Quantifying the migration rate of drainage divides from high-resolution topographic data

Chao Zhou¹, Xibin Tan²*, Yiduo Liu², Feng Shi¹,³

¹ State Key Laboratory of Earthquake Dynamics, Institute of Geology, China
² Earthquake Administration, Beijing 100029, China
³ Key Laboratory of Mountain Hazards and Surface Processes, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China
³ Shanxi Taiyuan Continental Rift Dynamics National Observation and Research Station, Beijing 100029, China

*Corresponding author. E-mail address: tanxibin@imde.ac.cn

Abstract

The lateral movement of drainage divides is co-influenced by tectonics, lithology, and climate, and therefore archives a wealth of geologic and climatic information. Besides, it also has wide-ranging consequences implications for topography, the sedimentary record, and biological evolution, thus has drawn much attention in recent years. Several methods have been proposed to determine the direction of drainage-divide’s migration state (direction and rate), including geochronological field-based approaches investigations (e.g., ¹⁰Be cosmogenic nuclides sampling) and topography modeling-based approaches (e.g., γ-plots or Gilbert metrics). A key object in these above methods, is the channel head, which separates the hillslope and channel, is an important analysis object. Zhou et al.
(2022a) proposed a method to quantify a drainage divide’s migration rate using both sides’ high base-level χ values. However, due to the limited resolution of topography data, the required channel-head parameters in the calculation often cannot be determined accurately, and empirical values are used in the calculation, which may induce uncertainties. However, how to quantify the migration rate of drainage divides remains challenging. Here, we propose a new two approach methods to calculate the migration rate of drainage divides from high-resolution topographic data. The new method is based on the cross-divide comparison of channel-head parameters, including the critical upstream drainage area and the gradient of channel head, both of which are used to calculate the normalized channel steepness at the channel head. One is based on the measured relatively accurate channel-head parameters derived from high-resolution topographic data, and the other is based on the improved method of Zhou et al (2022a). We then apply the new methods to an active rift shoulder (Wutai Shan) in the Shanxi rift, and a tectonically stable area (Yingwang Shan mountain range in the Loess Plateau) in the Loess Plateau in North China, to illustrate the calculation of how to calculate drainage-divide migration rates. Our results find show that the divide in the Wutai Shan drainage divide range is migrating northwestward at a rate of between 0.21 to 0.27 mm/yr, whereas the migration rates at the Yingwang Shan in the Loess Plateau are approximately zero. The northward migration rates at the Wutai Shan range from 0.10 to 0.13 mm/yr. The migration rates are approximately zero at the mountain range in the Loess Plateau. This study indicates that the drainage-divide stability can be determined more accurately using
high-resolution topographic data. Furthermore, this study takes his study demonstrates that the migration rate of drainage divides can be determined more accurately once the influence of cross-divide differences in the uplift rate of channel heads are taken into account in the measurement of drainage-divide migration rate for the first time.

Keywords

Drainage divide; Migration rate; High-resolution topographic data; DEM; Channel head

1. Introduction

The evolution of the Earth’s surface is jointly controlled by tectonics, lithology, and climatic conditions (e.g., Molnar and England, 1990; Whipple, 2009; Bonnet, 2009; Gallen, 2018; Zondervan et al., 2020; Bernard et al., 2021; Hoskins et al., 2023). This provides a basis for reconstructing the past tectonic (Pritchard et al., 2009; Kirby et al., 2012; He et al., 2021; Shi et al., 2021; Schildgen et al., 2022) or climatic processes (Tucker et al., 1997; Hancock et al., 2002; Schildgen et al., 2022) through topography. The evolution of unglaciated terrestrial terrain is fundamentally coupled with changes in drainage systems, including which are through river’s vertical (changes in river long profile) and lateral movements (drainage divide migration and river captures) (Whipple, 2001; Clark et al., 2004; Bonnet, 2009; Willett et al., 2014; Zeng and Tan, 2024). Previous studies have
extensively investigated how river channel profiles respond to tectonic uplift (Whipple, 2001; Crosby and Whipple, 2006; Kirby et al., 2012; Pritchard et al., 2009; Kirby et al., 2012; Goren et al., 2014), lithological difference (Duvall et al., 2004; Safran et al., 2005; Forte et al., 2016), and precipitation perturbations (Schlunegger et al., 2011; Bookhagen and Strecker, 2012). Knick points, channel steepness and River's long profiles have been used to study the earthquake events (e.g., Burbank and Anderson, 2001; Wei et al., 2015), and the spatio-temporal differences-variations of uplift distribution (e.g., Whipple et al., 1999; Kirby et al., 2012; Pritchard et al., 2009; Goren et al., 2014), and uplift history (e.g., Pritchard et al., 2009; Goren et al., 2014). However, recent studies show that the widespread lateral movement of river basins driven by geological and/or climatic disturbance (Yang et al., 2019; Clark et al., 2004; Deng et al., 2020; Zondervan et al., 2020; Zhao et al., 2021; Zhou et al., 2022a; Bian et al., 2024) also interacts with the adjustment of channel profiles (Willett et al., 2014). Drainage-divide migration, one form of river lateral movement therefore, may not only carry information on geological and/or climatic disturbance (Yang et al., 2019; Su et al., 2020; Zondervan et al., 2020; He et al., 2021; Shi et al., 2021; Zhou et al., 2022a; Zeng and Tan, 2023; Zeng and Tan, 2023) but also impact influence the extraction of tectonic information from channel profiles (Goren et al., 2014; Ma et al., 2020; Jiao et al., 2021). Besides, moreover, it also has wide-ranging multi-facet consequences for topography-landscape evolution (Scheingross et al., 2020; Stokes et al., 2022; Scheingross et al., 2020), the sedimentary record-processes (Clift & Blusztajn, 2005; Willett et al., 2018; Deng et al., 2020; Zhao et al., 2021), and
biological evolution (Waters et al., 2001; Zemlak et al., 2008; Hoorn et al., 2010; Musher et al., 2022). For this reason, the stability of drainage divides has drawn more and more attention in recent years (e.g., Authemayou et al., 2018; Vacherat et al., 2018; Chen et al., 2021; Shelef and Goren, 2021; Sakashita and Endo, 2023; Bian et al., 2024).

Drainage-divide migration is essentially controlled by the cross-divide difference in erosion and topographic slope (Beeson et al., 2017; Dahlquist et al., 2018; Chen et al., 2021; Zhou et al., 2022a; Stokes et al., 2022). The erosion rates are routinely derived from geochronological techniques, such as cosmogenic nuclides (e.g., 10Be) concentration measurements (Mandal et al., 2015; Struth et al., 2017; Sassolas-Serryet et al., 2019), which can be used to calculate the migration velocities rates of drainage divides (Beeson et al., 2017; Godard et al., 2019; Hu et al., 2021).

However, these techniques are usually based on samples collected from an-a catchment outlet that is several, or even tens of, kilometers away from the drainage divide and thus may not represent the erosion rates close to the drainage divide (Sassolas-Serryet et al., 2019; Zhou et al., 2022a). Besides, the high cost of sample testing processing makes it very-challenging to determine the drainage divide’s motion by measuring the erosion rates throughout the entire-large landscapes. Hence, it would be ideal to find an accessible and efficient method that can be applied to the entire landscape and cross-checked to make full use of the 10Be-derived erosion rates.

The advancement of the digital elevation model (DEM) remote-sensing technology has promoted the development of geomorphic analysis theory, making it
possible to determine the drainage divide’s transient motion through topography analysis. For example, Willett et al. (2014) developed applied the χ method to map the dynamic state of river basins. Forte and Whipple (2018) proposed the cross-divide comparison of “Gilbert metrics” (including channel heads’ relief, slope, and elevation) to determine a drainage divide’s migration direction. Others adopted the comparison of slope angle or relief of the hillslopes across a drainage divide to deduce its stability (Scherler and Schwanghart, 2020; Ye et al., 2022; Zhou et al., 2022b).

Although these geomorphic techniques are quantitative, so far, they could only determine the migration direction of drainage divides. No rates have been obtained. Braun (2018) provided an method equation that considers both alluvial and fluvial areas to calculate the migration velocity of an escarpment (also a drainage divide). Zhou et al. (2022a) developed a technique to calculate the migration rate through the high base-level cross-divide χ ratio of χ values on both sides of a drainage divide. These new approaches require channel-head parameters to calculate the migration rate. However, the location of the channel heads sometimes cannot be accurately identified; because of the limitation in limited by the resolution of DEMs in natural cases (e.g., Zhou et al., 2022a). For this reason, empirical values of channel-head parameters are used in these studies the above study (Zhou et al., 2022a), which may induce uncertainties. However, the channel-head parameter such as the critical upstream area is an empirical value from previous studies, which may not be applicable in specific natural areas and, therefore, could create great uncertainties in the result of migration rates.
This study aims to establish an approach to derive the migration rate of drainage divides, at a high precision and low cost, based on topographic analysis. In this study, we choose a tectonically active area, (i.e., the Wutai Shan in the Shanxi rift system), and a tectonically inactive area, (i.e., an unnamed mountain range the Yingwang Shan in the Loess plateau), to demonstrate how to quantify drainage-divide migration rates (Fig. 1). We use the aerial photography acquired by unmanned aerial vehicles (UAVs) and the Structure from Motion (SfM) technology to obtain the high-resolution topography DEM data of these two areas (0.67 m and 0.84 m spatial resolution in the Wutai Shan and the Yingwang Shan, respectively). Benefiting from the high-resolution data, the location of channel heads can be accurately identified more accurately. Based on the high-resolution data, we then developed two methods to calculate the drainage-divide migration rates. One is based on the measured channel-head parameters, and the other is based on the an improved method of Zhou et al (2022a) first identify the position of the channel heads and extract their geomorphic parameters. We then calculate the migration rates of the drainage divides using the channel-head parameters. Moreover, we improve the method in Zhou et al (2022a) to adapt it to areas where the elevations of outlets and channel heads are different across the drainage divide. We apply these two methods in each case to calculate the drainage-divide migration rates. This study aims to establish an approach to derive the migration rate of drainage divides, at a high precision and low cost, based on topographic analysis. Moreover, combining with benefiting from the geological and low-temperature thermochronology studies of the Wutai Shan.
detailed tectonic research and the high-resolution topographic data on the front of Wutai Shan, we also attempt to quantify the influence of the cross-divide difference in uplift rates to improve the precision of drainage-divide migration rate.

2. Methods

2.1 Channel-head-point method

According to the detachment-limited stream power model (Howard and Kerby, 1983; Howard, 1994), the channel’s erosion rate \(E \) can be expressed as:

\[
E = KA^mS^n
\]

where \(K \) is the erosion coefficient, \(A \) is the upstream drainage area, \(S \) is the gradient of the river channel, and \(m \) and \(n \) are empirical constants.

Because of the threshold mechanisms such as erosion threshold (the shear stress of overland flow must exceed the threshold of the cohesion of bed material to generate river incision) (Howard and Kerby, 1983; Perron et al., 2008) or landslide threshold (landslides occur when the threshold of soil or rock strength is exceeded in high relief region) (Burbank et al., 1996; Tucker et al., 1998), river channels (following Eq. 1) emerge at a certain distance from the drainage divide. The region between the channel head and the drainage divide is referred to as the hillslope area, where the erosion is controlled by landslide, collapse, and diffusion processes (Stoke and Dietrich, 2006; Stark, 2010; Braun et al., 2018; Dahlquist et al., 2018). The channel-head point is the
highest and the closest point to the drainage divide on a river channel (Clubb et al., 2014). Therefore, the erosion rate at channel-head points (E_{ch}) can be described as:

$$E_{ch} = K A_{cr}^{m} S_{ch}^{n}$$ \(\text{(2)}\)

where E_{ch} is the erosion rate at channel-head points, A_{cr} is the critical upstream drainage area of a channel-head point (Duvall et al., 2004; Wobus et al., 2006), and S_{ch} is the channel-head gradient measured along the channel at near the channel-head point.

To investigate the influence of the key parameters on the channel-head erosion rate, we plot the curves of the channel-head erosion rate against the critical area based on Eq. 2 for varying channel-head gradient and erosion coefficient (Fig. 1). The plots show that the channel-head erosion rate (E_{ch}) increases monotonically with the critical area (A_{cr}). When the critical area is invariant, the channel-head erosion rate also increases with the channel-head gradient. A large erosion coefficient also creates a high channel-head erosion rate. The results indicate that the side of a drainage divide with a higher A_{cr} or S_{ch} can have a higher erosion rate than the other side of the drainage divide and is more likely to pirate the opposite drainage basin. Besides, a high erosion coefficient can amplify the drainage basin’s erosion rate.

The drainage-divide migration is essentially controlled by the cross-divide difference in erosion rates and topographic slope (Beeson et al., 2017; Dahlquist et al., 2018; Chen et al., 2021; Zhou et al., 2022a; Stokes et al., 2022). Furthermore, the differential uplift should also be considered when using the cross-divide erosion rates at the channel heads to calculate the erosion difference across the
divide, one should also consider the influence of differential uplift rates in these channel heads (Zhou et al., 2022a), especially in the case of tectonic tilting uplift (Zhou et al., 2022a). The drainage-divide migration rate (D_{mr}) can be obtained according to the cross-divide difference in erosion rate and uplift rate across the divide (Zhou et al., 2022a):

$$D_{mr} = \frac{\Delta E_{ch} - \Delta U_{ch}}{\tan \alpha + \tan \beta}$$ (3)

where ΔE_{ch} is the difference in erosion rate between the two sides (annotated as α and β) of the drainage divide ($\Delta E_{ch} = E_{ch\alpha} - E_{ch\beta}$). The choice of α or β is arbitrary, and the positive direction of the migration velocity is assigned as from the α to β side whereas the negative is the opposite. ΔU_{ch} is the cross-divide difference in rock uplift rate ($\Delta U_{ch} = U_{cha} - U_{chb}$), and $\tan \alpha$ and $\tan \beta$ are the gradients on each side of the drainage divide. Combining Eqs. 2 and 3, assuming the erosion coefficient (K) is the same on both sides of a drainage divide, Eqs. 2 and 3 one can allow us to derive the equation of migration velocity according to the parameters at the channel-head points:

$$D_{mr} = \frac{k[(m_{ch\alpha}^n - m_{ch\beta}^n) - \Delta U_{ch}]}{\tan \alpha + \tan \beta}$$ (4)

The choice of α or β is arbitrary, and the positive direction of the migration velocity is assigned as from the α to β side whereas the negative is the opposite. In this equation, we assume the erosion coefficient is unchanged in the vicinity of a drainage divide. If the exact value of K value is unknown, the drainage divide’s unilateral erosion rate can be used as a substitution:
\[D_{mr} = \frac{E_\alpha \left[1 - \left(\frac{N_{\alpha}^{m\text{ch}}}{N_{\alpha}^{m\text{ch}} + N_{\beta}^{m\text{ch}}} \right) \right] - \Delta U_{ch}}{\tan \alpha + \tan \beta} \]

(5)

or:

\[D_{mr} = \frac{E_\beta \left[\left(\frac{N_{\alpha}^{m\text{ch}}}{N_{\alpha}^{m\text{ch}} + N_{\beta}^{m\text{ch}}} \right) - 1 \right] - \Delta U_{ch}}{\tan \alpha + \tan \beta} \]

(6)

\[E_\alpha \] and \(E_\beta \) are the erosion rates of the \(\alpha \) and \(\beta \) side of the drainage divide, respectively, which can be derived through the cosmogenic nuclides (\(^{10}\)Be) concentration measurements (Beeson et al., 2017; Godard et al., 2019; Hu et al., 2021). The regional average erosion rate \(\langle E \rangle = \frac{E_\alpha + E_\beta}{2} \) can also be used to calculate the migration rate:

\[D_{mr} = \frac{2 \left[\left(\frac{N_{\alpha}^{m\text{ch}}}{N_{\alpha}^{m\text{ch}} + N_{\beta}^{m\text{ch}}} \right) - \left(\frac{N_{\alpha}^{m\text{ch}}}{N_{\alpha}^{m\text{ch}} + N_{\beta}^{m\text{ch}}} \right) \right] - \Delta U_{ch}}{\tan \alpha + \tan \beta} \]

(7)

Based on Eqs. 4-7, the migration velocity rate of drainage divides can be estimated using channel-head parameters combined with one of the erosion-related parameters (erosion coefficient \(K \), erosion rate at one side of a drainage divide \(E_\alpha \) or \(E_\beta \), or regional average erosion rate \(\langle E \rangle \)).
Figure 1. Curves of the channel head erosion rate (E_{ch}) against the critical area (A_{cr}) under different values of channel head gradient (S_{ch}) and erosion coefficient (K). We assume $m = 0.45$ and $n = 1$ in (A) and (B), and $m = 0.9$ and $n = 2$ in (C) and (D).

2.2 Channel-head-segment method

A Channel-head segment is the channel segment just below the channel-head (Zhou et al., 2022a). Zhou et al. (2022a) developed a method based on the cross-divide χ contrast of channel-head segments to calculate the migration velocity rate of
drainage divides. The essence of the method is the cross-divide comparison of the channel-head segments’ normalized channel steepness \(k_{sn} \) values. \(k_{sn} \) is a widely used index \(k_{sn} = \left(\frac{E}{K} \right)^{\frac{1}{n}} \) (Whipple et al., 1999; Wobus et al., 2006; Hilley and Arrowsmith, 2008; Kirby and Whipple, 2012) that is quantitatively related to erosion rate \(E \) and erosion coefficient \(K \). \(\chi \) is an integral function \(\chi = \int_{x}^{x_b} \left(\frac{A_0}{A(x)} \right)^{\frac{m}{n}} dx \) of a channel’s upstream area \(A \) to horizontal distance \(x \) (Royden et al., 2000; Perron and Royden, 2013), and \(A_0 \) is an arbitrary scaling area to make the integrand dimensionless.

In the research method of Zhou et al. (2022a), limited by the resolution of DEM, the location of channel heads cannot be accurately identified, because it is limited by the resolution of DEM. Therefore, an empirical value of \(A_{cr} = 10^5 \) m\(^2\) was used in the calculation. Benefiting from the high-resolution DEM in this study, we improve the method in Zhou et al. (2022a) and use the real location of channel heads to calculate the migration rate. Zhou et al. (2022a) proposed a cross-divide contrast of \(\chi \) values, on behalf of the inverse of \(k_{sn} \), which requires the same elevation of the channel heads and outlets across the drainage divide. Here, we release this restriction and make this method more applicable—When the regional erosion coefficient \(K \) is known and unchanged in the vicinity of the drainage divide, the drainage-divide migration rate can be estimated by the following equation:

\[
D_{mr} = \frac{K\left[\left(\frac{z_{ch} - z_b}{x_{\alpha}}\right)^{n} - \left(\frac{z_{ch} - z_b}{x_{\beta}}\right)^{n}\right]}{\tan\alpha + \tan\beta} \Delta U_{ch} \tag{8}
\]

where \(z_{ch} \) and \(z_b \) are the elevations of the channel heads and catchment outlets, respectively, and \(\chi \) is an integral function of channels’ upstream area \(A \) to horizontal
distance (x) (Perron and Royden, 2013; Willet et al., 2014). The detailed derivation of Eq. 8 is in the Supplementary Materials. The drainage divide’s unilateral erosion rate (E_α or E_β) can also be used as a substitution for the K value:

$$D_{mr} = \frac{E_\alpha \left\{ \left(\frac{x_a}{x_\beta} \right)^n \left(\frac{z_c - z_b}{z_c - z_b}_a \right)^{1-n} \right\} - \Delta U_{ch} \tan \alpha + \tan \beta}{\tan \alpha + \tan \beta}$$ \hspace{1cm} (9)

or:

$$D_{mr} = \frac{E_\beta \left\{ \left(\frac{x_a}{x_\beta} \right)^{-n} \left(\frac{z_c - z_b}{z_c - z_b}_a \right)^n \right\} - \Delta U_{ch} \tan \alpha + \tan \beta}{\tan \alpha + \tan \beta}$$ \hspace{1cm} (10)

Alternatively, one can use the regional average erosion rate (\bar{E}) to calculate the migration rate:

$$D_{mr} = \frac{2\bar{E} \left\{ \left(\frac{z_c - z_b}{z_c - z_b}_a \right)^n \left(\frac{x_a}{x_\beta} \right)^n \right\} - \Delta U_{ch} \tan \alpha + \tan \beta}{\tan \alpha + \tan \beta}$$ \hspace{1cm} (11)

Based on Eqs. 8-11, the drainage-divide migration rate can be estimated using the χ^2 values of high-base-level channel segments combined with one of the erosion-related parameters - erosion coefficient (K), erosion rate at one side of a drainage divide (E_α or E_β), or regional average erosion rate (\bar{E}) - erosion coefficient, erosion rate at one side of a drainage divide, or regional average erosion rate).

We use UAV-acquired aerial photography and structure from motion (SfM) photogrammetry to derive the high-resolution DEM of the two study areas, the Wutai Shan in the Shanxi Rift, and the Yingwang Shan in the Loess Plateau, both located in North China (Fig. 1). (The spatial resolution is 0.67 m in the Wutai Shan, and 0.84 m spatial resolution in the Wutai Shan and Yingwang Shan respectively). Based on the high-resolution topography data, we extract the relevant parameters and
calculate the drainage-divide migration rate using the two methods above for each case. Analysis of the data is based on the Matlab toolbox TAK (Forte and Whipple, 2019) and TopoToolbox (Schwanghart and Scherler, 2014).

3. Applications to natural cases

We apply the new methods to two natural examples in North China, the Wutai Shan, in the Shanxi Rift and the Yingwang Shan in the Loess Plateau, to demonstrate how to calculate the drainage-divide migration rates (Fig. 1). We use UAV-acquired aerial photography and structure-from-motion (SfM) photogrammetry to derive the sub-meter digital elevation model of the two study areas. Based on the high-resolution topography data (sub-meter), we extract the relevant parameters and calculate the drainage-divide migration rate using the two methods above for each case. Analysis of the data is based on the Matlab toolbox TAK (Forte and Whipple, 2019) and TopoToolbox (Schwanghart and Scherler, 2014).
Figure 12. Locations and tectonic background of the two nature cases in North China. The figure is modified according to the from Fig. 7 in Shi et al. (2021). (A) Red curves lines represent the main active faults. Black rectangles show the locations of the two nature cases. Red curve denotes active fault. The fault data is downloaded.
3.1 Wutai Shan

The Wutai Shan is a tilted fault block on the shoulder of the Shanxi Rift System located in the central North China craton (Fig. 1A) (Xu et al., 1993; Su et al., 2021). The tilting uplift of the Wutai Shan is controlled by the Northern Wutai Shan fault (Fig. 3A), and there is no active fault along the south edge of the Wutai Shan horst (Fig. 2A). The bedrock of the Wutai Shan area consists mainly of metamorphic and igneous basement rocks (Clinkscales et al., 2020; Zhou et al., 2022a) and there is no obvious variation in rock erodibility and precipitation in this area (Fig. S2 & S3). Zhou et al. (2022b) reveal that the Wutai Shan drainage divide is migrating northwestward due to the tilting uplift and predicts the drainage divide will move ~10 km to the northwest to achieve a steady state if all geological conditions remain. Morphological geomorphic evidence also shows exhibits a clear northward migration of the drainage divides (Fig. 3). Figure 3The plan and satellite views show several barbed tributaries and a captured area around the Wutai Shan drainage divide, which indicate that the tributaries formerly part of the
northern drainage have become part of the southern drainage (Fig. 3A&B),
where there are clear barbed tributaries and a capture point. The γ-plots analysis shows the southern side of the drainage divide has steeper channels, higher k_{sn}, and lower γ. The γ-plots of paired rivers show illustrate obvious characteristics of aggressors shrinking-expanding victim and captured-beheaded rivers (Fig. 3C).

To derive the erosion coefficient of the Wutai Shan area, we calculate the channel steepness (k_{sn}) values of this region, under the assumption of assuming $n = 1$ and $m = 0.45$ (Wobus et al., 2006; DiBiase et al., 2010; Perron and Royden, 2012; Wang et al., 2021). We then use the Kriging interpolation technique method to generate the k_{sn} distribution map (Fig. 2B). In addition, the results of under the assumptions of $m = 0.35$ and 0.55, respectively, are shown in the Supplementary Materials (Fig. S4). The average k_{sn} value of the upthrown side near the Northern Wutai Shan fault of this area is $\sim 80 \text{ m}^{0.9}$ (Fig. 2D). The previous geological study shows that the Quaternary throw rates of the Northern Wutai Shan fault are 0.8-1.6 mm/a (Middleton et al., 2017). The previous geological study shows that the time-averaged long-term throw rates in the late Cenozoic of the Wutai Shan (Clinkscales et al., 2020), the erosion rate of the sampling area (in the footwall block of the northern boundary fault of the Wutai Shan) is about 0.25 mm/yr, and there is an accelerated activity in the Wutai Shan area in the late Cenozoic (Clinkscales et al., 2020). According to the above geological and low-temperature thermochronology studies, we assume a $0.50 \pm 0.25 \text{ mm/yr}$
uplift/erosion rate in the northern margin of the Wutai Shan (at in the footwall of the Northern Wutai Shan fault). The average k_{sn} value of this area is $\sim 80 \text{ m}^{0.9}$ (Fig. 3).

According to Combining with the equation, $K = \frac{E}{k_{sn} n}$, and following the approach of previous studies (Kirby and Whipple, 2001; Kirkpatrick et al., 2020; Ma et al., 2020), the erosion coefficient (K) is calculated to be $(6.25 \pm 3.13) \times 10^{-6} \text{ m}^{0.1} \text{ yr}^{-1}$ in the Wutai Shan's area. Because there is no obvious variation in rock erodibility and precipitation in this area (Fig. S2 & S3), we use this value as the erosion coefficient (K) of the Wutai Shan area.

We then apply the two above new methods in this area to calculate the migration velocity-rate of the drainage divide in the Wutai Shan. We first randomly choose three pairs of rivers (Fig. 4A) and make acquire their slope-area plots (Figs. 4B, E, H) and the χ-plots (Figs. 4C, F, I). According to the location of the river's catchment outlets (Fig. 4A), we obtain the river's outlet elevations (z_b) from the river's long profiles. According to the breaking point of the slope-area regression line plot (Duvall et al., 2004) (Figs. 4B, E, H), we obtain the values of the critical upstream drainage area (A_{cr}). According to these values and its corresponding position on the χ-plot, we can separate hillslope and channel areas and mark the position of the channel heads on the χ-plots and the topography map (Fig. 4A). For the slope-area plots, we derive the value of critical upstream drainage area (A_{cr}) according to the position of the channel heads. The $\tan \alpha$ and $\tan \beta$ are in line with the gradient of channel head points (S_{ch}) on each side of the drainage divide (Figs. 4D, G, J). Because the slopes of the channel-
head points varies, we use the average slope of the hillslope area as the value of channel-head gradient (S_{ch}). Moreover, for the χ-plots (Figs. 4C, F, I), we obtain the elevations of outlets (z_b) and channel heads (z_{ch}) of the channel segment, and the χ values according to based on the position-coordinate of the channel-head points. According to the location of the channel heads on the river's long profiles, we calculate the slope of the channel heads’ tangent lines, and derive the channel-head gradient (S_{ch}). The Topographic gradient (tanα or tanβ) is calculated through the average slope of the hillslope segment near the channel head (Stokes et al., 2022) (not including the hilltop part).

If we assume the rock uplift rate decreases linearly from 0.25 to 0 mm/yr from northwest to southeast of the Wutai Shan horst (~40 km wide), the cross-divide uplift difference in the channel-head points (ΔU_{ch}) (the distance perpendicular to the along the normal direction of the boundary fault is ~600 m) is ~0.0084 mm/yr. The tanα and tanβ are in line with the gradient of channel-head points (S_{ch}) on each side of the drainage divide (Figs. 4D, G, J). We assume $n = 1$ and $m = 0.45$ in the calculation following previous studies (Wobus et al., 2006; DiBiase et al., 2010; Perron and Royden, 2012; Wang et al., 2021). After determining these parameters, we adopt the channel-head-point (Eq. 4) and channel-head-segment (Eq. 8) methods, respectively, to calculate the migration rates. The required data for calculation and the migration rates are shown in Table 1. The calculated results of for $m = 0.35$ and 0.55, respectively, are shown in the Supplementary Materials (Table S1). The rivers have different characteristics on both sides of the drainage divide.
Both the slope-area plots (Figs. 4B, E, H) and the χ-plots (Figs. 4C, F, I) show that distinct character of the rivers across the drainage divide. For the first site (Fig. 4D), the migration rates calculated by both the channel-head-point and channel-head-segment methods are 0.12-21 mm/yr (northward) and 0.26 mm/yr (northwestward), respectively. For the second site (Fig. 4G), the migration rates derived from the two methods are 0.14-23 mm/yr (northward) and 0.13-27 mm/yr (northwestward), respectively. For the third site (Fig. 4J), the migration rates are 0.12-21 mm/yr (northward) and 0.10-22 mm/yr (northwestward), respectively. The drainage divides of all three points are predicted to migrate northwesternward, which is consistent with the previous result inferred by the cross-divide contrast of slopes in this area (Zhou et al., 2022). Furthermore, the migration velocities calculated by the two methods are comparable in all three sites. Morphological evidence also shows a clear northward migration of the drainage divides (Fig. 3). Figure 3 shows a captured area in the Wutai Shan, where there are clear barbed tributaries and a capture point. The south side of the drainage divide has steeper channels, higher k_{nr}, and lower γ. The γ plots of rivers show obvious characteristics of aggressor-victim and captured-beheaded rivers (Fig. 3).
Figure 2. (A & B) Topography (A) and normalized channel steepness (k_{sn}) (B) distribution of the Wutai Shan horst and surrounding area in the Shanxi Rift System.

The black dashed curve-line shows the location of the main drainage divide. Red curves-lines show the main bounding-active faults. The black straight-lines show the location of the profiles E-E’ and F-F’. Black rectangles show the area of aerial photography (Fig. 3B & 4A). Gray rectangles-boxes show the area of the swath.
profiles in Panels C & D. Green dots denote the locations of the low-temperature thermochronology samples in Clinkscales et al. (2020). The topography data (ALOS DEM, 12.5 m resolution) is downloaded from the Alaska Satellite Facility (ASF) Data Search (https://search.asf.alaska.edu/). The k_{sn} is calculated using TopoToolbox (Schwanghart and Scherler, 2014) based on Matlab, and the interpolation uses the Kriging method on ArcGIS. (C) The Topography swath profile along E-E’. See location in Fig. 3 Panel A. (D) The k_{sn} swath profile along F-F’. See location in Fig. 3 Panel B. The swath profiles are extracted using TopoToolbox (Schwanghart and Scherler, 2014). The red dotted-dashed lines show the location of the main bounding active normal faults, and the black arrow shows the location of the main drainage divide. Both swath profiles are 20 km wide (10 km on each side). The extent of the swath profiles is represented by the grey boxes in Panel A&B.
Figure 3. Perspective views and χ map of the drainage divide in the Wutai Shan (The location is shown in see Fig. 2 for location). (A) Perspective views of the a captured area and the channels mapped with ksn. The south side of the drainage divide has steeper channels and higher ksn than the north side. Red-Magenta arrows show drainage divide migration directions. The satellite image is downloaded from Google Earth. (B) The χ M map in of this area with the outlet elevation of 1300 m. The south side of the drainage divide has lower χ values than the north side. It should be noted that the catchment outlet at the north side of the drainage basins (the 1300 m contour) is out of the map. The χ-plots of the rivers in bold lines are shown in Panel C. The topography data (ALOS DEM, 12.5 m resolution) is downloaded from the Alaska
Satellite Facility (ASF) Data Search (https://search.asf.alaska.edu/). (C) γ-plots of the three paired rivers in Panel B. The blue and red curves correspond to the rivers on the south and north sides, respectively. The γ-plot of River 1 is steeper on the south side, indicating that the river on the south side is the aggressor expanding and the river on the north side is shrinking. The γ-plots of Rivers 2 & 3 in the captured area show obvious characteristics of the captured and beheaded rivers. The γ-plot is extracted using TAK (Forte and Whipple, 2019) and TopoToolbox (Schwanghart and Scherler, 2014).
Figure 4. Analytical results of the Wutai Shan drainage divide. (A) High-resolution hill-shade topographic map (0.67 sub-meter spatial resolution) of the Wutai Shan. The black dashed curve-line shows the location of the main drainage divide. Colored
3.2 An unnamed mountain range in the Loess Plateau: Yingwang Shan

The Loess Plateau is hosted by the tectonically stable Ordos Block of the North China craton (Yin, 2010; Su et al., 2021). Over the past 2.6 million years, it has accumulated tens to hundreds of meters of eolian sediments over the past 2.6 million years (Yan et al., 2014), draping preexisting topography (Xiong et al., 2014). There is no active fault within the study area. The lithology of the study site is mainly loess; there is little to no variation in rock erodibility and precipitation.
within the area (Shi et al., 2020; Zhou et al., 2022b).

We apply the two methods in this area to Yingwang Shan of Loess Plateau to calculate the drainage-divide migration rate. Similar to the Wutai Shan case, we first make obtain the randomly choose three pairs of rivers and make their slope-area plots (Figs. 5 B, E, H) and the χ-plots (Figs. 5 C, F, I), and extract the. Then we mark the position of the channel-head points on the topography map (Fig. 5A), slope-area plots, and χ-plots. According to its position, we derive the A_{cr} values of A_{cr}, S_{ch}, z_b, z_{ch}, χ, $\tan \alpha$ and $\tan \beta$ of the rivers from the slope-area plots (Figs. 5 B, E, H) and the χ values and the elevations of channel-head segments' outlets (z_b) and heads (z_{ch}) from the χ-plots (Figs. 5 C, F, I). We also acquire the average slope of the hillslope area and derive the S_{ch}, $\tan \alpha$, and $\tan \beta$ values.

The rate of soil erosion in the study area is about 500 t·km$^{-2}$·yr$^{-1}$ according to the distribution of silt discharge (Fu, 1989). If we combine with the assumption of the density of Loess is 1.65 t·m$^{-3}$, the present-day average erosion rate here in the study area is about calculated to be 0.3 mm·yr$^{-1}$. Because there is no obvious unequal uplift in this region, we assume that ΔU_{ch} is zero. We also assume $n = 1$ and $m = 0.45$ in the calculation (Wobus et al., 2006; DiBiase et al., 2010; Perron and Royden, 2012; Wang et al., 2021). Then, we use the methods of channel-head parameters (Eq. 7) and channel segments (Eq. 11) to calculate the drainage-divide migration rates. The required data for calculation and the migration rates are shown in Table 1.

All results of the three points show that the drainage-divide migration rate here is close to zero, no matter which method is used in the calculation. The results show that
the drainage divide of the study site is in topographical equilibrium, which is consistent with the inference in previous studies (Willett et al., 2014, Zhou et al., 2022b).
Figure 5. Analytical results of the Yingwang Shan, a mountain range in the Loess.
Plateau. (A) High-resolution hill-shaded topographic map (sub-meter 0.84 m spatial resolution). The black dotted curve line shows the location of the main drainage divide. Colored curve lines show the three pairs of selected channels used for analysis. The black dots represent the channel heads. Black rectangles show the location of the cross-divide topography swath profiles. (B, E, H) Slope-area plots of the three pairs of selected channels. The blue and orange dots are the data of the north (α) and south (β) sides of the drainage divide respectively. The black dots represent the channel heads. (C, F, I) χ-plots of the selected channels. The blue and orange curve lines are the χ-plots of the north (α) and south (β) sides of the drainage divide respectively. The black dots represent the channel heads. (D, G, J) The cross-divide topography swath profiles. The locations of the swath profiles are in Panel A.
Table 1. Channel’s parameters and the migration rates of the drainage divides in the two field natural cases.

<table>
<thead>
<tr>
<th>Natural Cases</th>
<th>No.</th>
<th>A_0 (x10^5 m²)</th>
<th>s_0 (m)</th>
<th>c_0 (m)</th>
<th>χ</th>
<th>$\tan \alpha$</th>
<th>$\tan \beta$</th>
<th>ΔU_{α} (mm/yr)</th>
<th>D_{mr} (mm/yr) (Channel-head-point method)</th>
<th>D_{mr} (mm/yr) (Channel-head-segment method)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wutai Shan</td>
<td>Fig. 4 I</td>
<td>1.75</td>
<td>0.16</td>
<td>1631</td>
<td>1792</td>
<td>6.4</td>
<td>0.14</td>
<td>0.66</td>
<td>~ 0.008</td>
<td>-0.21±0.10</td>
</tr>
<tr>
<td></td>
<td>Fig. 4 I</td>
<td>0.26</td>
<td>0.63</td>
<td>1347</td>
<td>1273</td>
<td>6.6</td>
<td>0.24</td>
<td>0.70</td>
<td>~ 0.008</td>
<td>-0.23±0.11</td>
</tr>
<tr>
<td></td>
<td>Fig. 4 II</td>
<td>0.79</td>
<td>0.23</td>
<td>1630</td>
<td>1815</td>
<td>5.4</td>
<td>0.24</td>
<td>0.65</td>
<td>~ 0.008</td>
<td>-0.21±0.10</td>
</tr>
<tr>
<td></td>
<td>Fig. 4 III</td>
<td>0.67</td>
<td>0.29</td>
<td>1633</td>
<td>1860</td>
<td>5.0</td>
<td>0.29</td>
<td>0.31</td>
<td>~ 0.01</td>
<td>~ -0.03</td>
</tr>
<tr>
<td></td>
<td>Loess Yingwang Plateau Shan</td>
<td>Fig. 5 I</td>
<td>0.54</td>
<td>0.21</td>
<td>1111</td>
<td>1224</td>
<td>5.8</td>
<td>0.21</td>
<td>0.31</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Fig. 5 I</td>
<td>0.20</td>
<td>0.32</td>
<td>1126</td>
<td>1225</td>
<td>5.0</td>
<td>0.39</td>
<td>0.33</td>
<td>0</td>
<td>~ 0.02</td>
</tr>
<tr>
<td></td>
<td>Fig. 5 II</td>
<td>0.24</td>
<td>0.36</td>
<td>1111</td>
<td>1257</td>
<td>7.4</td>
<td>0.39</td>
<td>0.33</td>
<td>0</td>
<td>~ 0.02</td>
</tr>
<tr>
<td></td>
<td>Fig. 5 III</td>
<td>0.30</td>
<td>0.31</td>
<td>1117</td>
<td>1224</td>
<td>5.4</td>
<td>0.49</td>
<td>0.35</td>
<td>0</td>
<td>~ 0.02</td>
</tr>
<tr>
<td></td>
<td>Fig. 5 III</td>
<td>0.29</td>
<td>0.46</td>
<td>1089</td>
<td>1256</td>
<td>8.6</td>
<td>0.49</td>
<td>0.35</td>
<td>0</td>
<td>~ 0.02</td>
</tr>
<tr>
<td></td>
<td>Fig. 5 III</td>
<td>0.56</td>
<td>0.37</td>
<td>1096</td>
<td>1203</td>
<td>5.3</td>
<td>0.49</td>
<td>0.35</td>
<td>0</td>
<td>~ 0.02</td>
</tr>
</tbody>
</table>
4. Discussion

4.1 Location of channel heads

Willett et al. (2014) pioneered the use of cross-divide χ contrast to gauge the horizontal motion of drainage divides. According to their method, drainage divides are predicted to move toward the side with a higher χ value to achieve geomorphic equilibrium. However, in a region with spatially variable uplift rates, lithology, or precipitation, χ contrast may fail to reflect the drainage-divide migration (Willett et al., 2014; Whipple et al., 2017; Forte and Whipple, 2018; Wu et al., 2022; Zhou and Tan, 2023). In the a tectonically active area, the cross-divide χ contrast can only be used in a small area where rock type, precipitation, and uplift rate are nearly uniform (Willett et al., 2014). Forte and Whipple (2018) proposed the Gilbert metrics to measure the stability of drainage divides. Zhou et al. (2022a) combined the advantages of the χ and Gilbert metrics methods, Zhou et al. (2022a) proposed to use the χ contrast with a high base level to calculate the k_{sn} values at the channel heads on both sides of a drainage divide, and quantified the migration rate of drainage divides at the eastern margin of Tibet.

To reduce the cross-divide difference in uplift rate, precipitation, and rock strength, these the Gilbert metrics or χ-comparison method in Zhou et al. (2022a) methods should compare the parameters of points (slope, relief, elevation, and k_{sn}) on both sides of the divide as closely as possible. As the hillslope area (above the channel head) does not follow Eq. 1 (Stoke and Dietrich, 2006; Stark, 2010; Braun et
the channel heads are the closest point to the divide, following Eq. 1. Channel heads, therefore, are suitable for measuring the drainage-divide stability with the parameters of the upstream drainage area and channel gradient (Forte and Whipple, 2018; Zhou et al., 2022a; this study). However, limited by the resolution of DEM, the location of the channel heads sometimes cannot always be accurately identified. The channel head parameters for calculating the migration rates are usually based on empirical parameter values in the previous study, which may induce uncertainties which may introduce errors in the result of drainage-divide stability.

In this study, we advocate the use of high-resolution DEM to determine a more accurate position and related parameters of the channel head. The use of UAVs to obtain the local DEM has become highly efficient, given that the use of UAVs to obtain the local DEM has become highly efficient. We advance the theory to calculate the drainage-divide migration rate based on the measured channel-head parameters. Because the use of UAVs to obtain the local DEM has become highly efficient. With the help of the aerial photography of UAVs and the SfM techniques, it is possible to obtain the sub-meter high-resolution topography data of drainage divides (Figs. 4A & 5A) and get the required parameters (including the exact locations of the channel heads across the drainage divide) through topography analysis, which could improve the quantitative research on the drainage-divide migration. Furthermore, the method provides a new avenue to combine with catchment-wide 10Be erosion rate or low-temperature thermochronology data to...
calculate the migration rate, which has great potential for application in places where some variables are hard to be constrained.

4.2 Cross-divide difference in the uplift rate of the channel heads

Although the channel heads across the divide are very close on the spatial scale of an orogenic belt, differential uplift between the channel heads (ΔU_{ch}) could still exist, especially in a tilting horst, such as the Wutai Shan. The cross-divide difference in uplift rate could impact the calculation of the migration rate of drainage divides (Zhou et al., 2022a). Although the differential uplift rate is usually small enough to be ignored in some natural cases, its influence on the migration rate of drainage divides should be taken into account theoretically (Zhou et al., 2022a).

In this study, we quantify the influence of the cross-divide difference in rock uplift rate (ΔU_{ch}) on the calculation of the migration rate of drainage divides at the Wutai Shan, benefiting from the available tectonic and chronological research (Clinkscales et al., 2020) and the newly obtained high-resolution topographic data. In the Wutai Shan horst, ΔU_{ch} across the drainage divide is $\sim 0.004\,008$ mm/yr. We estimated the influence of ΔU_{ch} on the drainage-divide migration rate in this case study of the Wutai Shan, which can reduce the error theoretically. If ΔU_{ch} is ignored, the drainage-divide migration rate would decrease by $\sim 4\%$ in the Wutai Shan case. Although $\sim 4\%$ seems to be negligible, such a ratio will increase if the mountain belt is narrower, the tilting uplift is stronger, or the divide is closer to the steady state (i.e.,...
the migration rate is lower) (Whipple et al., 2017; Ye et al., 2022). In other words, the
differential uplift may play a significant influence on the measurement of drainage-
divide stability in some situations. If we consider an extreme example: when the main drainage divide of a tilting mountain range (relatively narrow in width) is at
a steady state, the gradient, relief, and elevation of the channel heads (collectively
called “Gilbert metrics”) (Forte and Whipple, 2018) will show a systematic cross-
divide difference in theory. In this case, the drainage divide would be considered
unstable if \(\Delta U_{ch} \) were neglected. Therefore, we suggested this study highlights that
\(\Delta U_{ch} \) should be taken into account, either in a qualitative or a quantitative evaluation
of the stability of drainage divides using the parameters on the channel heads.

4.3 Error Limitations and uncertainties

This study developed the method to calculate the drainage-divide migration
rate based on the measured channel-head parameters. However, uncertainties still
exist because of the limitations of this technique. Firstly, we assume the erosion
coefficient \((K) \) is the same on both sides of a drainage divide in the derivation of the
equations. If there are differences in rock erodibility or precipitation differences
across the divide, uncertainties should exist in the results. Secondly, the calculation of
the migration rates is based on the erosion rates at the channel area in this study.
However, the occurrence of drainage--divide migration is directly driven by the
differential erosion of the hillslope area across the divide, mainly via the processes
including landslide, collapse, and diffusion (Stoke and Dietrich, 2006; Stark, 2010;
Braun et al., 2018; Dahlquist et al., 2018). Such discontinuous processes in the
hillslope area make it challenging to constrain erosion rates over such short
timescales. Over a relatively longer timescale period (i.e., spanning multiple seismic
and climatic cycles), the erosion rate at the channel head area in this study can be
comparable with that at the hillslope area (Hurst et al., 2012; Godard et al., 2020).

The accuracy of the data and parameters can also impact the reliability of the
results. Firstly, we use the typical values of $n = 1$ and $m/n = 0.45$ in the two natural
cases to calculate the migration rate. If the actual values largely deviate from the
assumption, the errors would exist be introduced into the results. For this reason, we
have added the cases of $m/n = 0.35$ and 0.55 in the in the Supplementary Materials.

Further estimation of these values (Mudd et al., 2018) could improve the accuracy of
the results. Secondly, in the case study of the Wutai Shan, we refer to the geological
and low-temperature thermochronology studies, and assume assuming a 0.50 ± 0.25
mm/yr erosion rate on the northern margin of the Wutai Shan (i.e., the footwall of
the North Wutai Shan fault). Combining with the present-day k_{sa}, we calculate the
erosion coefficient (K) and derive the range of migration rates of the drainage divide.
If the present-day erosion rate deviates from the assumption, the errors would exist be
inevitable in the results. Moreover, the horizontal and vertical errors of the DEM data,
as well as the calculation errors in slope, upstream area and channel steepness can
also affect the reliability of the results. In the case study of the Yingwang Shan, the
lush vegetation may bring errors to the DEM data based on the SfM technology. The
application of airborne light detection and ranging (LiDAR) technology may help
reduce this error. In summary, nonetheless, despite the challenges in the accuracy of the results at present is affected by many factors that present challenges, but we believe this study provides a useful and important method to calculate the drainage divide migration rate. Future studies should take these challenges into account and overcome them.

5. Conclusions

We have developed a new method, called the "channel-head-point" method here, to calculate the migration rate of drainage divides based upon channel-head parameters. We have also improved the previously proposed "channel-head-segment method" in the previous study (Zhou et al., 2022a) to adapt the theory to areas where the parameters of channel-heads can be accurately determined. Elevations of outlets and channel heads are different across the drainage divide. Using the new methods and high-resolution topographic data, we determined the exact locations of the channel heads on both sides of the drainage divide and quantified the drainage-divide migration rates in two natural cases in North China (the Wutai Shan in the Shanxi Rift System, and an unnamed mountain range in the Loess Plateau in North China). The migration rates of the study sites in the Wutai Shan are 0.1021-0.1327 mm/yr (moving northwestward). The rates are close to zero in the Yingwang Shan Loess Plateau.

Based on the locations of the channel heads and the uplift gradient of the Wutai
Shanmountain, we calculated the cross-divide difference in the uplift rate at the channel heads (ΔU_{ch}), which is taken into account in the calculation of the drainage-divide migration rate for the first time. If ΔU_{ch} is overlooked, the drainage-divide migration rate of the study sites in the Wutai Shan would will be ~4% underestimated by ~4%. We suggest our study highlights that ΔU_{ch} should be considered if one aims to join the assessment of the drainage divide stability of drainage divides based on the cross-divide difference in channel-head parameters.

Data availability. The analysis of data is based on the Matlab toolbox TAK (Forte and Whipple, 2019) and TopoToolbox (Schwanghart and Scherler, 2014). The topography data (ALOS DEM, 12.5 m resolution) is downloaded from the Alaska Satellite Facility (ASF) Data Search (https://search.asf.alaska.edu/).

Acknowledgements. We would like to thank the Editor Simon Mudd, the reviewer Thomas Bernard, and an anonymous reviewer whose suggestions have greatly improved the paper.

Financial support. This study is supported by the CAS Pioneer Hundred Talents Program (E2K2010010) and the Fundamental Research Funds for the State Key Laboratory of Earthquake Dynamics (LED2021A02).

Competing interests. The authors declare that they have no conflict of interest.

Author contributions. XT and CZ contributed to the design of the research scheme. CZ performed the geomorphic analyses. CZ, XT, and FS carried out field data collection. CZ, XT, YL, and FS contributed to the text and reviewed the paper.
References

pronounced rainfall gradient: Examples from the southern Central Andes. Earth Planet Sc Lett 327-328, 97-110. [https://doi.org/10.1016/j.epsl.2012.02.005]

Dahlquist, M.P., West, A.J., Li, G., 2018. Landslide-driven drainage divide migration. Geology 46, 403-406. https://doi.org/10.1130/g39916.1

https://doi.org/10.1016/j.epsl.2018.04.026

https://doi.org/10.5194/esurf-7-87-2019

https://doi.org/10.1002/esp.3947

https://doi.org/10.1016/j.epsl.2018.04.029

Perron, J.T., Dietrich, W.E., Kirchner, J.W., 2008. Controls on the spacing of first-

Sassolas-Serrayet, T., Cattin, R., Ferry, M., Godard, V., Simoes, M., 2019. Estimating the disequilibrium in denudation rates due to divide migration at the scale of river basins. Earth Surface Dynamics 7, 1041-1057. https://doi.org/10.5194/esurf-7-1041-2019

perturbations. Earth Surface Dynamics 8, 261-274. https://doi.org/10.5194/esurf-8-261-2020

and a secondary contact zone revealed by the phylogeographical signal of
Galaxias platei in Patagonia. Molecular Ecology 17, 5049-5061.

https://doi.org/10.1111/j.1365-294X.2008.03987.x

Zeng, X., Tan, X., 2023. Drainage divide migration in response to strike-slip faulting:
An example from northern Longmen Shan, eastern Tibet. Tectonophysics 848, 229720. https://doi.org/10.1016/j.tecto.2023.229720

https://doi.org/10.1038/s41467-021-27587-9

https://doi.org/10.1016/j.geomorph.2022.108123

strength and structural controls on fluvial erodibility: Implications for drainage divide mobility in a collisional mountain belt. Earth Planet Sc Lett 538.

https://doi.org/10.1016/j.epsl.2020.116221