Preprints
https://doi.org/10.20944/preprints202312.1052.v1
https://doi.org/10.20944/preprints202312.1052.v1
08 Mar 2024
 | 08 Mar 2024

Innovative Cloud Quantification: Deep Learning Classification and Finite Element Clustering for Ground-Based All Sky Imaging

Jingxuan Luo, Yubing Pan, Debin Su, Jinhua Zhong, Lingxiao Wu, Wei Zhao, Xiaoru Hu, Zhengchao Qi, Daren Lu, and Yinan Wang

Abstract. Accurate cloud quantification is essential in climate change research. In this work, we construct an automated computer vision framework by synergistically incorporating deep neural networks and finite element clustering to achieve robust whole sky image-based cloud classification, adaptive segmentation, and recognition under intricate illumination dynamics. A bespoke YOLOv8 architecture attains over 95 % categorical precision across four archetypal cloud varieties curated from extensive annual observations (2020) at a Tibetan highland station. Tailor-made segmentation strategies adapted to distinct cloud configurations, allied with illumination-invariant image enhancement algorithms, effectively eliminate solar interference and substantially boost quantitative performance even in illumination-adverse analysis scenarios. In comparison to traditional NRBR threshold analysis methods, the cloud quantification accuracy computed within the framework of this paper exhibits an improvement of nearly 20 %. Collectively, the methodological innovations provide an advanced solution to markedly escalate cloud quantification precision levels imperative for climate change research, while offering a paradigm for cloud analytics transferable to various meteorological stations.

Journal article(s) based on this preprint

25 Jun 2024
Innovative cloud quantification: deep learning classification and finite-sector clustering for ground-based all-sky imaging
Jingxuan Luo, Yubing Pan, Debin Su, Jinhua Zhong, Lingxiao Wu, Wei Zhao, Xiaoru Hu, Zhengchao Qi, Daren Lu, and Yinan Wang
Atmos. Meas. Tech., 17, 3765–3781, https://doi.org/10.5194/amt-17-3765-2024,https://doi.org/10.5194/amt-17-3765-2024, 2024
Short summary
Jingxuan Luo, Yubing Pan, Debin Su, Jinhua Zhong, Lingxiao Wu, Wei Zhao, Xiaoru Hu, Zhengchao Qi, Daren Lu, and Yinan Wang

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2024-678', Anonymous Referee #1, 25 Mar 2024
    • AC1: 'Reply on RC1', Yinan Wang, 03 Apr 2024
  • RC2: 'Comment on egusphere-2024-678', Anonymous Referee #2, 27 Mar 2024
    • AC2: 'Reply on RC2', Yinan Wang, 03 Apr 2024
  • RC3: 'Comment on egusphere-2024-678', Anonymous Referee #3, 08 Apr 2024
    • AC3: 'Reply on RC3', Yinan Wang, 15 Apr 2024
  • RC4: 'Comment on egusphere-2024-678', Anonymous Referee #4, 12 Apr 2024
    • AC4: 'Reply on RC4', Yinan Wang, 24 Apr 2024

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2024-678', Anonymous Referee #1, 25 Mar 2024
    • AC1: 'Reply on RC1', Yinan Wang, 03 Apr 2024
  • RC2: 'Comment on egusphere-2024-678', Anonymous Referee #2, 27 Mar 2024
    • AC2: 'Reply on RC2', Yinan Wang, 03 Apr 2024
  • RC3: 'Comment on egusphere-2024-678', Anonymous Referee #3, 08 Apr 2024
    • AC3: 'Reply on RC3', Yinan Wang, 15 Apr 2024
  • RC4: 'Comment on egusphere-2024-678', Anonymous Referee #4, 12 Apr 2024
    • AC4: 'Reply on RC4', Yinan Wang, 24 Apr 2024

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
AR by Yinan Wang on behalf of the Authors (24 Apr 2024)  Author's response   Author's tracked changes   Manuscript 
ED: Publish subject to minor revisions (review by editor) (25 Apr 2024) by Yuanjian Yang
AR by Yinan Wang on behalf of the Authors (26 Apr 2024)  Author's response   Author's tracked changes   Manuscript 
ED: Publish as is (30 Apr 2024) by Yuanjian Yang
AR by Yinan Wang on behalf of the Authors (03 May 2024)  Manuscript 

Journal article(s) based on this preprint

25 Jun 2024
Innovative cloud quantification: deep learning classification and finite-sector clustering for ground-based all-sky imaging
Jingxuan Luo, Yubing Pan, Debin Su, Jinhua Zhong, Lingxiao Wu, Wei Zhao, Xiaoru Hu, Zhengchao Qi, Daren Lu, and Yinan Wang
Atmos. Meas. Tech., 17, 3765–3781, https://doi.org/10.5194/amt-17-3765-2024,https://doi.org/10.5194/amt-17-3765-2024, 2024
Short summary
Jingxuan Luo, Yubing Pan, Debin Su, Jinhua Zhong, Lingxiao Wu, Wei Zhao, Xiaoru Hu, Zhengchao Qi, Daren Lu, and Yinan Wang
Jingxuan Luo, Yubing Pan, Debin Su, Jinhua Zhong, Lingxiao Wu, Wei Zhao, Xiaoru Hu, Zhengchao Qi, Daren Lu, and Yinan Wang

Viewed

Since the preprint corresponding to this journal article was posted outside of Copernicus Publications, the preprint-related metrics are limited to HTML views.

Total article views: 219 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
219 0 0 219 0 0
  • HTML: 219
  • PDF: 0
  • XML: 0
  • Total: 219
  • BibTeX: 0
  • EndNote: 0
Views and downloads (calculated since 08 Mar 2024)
Cumulative views and downloads (calculated since 08 Mar 2024)

Viewed (geographical distribution)

Since the preprint corresponding to this journal article was posted outside of Copernicus Publications, the preprint-related metrics are limited to HTML views.

Total article views: 221 (including HTML, PDF, and XML) Thereof 221 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Latest update: 16 Nov 2024
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
Accurate cloud quantification is essential for climate research. We developed a novel computer vision framework using deep neural networks and clustering algorithms for cloud classification and segmentation from ground-based all-sky images. Trained on year-round observations, our model achieved over 95 % accuracy for four cloud types. This framework enhances quantitative analysis, supporting climate studies by providing reliable cloud data.