Preprints
https://doi.org/10.5194/egusphere-2025-47
https://doi.org/10.5194/egusphere-2025-47
06 Feb 2025
 | 06 Feb 2025
Status: this preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).

Accelerated impact of airborne glaciogenic seeding of stratiform clouds by turbulence

Meilian Chen, Xiaoqin Jing, Jiaojiao Li, Jing Yang, Xiaobo Dong, Bart Geerts, Yan Yin, Baojun Chen, Lulin Xue, Mengyu Huang, Ping Tian, and Shaofeng Hua

Abstract. Several recent studies have reported complete cloud glaciation induced by airborne-based glaciogenic cloud seeding over plains. Since turbulence is an important factor controlling mixed-phase clouds, including ice initiation, snow growth, and cloud longevity, it is hypothesized that turbulence may have an impact on the seeding effect. To understand the role of turbulence in seeded clouds, idealized WRF large eddy simulations (LESs) over flat terrain are conducted for a shallow stratiform cloud in which complete glaciation was observed. The results show that the model can reasonably capture the magnitude and spatial distributions of radar echoes in seeded areas. Sensitivity tests suggest that, for this case, stronger turbulence enhanced particle dispersion, the nucleation of silver iodide (AgI) particles, and the growth of ice crystals, which accelerated cloud glaciation, even though the condensation of droplets was also enhanced. The faster cloud glaciation intensified precipitation within a short time after seeding, while the liquid water was quickly consumed, leading to a decrease in precipitation rate in the further downwind areas. Such a transition from positive to negative seeding effect is more pronounced for seeding with a higher AgI release rate. This study provides strong evidence that turbulence plays a vital role in the physical chain of events associated with cloud seeding.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share
Meilian Chen, Xiaoqin Jing, Jiaojiao Li, Jing Yang, Xiaobo Dong, Bart Geerts, Yan Yin, Baojun Chen, Lulin Xue, Mengyu Huang, Ping Tian, and Shaofeng Hua

Status: open (until 27 Mar 2025)

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
Meilian Chen, Xiaoqin Jing, Jiaojiao Li, Jing Yang, Xiaobo Dong, Bart Geerts, Yan Yin, Baojun Chen, Lulin Xue, Mengyu Huang, Ping Tian, and Shaofeng Hua
Meilian Chen, Xiaoqin Jing, Jiaojiao Li, Jing Yang, Xiaobo Dong, Bart Geerts, Yan Yin, Baojun Chen, Lulin Xue, Mengyu Huang, Ping Tian, and Shaofeng Hua

Viewed

Total article views: 145 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
120 18 7 145 4 5
  • HTML: 120
  • PDF: 18
  • XML: 7
  • Total: 145
  • BibTeX: 4
  • EndNote: 5
Views and downloads (calculated since 06 Feb 2025)
Cumulative views and downloads (calculated since 06 Feb 2025)

Viewed (geographical distribution)

Total article views: 139 (including HTML, PDF, and XML) Thereof 139 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 16 Mar 2025
Download
Short summary
Several recent studies have reported complete cloud glaciation induced by airborne-based glaciogenic cloud seeding over plains. Since turbulence is an important factor to maintain clouds in mixed-phase, it is hypothesized that turbulence may have an impact on the seeding effect. This hypothesis is evident in the present study, which shows turbulence can accelerate the impact of airborne glaciogenic seeding of stratiform clouds.
Share