Based on the locations of the channel heads and the uplift gradient of the Wutai 549 

Shan, we calculated the cross-divide difference in the uplift rate at the channel heads 550 

(∆Uch), which is taken into account in the calculation of the drainage-divide migration 551 

rate for the first time. If ∆Uch is overlooked, the drainage-divide migration rate of the 552 

study sites in the Wutai Shan will be underestimated by ~4%. Our study highlights 553 

that ∆Uch should be considered in the assessment of drainage divide stability based on 554 

the cross-divide difference in channel-head parameters. 555 

 556 
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