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Abstract. Accurate cloud quantification is essential in climate change research. In this work, we construct 

an automated computer vision framework by synergistically incorporating deep neural networks and finite 

sector clustering to achieve robust whole sky image-based cloud classification, adaptive segmentation, and 15 

recognition under intricate illumination dynamics. A bespoke YOLOv8 architecture attains over 95% 

categorical precision across four archetypal cloud varieties curated from extensive annual observations 

(2020) at a Tibetan highland station. Tailor-made segmentation strategies adapted to distinct cloud 

configurations, allied with illumination-invariant image enhancement algorithms, effectively eliminate 

solar interference and substantially boost quantitative performance even in illumination-adverse analysis 20 

scenarios. Compared with the traditional threshold analysis method, the cloud quantification accuracy 

calculated within the framework of this paper is significantly improved. Collectively, the methodological 

innovations provide an advanced solution to markedly escalate cloud quantification precision levels 

imperative for climate change research, while offering a paradigm for cloud analytics transferable to 

various meteorological stations. 25 

1 Introduction 

Clouds play a crucial regulatory role in the Earth's climate system (Voigt et al., 2021). Serving as important 

barriers that regulate the Earth's energy balance on a global scale, cloud layers help prevent surface 

overheating. Essentially, clouds serve as key sunshades to maintain greenhouse effect balance and prevent 

Earth from overheating. Moreover, due to their reflective, absorptive, and emissive properties of solar 30 

radiation, clouds also contribute to a notable net cooling effect, playing an indispensable role in regulating 

the overall temperature of the Earth (Raghuraman et al., 2019). It is noteworthy that in recent years, the 

critical role of clouds in the Earth's radiation balance has been further emphasized and empirically 

demonstrated (Gouveia et al., 2017). For instance, Zhao et al. delve into detail in their latest review on how 
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cloud layers impact the global climate system through radiation forcing mechanisms. They reveal how 35 

clouds function as a dynamic feedback system, capable of both cooling the Earth by obstructing solar 

shortwave radiation and warming it by absorbing and re-emitting longwave radiation, thus exerting a 

significant influence on the global radiation balance (Zhao et al., 2023). Cloud quantification is the precise 

analysis of sky images to transform cloud body characteristics into a series of quantifiable parameters, 

including but not limited to cloud amount and cloud type, which are essential for understanding and 40 

modeling the Earth's radiation balance, energy transport, and climate change.  However, simultaneously, 

the influence of clouds on the climate system varies depending on their type and altitude. For example, 

high-altitude cirrus clouds mainly affect radiation balance through reflection and scattering, while low-level 

stratiform and cumulus clouds contribute more to the greenhouse effect. For instance, high-altitude cirrus 

clouds, due to their strong absorption and re-emission characteristics of longwave radiation, effectively 45 

contribute to the warming (greenhouse) effect on the Earth's radiation balance. Conversely, low-level 

stratocumulus and cumulus typically exhibit a cooling effect due to their effective reflection and shielding 

of solar shortwave radiation (Werner et al., 2013).Accurately determining the type, distribution, and 

evolution of clouds is crucial for the long-term monitoring and prediction of climate change (Riihimaki et 

al., 2021). However, there are significant differences in cloud cover between different locations, and 50 

regional climate characteristics vary noticeably. Globally, cloud frequency is higher over the ocean than 

over land, but the situation is reversed for cloud systems with more than two layers. The seasonal variation 

in the global average total cloud fraction is small, but there are significant variations between different 

latitudinal zones (Chi et al., 2024). Precise cloud identification can provide crucial information on climate 

change from multiple perspectives (Jafariserajehlou et al., 2019). Additionally, it can validate the accuracy 55 

of climate model predictions and provide input parameters for climate sensitivity studies (Hutchison et al., 

2019). Therefore, conducting precise cloud quantification observations is of great significance for climate 

change scientific research, which is precisely the starting point of this study using image processing 

techniques to achieve accurate cloud calculations. 

Currently, accurate cloud typing and quantification still face certain difficulties and limitations. For cloud 60 

classification, common approaches include manual identification, threshold segmentation, texture feature 

extraction, satellite remote sensing, ground-based cloud radar detection, aircraft sounding observations, etc. 

(Li et al., 2017; He et al., 2018; Ma et al., 2021; Rumi et al., 2015; Wu et al., 2021). Manual visual 

identification relies on the experience of professional meteorological observers to discern cloud shapes, 

colors, boundaries and other features to categorize cloud types. This method has long been widely used, but 65 

is heavily impacted by individual differences and lacks consistency, with low efficiency (Alonso-

Montesinos, 2020). Threshold segmentation sets thresholds based on RGB values, brightness and other 

parameters in images to extract pixel features corresponding to different cloud types for classification. It is 

susceptible to illumination conditions and ineffective at distinguishing transitional cloud zones (Nakajima 

et al., 2011). Texture feature analysis utilizes measurements of roughness, contrast, directionality and other 70 

metrics to perform multi-feature combined identification of various clouds, but adapts poorly to both 



3 

 

tenuous and thick clouds (Yu et al., 2013). Satellite remote sensing discerns cloud types based on spectral 

features in different bands combined with temperature inversion results, but has low resolution and 

inaccurate recognition of ground-level small clouds (Yang et al., 2007). Ground-based cloud radar 

differentiation of water and ice clouds relies on measured Doppler velocity and other parameters, with 75 

inadequate detection of high thin clouds (Irbah et al., 2023). Aircraft sounding observations synthesize 

multiple parameters to make judgments, but have limited coverage and observation time.  

In the fields of meteorology and remote sensing, cloud detection and recognition have always been at the 

forefront and a challenge of research. Currently, the mainstream ground-based cloud detection methods 

primarily consist of two categories: traditional image processing techniques and deep learning-based 80 

techniques (Hensel et al., 2021). The advantages of traditional image processing techniques are mainly 

reflected in the easy operation and low computational cost, which are suitable for rapid preliminary 

identification of cloud cover areas, however, the high sensitivity of such methods to changes in lighting 

conditions leads to unstable identification results under complex lighting dynamics, especially in the 

identification of high-altitude thin cirrus clouds, complex boundary cloud bodies, and multiple clouds, due 85 

to the lack of adaptive ability and accurate feature expression, it is difficult to achieve the ideal quantization 

accuracy and weak adaptability to atypical cloud types, which affects the accuracy of cloud calculation. 

Deep learning methods can efficiently and accurately classify and segment cloud images under complex 

cloud types and various lighting conditions by means of a deep neural network model driven by large-scale 

training data, and significantly improve the quantization performance under unfavorable lighting 90 

environments by combining with algorithms such as image enhancement. Deep learning methods also have 

obvious shortcomings, such as relying on a large amount of labeled data, high-performance computational 

resources, and the recognition performance in extreme lighting scenarios such as extremely bright or dark 

still needs to be improved. Current mainstream cloud detection methods include LiDAR measurements, 

satellite remote sensing inversion, ground-based cloud radar, and all-sky image recognition (Li et al., 95 

2022a). Laser radar emits sequenced laser pulses and estimates cloud vertical structure and optical depth 

from the backscatter to directly quantify cloud amount, but has large equipment size, high costs, limited 

coverage area, and cannot produce cloud distribution maps. Laser radar, by emitting sequential pulses of 

laser beams and deducing cloud vertical structure and optical thickness based on echo information, can 

directly quantify cloud amounts. There are compact or even portable laser radar devices available on the 100 

market. However, in the context of the cloud image recognition method addressed in this study, these 

devices incur high costs and offer limited coverage. Satellite remote sensing inversion utilizes parameters 

like cloud top temperature and optical depth, combined with inversion algorithms to obtain cloud amount 

distribution. However, restricted by resolution, it has poor recognition of local clouds (Rumi et al., 2015). 

Ground-based cloud radar can measure backscatter signals at different altitudes to determine layered cloud 105 

distribution, but has weak return signals for high thin clouds, resulting in inadequate detection. With 

multiple cloud layers, it struggles to differentiate between levels, unfavorable for accurate quantification 

(Van De Poll et al., 2006). The conventional whole sky image segmentation utilizes fisheye cameras 
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installed at ground stations to acquire whole sky images, then segments the images based on color 

thresholds or texture features to calculate pixel proportions of various cloud types, which are converted to 110 

cloud cover. This method has the advantage of easy and economical image acquisition, but is susceptible to 

illumination changes that can impact segmentation outcomes, with poor recognition of small or high clouds 

(Alonso-Montesinos, 2020). In summary, the current technical means for cloud classification and 

quantification lack high accuracy, cannot precisely calculate regional cloud information, and need 

improved stability and reliability. They fall short of meeting the climate change science demand for 115 

massive fine-grained cloud datasets. 

In recent years, with advances in computer vision and machine learning theories, some more sophisticated 

technical means have been introduced into cloud classification and recognition, making significant progress. 

While traditional methods are not able to characterize and extract cloud texture features well, convolutional 

neural networks can learn increasingly complex patterns and discriminative textures from large pre-trained 120 

datasets. In addition, convolutional neural networks typically employ a hierarchical feature extraction 

framework that captures fine textures such as edges and shapes. For instance, cloud image classification 

algorithms based on deep learning have become a research hotspot. Deep learning can automatically learn 

feature representations from complex data and construct models to synthetically judge the visual 

information of cloud shapes, boundaries, textures, etc. to distinguish between different cloud types (Yu et 125 

al., 2020). Meanwhile, unsupervised learning methods like k-means clustering are also widely applied in 

cloud segmentation and recognition. This algorithm can autonomously discover inherent data category 

structures without manual annotation, enabling cloud image partitioning and greatly simplifying the 

workflow, Krauz and other research teams have previously successfully analyzed all-sky images using the 

k-means clustering algorithm to quickly and efficiently delineate cloud cover and clear sky regions, 130 

significantly improving the speed and efficiency of cloud quantification tasks (Krauz et al., 2020). It can be 

foreseeable that the combination of deep learning and unsupervised clustering for cloud recognition will 

find expanded applications in meteorology. We also hope to lay the groundwork for revealing circulation 

characteristics, radiative effects and climate impacts of different cloud types through this cutting-edge 

detection approach. 135 

Despite some progress made in current cloud recognition algorithms, numerous challenges remain. Firstly, 

accurately identifying different cloud types is still difficult, especially indistinct high-altitude cirrus clouds 

and transitional mixed cloud types (Ma et al., 2021). Secondly, illumination condition changes can 

drastically impact recognition outcomes, leading to high misjudgment rates in situations like polarization 

and shadowing. Currently, many cloud recognition algorithms face significant challenges in dealing with 140 

different cloud types, especially high-altitude thin cirrus and transitional hybrid clouds (Ma et al., 2021). 

Among them, the traditional NRBR (Normalized Red/Blue Ratio) identification method, although able to 

provide preliminary cloud estimation in general, shows obvious limitations in terms of shadowing effects 

and identification of thin cirrus edges due to the fact that it relies only on color features to make judgments, 

and the variation of illumination conditions greatly affects the identification results. To address these issues 145 
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and limitations, we propose constructing an end-to-end cloud recognition framework, with a focus on 

achieving accurate classification of cirrus, clear sky, cumulus and stratus, paying particular attention to the 

traditionally challenging cirrus. Building upon the categorization, we design adaptive dehazing algorithms 

and k-means clustering finite sector segmentation to enhance recognition of cloud edges and tenuous 

regions. We hope that through optimized framework design, long-standing issues of cloud typing and fine-150 

grained quantification can be solved, significantly improving ground-based cloud detection and 

quantification for solid data support in related climate studies. The structure of this paper is as follows. 

Section 2 introduces the study area, data acquisition, and construction of the cloud classification dataset. 

Section 3 elaborates the methodologies including neural networks, image enhancement, adaptive 

processing algorithms, and evaluation metrics. Finally, Sections 4-6 present the results, discussions, and 155 

conclusions respectively. 

2 Study Area and Data 

2.1 Study Area 

The Yangbajing Total Atmosphere Observatory (90°33′E,30°05′N) is located next to the Qinghai-Tibet 

Highway and Qinghai-Tibet Railway, 90 kilometers northwest of Lhasa, Tibet, in an area with an average 160 

elevation of 4,300 meters. This region has high atmospheric transparency and abundant sunlight, creating a 

unique meteorological environment. Yangbajing is far from industrial areas and cities, with relatively good 

air quality and low atmospheric pollution levels, which reduces the impact of air pollution on cloud 

observation and improves cloud quantification accuracy. The Yangbajing area is far away from industries 

and cities, and the air quality is relatively good, which can reduce the impact of atmospheric pollution on 165 

cloud observation (Krüger et al., 2004). Meanwhile, Tibet spans diverse meteorological types, meaning 

various cloud types can be observed in the same area, enabling better research on the evolution patterns of 

different cloud types. 

2.2 Imager Information 

The cloud quantification automated observation instrument used in this study is installed at the Yangbajing 170 

Comprehensive Atmospheric Observatory (90°33'E, 30°05'N) and has been measuring since April 2019. 

The visible light imaging subsystem mainly comprises the visible light imaging unit (Figure 1a), the sun 

tracking unit (Figure 1b), the acquisition box, and the power box. As summarized in Table 1, this system 

images the entire sky every 10 minutes, measuring clouds ranging from 0 to 10 km with elevation angles 

above 15°. It can capture RGB images in the visible spectrum at a resolution of 4288 × 2848 pixels. This 175 

visual imaging device is equipped with a complementary metal oxide semiconductor (CMOS) image sensor 

system with an ultra wide angle fisheye lens design, which can regularly capture visible light spectrum 

images across the entire sky range; The integrated sun tracking system can accurately calculate and track 

the position of the sun in real-time, ensuring effective blocking of direct sunlight shining into the CMOS 
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system, thereby protecting its sensitive photosensitive components from damage and significantly reducing 180 

the interference effect of white light around the sun on subsequent image processing. 

   
    (a)                                                                  (b) 

Figure 1. Automatic cloud observer. (a) Visible light imaging unit;(b) Sun tracking structure. 

 185 

Table 1. Detailed specifications of automatic cloud observer. 

Function Description 

Measure Measurable cloud distance 0~10Km 

Measuring range Elevation angle above 15° 

Observation periods Observe every 10 minutes 

Horizontal visibility ≥2km 

Operating temperature -40°~50° 

Sensor CMOS 

Image resolution 4288 × 2848 

Operational durability 

Ingress protection 

24 h operation 

IP65 

2.3 Dataset 

The image dataset used in this study is comprised of all-sky images during 2020. Considering images taken 

during sunset and sunrise are more easily influenced by lighting conditions, we only selected images taken 

between 9am to 4pm daily. Additionally, to reduce correlation, we only picked one image every half hour, 190 

amounting to 16 sample images per day. Among all selected images, cases of rain, snow as well as lens 

occlusion or contamination were removed. Finally, 4000 high quality, occlusion-free all-sky images with 

no rain or snow were screened out and categorized into four classes with 1000 images per class. The four 

classes are namely: cirrus, clear sky, cumulus, and stratus. It should be emphasized that the categorization 

into four dominant cloud types here is for accurately quantifying the cloud fraction of each individual 195 

category, rather than accounting for hybrid clouds. These screened images represent the visual 

characteristics of different cloud types well, forming the image dataset for this study. 
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This study uses an all-sky image dataset between 2019 and 2022. Considering that images during sunrise 

and sunset hours are susceptible to lighting conditions, we only select images between 9am and 16pm hours 

each day. Also, to reduce the correlation, only one image is selected every half hour, which results in 15 200 

sample images per day. Among all the selected images, rain and snow as well as obscured or contaminated 

lenses were excluded. Eventually, 4000 high-quality all-sky images without rain, snow, or occlusion were 

selected from these images and classified into four categories of 1000 images each, which were: cirrus, 

clear sky, cumulus, and stratus; it is important to emphasize that the division of clouds into the four main 

types here is intended to accurately quantify the proportion of clouds in each category, rather than 205 

considering mixed clouds. These four cloud types play an important role in the weather of the region and 

are the main reference factors for this classification, each type of cloud has unique visual and 

morphological characteristics and is fully representative of the region(Lohmann and Neubauer, 2018). 

3 Materials and Methods 

The framework proposed in this study is illustrated in Figure 2. It can be summarized into the following 210 

steps:(1) Data quality control and preprocessing. First, quality control is performed on the collected raw all-

sky images to remove distorted images caused by occlusion or sensor issues. Then, image size and 

resolution are standardized.(2) Deep neural network classification and evaluation metrics. The YOLOv8 

deep neural network is utilized to categorize the cloud images, judging which of the four types (cirrus, clear 

sky, cumulus, and stratus) each image belongs to. Precision, recall, and F1-scores are used to evaluate the 215 

classification performance.(3) Adaptive enhancement. Different image enhancement strategies are adopted 

according to cloud type to selectively perform operations like dehazing, contrast adjustment etc. to improve 

image quality. (4) K-means Clustering with Finite Sector Segmentation: The improved photos are subjected 

to category-based K-means clustering, which is based on finite sector segmentation, in order to extract 

cloud features and produce precise cloud detection outcomes. 220 
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Figure 2. Cloud detection flowchart. (a) Traditional NRBR threshold segmentation to compute the cloud amount; 

(b) YOLOv8 model to identify the cloud type; (c) Finite sector segmentation k-mean clustering process; (d) 

Local refinement for cloud identification. 

3.1 Quality Control and Preprocessing 225 

Considering that irrelevant ground objects may occlude the edge areas of the original all-sky images, 

directly using the raw images to train models could allow unrelated ground targets to interfere with the 

learning of cloud features, reducing the model's ability to recognize cloud regions (Wu et al., 2023). 

Therefore, we cropped the edges of the original images, using the geometric center of the all-sky images as 

the circle center and calculating the circular coverage range corresponding to a 26° zenith angle, to 230 

precisely clip out this circular image area and remove ground objects on the edges. This cropping operation 

eliminated ground objects from the original images that could negatively impact cloud classification, 

resulting in circular image regions containing only sky elements. To facilitate subsequent image processing 

operations while ensuring image detail features, the cropped images underwent size adjustment to set the 

target resolution to 680×680 pixels. Compared to the original 4288×2848 pixels, adjusting the resolution 235 

retained the main detail features of the cloud areas in the images, but significantly reduced the file size for 

easier loading and calculation during network training. Finally, a standardized dataset was constructed by 

cloud type - the resolution-adjusted images were organized and divided into four folders for cirrus, clear 

sky, cumulus, and stratus, with 1000 pre-processed images in each folder. A standardized all-sky image 

dataset containing diverse cloud morphologies was built. 240 
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3.2. Deep Neural Network Classification 

3.2.1. Network Structure Design 

The main reason why YOLOv8 is the preferred framework in this study is its unique design that can 

effectively handle the task of all-sky image cloud classification under complex lighting conditions. 

Compared with the previous YOLO series and some other classic image recognition models, YOLOv8 is 245 

able to extract richer gradient flow information by adopting Darknet-53 as the Backbone and replacing the 

original C3 module with the improved C2f module in the Neck part. (Li et al., 2023), which is conducive to 

capturing the cloud's delicate textural and boundary features. Meanwhile, the PAN-FPN structure of 

YOLOv8 achieves model lightweighting while retaining the original high-performance performance, while 

the detection head part adopts a decoupled structure, which is responsible for the classification and 250 

regression tasks, respectively (Xiao et al., 2023), and adopts the binary cross-entropy loss (BCE Loss) for 

the optimization of the classification task, together with the distributed focus loss (DFL) and the complete 

IoU loss (CIoU) for bounding box regression prediction, this detection structure can significantly improve 

the detection accuracy and convergence speed of the model (Wang et al., 2023). Considering the limited 

size of the cloud dataset, we loaded the YOLOv8-X-cls model pre-trained on the ImageNet dataset as the 255 

initialization model, with a parameter count of 57.4 M. After careful module design, pre-trained model 

initialization, and training parameter configurations, we constructed an end-to-end cloud classification 

network with excellent performance. 
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Figure 3. YOLOv8 machine learning architecture, divided into four parts: Backbone, Neck, Head and Loss. 260 

3.2.2. Experimental Parameter Settings 

After constructing the model architecture, we trained the model using the previously prepared classification 

dataset containing images of multiple cloud types. During training, the input image size was set to 680×680. 

We set the maximum number of training epochs to 400, and the number of samples used per iteration was 

32. To prevent overfitting, momentum and weight decay terms were added to the optimizer and the 265 

patience parameter was adjusted to 50. To augment the sample space, various data augmentation techniques 

were employed such as random horizontal flipping (probability of 0.5) and mosaic (probability of 1.0). The 

SGD optimizer was chosen since its stochastic sampling and parameter update provide opportunities to 

jump out of local optima, helping locate the global optimum in a wider region. Considering initial and final 

learning rates, the initial learning rate was set to 0.01 and gradually decayed during training to enable more 270 

refined optimization of model parameters during later convergence. 
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3.2.3. Cloud Classification Evaluation Indicators 

To comprehensively evaluate the cloud classification performance of the model, a combined qualitative and 

quantitative analysis scheme was adopted. Qualitatively, we inspected the model's ability in categorizing 

different cloud types, boundaries, and detail structures by comparing classification recognition differences 275 

between the validation set and test set. Quantitatively, metrics including precision, recall and F1-score were 

used to assess the model(Dev et al., 2017; Guo et al., 2024). Precision reflects the portion of true positive 

cases among samples predicted as positive, and is calculated as: 

Precision=
TP

TP+FP
(1) 

Recall represents the fraction of correctly classified positive examples out of all positive samples, and is 280 

calculated as: 

Recall=
TP

TP+FN
(2) 

F1-score considers both precision and recall via the formula: 

F1=2×
Precision×Recall

Precision+Recall
(3) 

Here, TP stands for true positives, TN true negatives, FP false positives, and FN false negatives. Through 285 

this combined qualitative and quantitative evaluation system, the cloud classification recognition 

performance can be fully examined. 

In the above equation True Positive (TP) denotes the actual number of positive samples that the model 

correctly predicts as positive category (i.e. cloud category), which represents the number of real cloud 

images that the model successfully recognizes. False Positive (FP) denotes the number of samples that the 290 

model incorrectly predicts as positive category but actually belongs to the negative category (non-cloud 

category), which implies the number of cloud images that the model misidentifies. False Negative (FN) 

denotes the number of samples that the model incorrectly predicted as a negative category but actually 

belonged to a positive category, which represents the number of cloud images that the model failed to 

identify. With this combined qualitative and quantitative evaluation system, we can comprehensively 295 

examine the cloud classification recognition performance of the model. 

3.3. Adaptive Enhancement Algorithm 

When processing all-sky images, we face the challenges of visual blurring and low contrast caused by 

overexposure and haze interference. To address this, a dark channel prior algorithm is adopted in this study. 

The core idea of the dark channel prior algorithm is to perform haze estimation and elimination based on 300 

dark channel images (Kaiming et al., 2009). First, for each pixel of the input image, the dark channel image 

is computed by selecting the minimum value among its three RGB color channels. The non-zero minima in 

the dark channel image are utilized to estimate the global atmospheric light intensity A. The atmospheric 
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light is the background light source that affects the brightness of the whole scene, and it plays a key role in 

the haze scattering model. Based on the atmospheric scattering model, we can calculate the transmittance t 305 

for each pixel point in the image, and the value indicates the visibility of the pixel point, apply the formula: 

J(x)=I(x)-
A

t
+A (4) 

Where J denotes the image after defogging and I is the original input image. Through the de-fogging 

enhancement algorithm, the fog component in the image can be effectively eliminated, making the cloud 

and blue sky boundary more distinct, which is conducive to the subsequent generation of high-quality cloud 310 

coverage data.  

In image enhancement algorithms, the atmospheric light value A directly affects the intensity of defogging. 

Thanks to the powerful cloud classification network, we design an adaptive enhancement strategy after 

recognizing different cloud types.For thin cirrus, if the intensity is too strong, it may be filtered out, so we 

choose a smaller A value to retain the details; while for sunny, cumulus and stratocumulus, which are 315 

thicker, we can choose a larger A value to enhance the de-fogging effect, remove the overexposed regions 

near the sun and at the edges, and obtain a more uniform sky distribution. We focus on analyzing the 

processing effect of two types of error-prone regions, firstly, the region around the sun is often misjudged 

due to overexposure, and secondly, the white light at the edge of the sky; in order to improve the 

segmentation quality, we adopt additional processing for these two regions, for the region around the sun, 320 

the algorithm can judge the sun position by identifying the position of the mask and thus the sun position, 

and the enhanced defogging algorithm is applied to the circular region to achieve the reduction of white 

light For the sky edge region, after eliminating the edge features, we design a circular region at the edge of 

the sky, and use the enhanced defogging algorithm for this region to reduce the effect of white light on the 

recognition. After the above optimization design, the misjudgment problem around the sun and the edge is 325 

effectively controlled, and the cloud segmentation quality is improved. 

3.4. Finite Sector Segmentation and K-means Clustering 

Based on the cloud type classification results obtained, we propose an adaptive image segmentation method 

for cloud morphology as shown in Figure 4. Different cloud types exhibit different shapes and require 

customized segmentation strategies to get the best results. We use an adaptive image segmentation method 330 

based on cloud types to evenly divide the circular region into multiple sectors by taking the geometric 

center of the full-sky image as the center of the circle, and the distance from the center to the edge of the 

circular sky as the radius of the circle to meet the characteristics of different cloud shapes. Cirrus are 

difficult to identify due to their weak shape and similar color to the sky. In order to capture the cirrus 

features more finely, we segment the all-sky image in which they are located into 72 sectors, and more 335 

sectors help to extract more subtle color and texture variations, which enhances the accuracy of the 

clustering algorithm in distinguishing cirrus from other celestial elements. The clear sky is divided into 4 

sectors to satisfy the need for effective differentiation due to the small number of elements in the image, 
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which also avoids unnecessary subdivision, reduces computational complexity, and improves the 

algorithm's execution efficiency and classification accuracy in simple scenarios. Cumulus possess obvious 340 

edges, but may cause visual interference due to uneven illumination. In order to balance the capture of edge 

information and the consistent processing of the internal structure, we divide it into 36 sectors, which 

ensures the recognition of the cloud boundary and adapts to the possible lighting differences inside the 

cumulus. The constituent elements in the layer cloud image are relatively few and uniform, so the same 

division into 4 sectors can satisfy the requirements of cluster analysis, which retains the necessary spatial 345 

resolution and avoids noise and redundant computation due to too many sectors. This adaptive 

segmentation strategy is based on the understanding of the four types of cloud morphological features and 

determined by a large number of actual test results, which significantly improves the accuracy of the 

clustering algorithm in recognizing the amount of clouds. 

cumulus

YOLOv8

(b)(a) (c) (d)

 350 

Figure 4. Adaptive image segmentation process. (a) Image after preprocessing; (b) Sector segmentation based on 

cloud type; (c) Sector K-means clustering recognition; (d) Cloud recognition result. 

Upon obtaining the images segmented adaptively by cloud type, we conducted multiple experiments to 

determine the optimal value of K for K-means clustering within each sectorial region. The specific 

selection process is outlined as follows: (1) Initial setting of K values based on the complexity of the 355 

observational data and the expected number of clustering categories (such as sky, clouds, and background). 

(2) Implementation of the K-means algorithm and observation of clustering results. Adjustment of K values 

based on the actual clustering effect until the clustering results stabilize, i.e., the clustering centers no 

longer exhibit significant changes between adjacent iterations (Dinc et al., 2022). (3) Evaluation of 

clustering results under different K values using clustering validity indices such as silhouette coefficient, 360 

Calinski-Harabasz index, and Davies-Bouldin index. Selection of the K value that optimizes the evaluation 

indices. (4) Rationality check of the selected K value by combining meteorological expertise and practical 

experience to ensure consistency with meteorological principles and actual observation conditions. In this 

study, for the task of quantifying and classifying cloud amounts in the Yangbajing area's full-sky images, 

we chose K = 5 as the hyperparameter for the clustering algorithm. This decision was reached based on a 365 

series of rigorous experimental analyses and practical effectiveness evaluations. Through extensive trial 

and error and cross-validation with a large sample dataset, we found that when K is set to 5, the clustering 

results can effectively distinguish between clear blue skies, white cloud layers, transitional zones, and 

potential ground or near-ground obstructions, thereby achieving the desired segmentation effect. We also 

drew upon prior knowledge in the field regarding cloud amount and cloud feature recognition and 370 
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combined it with on-site observational data to ensure that the selected K value aligns with actual physical 

phenomena. Given the complex and varied lighting conditions in the Yangbajing area, this clustering 

strategy maintains high robustness and identification efficiency under various lighting dynamics. 

In traditional cloud segmentation, the Normalized Red/Blue Ratio (NRBR) threshold segmentation method 

exhibits certain shortcomings. Firstly, it struggles to effectively distinguish intense white light around the 375 

sun, often misclassifying these overexposed areas as cloud regions. Secondly, it fails to properly handle the 

bottom of thick cloud layers, where the regions appear dark due to the lack of penetrating light and may be 

erroneously classified as clear sky areas. Both misclassifications stem from the NRBR threshold 

segmentation method overly relying on RGB color features without comprehensive consideration of 

lighting conditions. When atypical lighting distributions occur, accurate cloud and sky differentiation 380 

becomes challenging based solely on red/blue ratio values. Therefore, after obtaining the initial cloud 

segmentation results, we propose a mask-based refined segmentation method to further enhance the 

effectiveness. The specific approach involves first extracting the predicted sky regions from the 

aforementioned segmentation results, using them as a mask template. Subsequently, each sector undergoes 

k-means clustering to identify blue sky and white clouds, restricting the region after concatenating sectors 385 

within the mask-defined blue sky template. This process yields more nuanced identification results. By 

conducting secondary segmentation only on key areas and leveraging the results from adaptive k-means 

extraction, a finer segmentation is achieved. Ultimately, building upon the initial segmentation, this 

approach significantly improves potential misclassifications at the cloud edges, generating more accurate 

final cloud detection results. This design, guided by prior masks for localized refinement, effectively 390 

enhances the quality of cloud segmentation. 

4 Results 

4.1. Cloud Classification Results  

This study constructs a dataset based on four dominant types of cloud images collected from the 

Yangbaqing station in Tibet and employs the YOLOv8 deep learning model for cloud classification. To 395 

quantitatively assess the training effectiveness of the YOLOv8 cloud classification model, we record the 

values of the loss function and training accuracy at different training epochs, as depicted in Figures 5a. 

With the increase in training iterations, the model's loss value consistently decreases, with the training set 

loss decreasing from around 0.4 to near 0. The model gradually achieves improved predictive performance, 

reducing the gap between predicted values and true labels. Simultaneously, we analyze the classification 400 

accuracy curve during the model training process. As seen in Figures 5b, the model's Top-1 Accuracy rises 

from 0.5 to around 0.98. Through continuous training optimization, the model demonstrates sustained 

improvement in accuracy for distinguishing the four cloud types, progressively acquiring the ability to 

effectively discriminate the visual features of different cloud formations. 
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 405 
                                         (a)                                                                                    (b) 

Figure 5. YOLOv8 classification model training results. (a) Loss curve for network training; (b) Top-1 network 

training accuracy curve of the training set. 

After training completion on the self-built dataset, we tested the model's classification performance. These 

results cover four major cloud types, including Cirrus, Clear sky, Cumulus, and Stratus. Table 2 410 

demonstrates the model's precision, recall, and F1 scores. As shown in the table, on the Self-built Dataset, 

the model delivers fairly steady classification performance for indistinctly bounded cumulus, maintaining 

relatively high precision, recall, and F1 scores of over 95%, indicating robustness and generalization 

capability of the model in categorizing cumulus. The model achieves outstanding classification efficacy on 

clear days, with all metrics reaching or approximating 100%, reflecting powerful generalization aptitude in 415 

recognizing clear conditions. The Cumulus type also sees all classification performance parameters 

surpassing 96%, denoting high classification accuracy. The Stratus category manifests extremely excellent 

outcomes on the Self-built Dataset across all metrics of 100%, implying that the model classifies Stratus 

very accurately with stable performance unaffected by dataset variations, successfully learning effective 

visual traits to discriminate the Stratus type. 420 

When verifying our model's classification performance, we opted to validate on the public TCI Dataset to 

ensure extensive applicability of our model. Firstly, stringent quality control was imposed on the TCI 

dataset, removing images of inferior quality and ambiguous categorization. Eventually 900 high quality 

images per cloud type - Cirrus, Clear sky, Cumulus and Stratus - were screened, totaling 3600 images. 

Adopting identical training parameters as the self-built dataset, we trained the public dataset and validated 425 

performance on the test set containing 200 images per cloud type - Cirrus, Clear sky, Cumulus and Stratus - 

subsequently computing precision, recall and F1 scores for the model's classifications as depicted in Table 

2. Evident from the table, the model demonstrates outstanding performance on the public TCI dataset, 

attaining commendable classification outcomes. Notably, for the Clear sky and Stratus types, the model 

approximates or achieves 100% accuracy across multiple evaluation metrics. 430 

Compared to related research utilizing the bag of micro-structures (BoMS) approach for cloud type 

identification on the TCI dataset which encompassed five cloud types and attained an average accuracy of 
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93.80% after excluding mixed types (Li et al., 2016), our model realizes a higher average accuracy of 98.31% 

under the same assessment criteria. This further exhibits the superiority of our model architecture over 

preceding techniques, possessing more potent classification capability and performance. These results 435 

signify that our model framework not only manifests stellar performance on the self-built dataset, but can 

also maintain lofty competency with robustness and generalization strengths on public data. 

Table 2. Performance comparison of cloud type classification and recognition: precision, recall and F1 score of 

public data sets and self-built data sets. 

 Self-built dataset Public cloud dataset 

Cloud Type 

 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

BoMS_Precision 

(%) 

Cirrus 95.45 98.00 96.71 94.71 98.50 96.57 87.20 

Clear sky 100.00 98.67 99.33 100.00 98.50 99.24 99.50 

Cumulus 97.30 96.00 96.65 98.52 100.00 99.25 92.00 

Stratus 100.00 100.00 100.00 100.00 100.00 100.00 96.50 

Average 98.19 98.17 98.17 98.31 99.25 98.77 93.80 

 440 

On the four-type weather test set, five randomly selected images from each type were tested. As Figure 6 

shows, all images obtained accurate category labels with confidence scores of 1.00, again validating the 

reliability of the training results in Table 2. Through training, the model has acquired the capability to 

discern different cloud morphologies based on visual characteristics like shape, boundary and thickness to 

generate cloud type classification outcomes. In summary, the model can not only effectively tackle various 445 

challenges in cloud classification tasks but also delivers consistent performance across cloud types on 

validation and test sets. The robust overall performance provides a reliable cloud classification tool for 

practical applications. 
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Figure 6. Categorization effects of the four cloud dominant types. 450 

To further validate the model's discrimination of different cloud types, we computed the average 

probability density functions of normalized red-blue ratio (NRBR) distributions for 1000 RGB images per 

cloud dataset. Cloud image samples were then randomly drawn from each category and their NRBR 

distributions derived. Finally, the Kullback–Leibler (KL) divergences between the sample distributions and 

corresponding category averages were calculated. As Table 3 shows, the KL divergence between a sample 455 

and its ground truth category is markedly lower than divergences to other categories. For instance, a clear 

sky sample has an average KL divergence of 0.0357 to the clear sky category, but 11.2321 to the stratus 

category. This signifies that the NRBR distribution of the clear sky sample identified by YOLOv8 aligns 

closely with the true category average, with similar KL divergence relationships holding for other cloud 

type samples. It verifies that the model can effectively discriminate the NRBR traits of different cloud types 460 

to ultimately yield accurate cloud classification outcomes.  
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Table 3. Verification of classification results by KL divergence. NRBR mean image: horizontal axis is 

Normalised RedBlue Ratio, vertical axis is probability density. 

StratusCumulusClear SkyCirrusNRBR Mean

KL

Isolated     dispersion

example

5.27980.20792.15330.0623
Cirrus-

997

11.23211.04830.03571.1152
Clear Sky-

50

5.26000.09782.47380.6723
Cumulus-

80

0.02950.89727.47352.3976
Stratus-

148

 

4.2. Cloud Recognition Effect 465 

To improve the accuracy of subsequent cloud quantification, we first performed pre-processing 

enhancement on the whole sky images. However, considering different cloud types are impacted differently 

by illumination and haze, we designed an adaptive image enhancement strategy: applying lower intensity 

for cirrus to preserve more edge details, while stronger intensity for other cloud types to eliminate 

overexposed areas. As shown in Figures 7a and 7b, this image enhancement algorithm makes the 470 

boundaries between clouds and blue sky more pronounced, with clearer ground objects and richer detail 

features. 

 
                              (a)                                                              (b) 

Figure 7. Comparison of image preprocessing effects. (a) Original image; (b) Image enhancement result. 475 
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This study employs an adaptive finite sector segmentation strategy for feature extraction. For stratus and 

clear sky with distinct boundaries, just a few sectors are sufficient to accurately capture their traits. In 

contrast, more sectors are utilized for the indistinct boundary cirrus and cumulus to enable more delicate 

partitioning that precisely seizes cloud edges. By further leveraging the k-means algorithm, we divide each 

sector region into three classes - blue sky, cloud and background. Compared to conventional holistic NRBR 480 

threshold segmentation segmentation, the segmentation tailored to cloud types has significantly better 

adaptivity and partitioning outcomes. As depicted in Figure 8, the finite sector segmentation and k-means 

clustering achieve remarkable results in three challenging scenarios: (1) The bottom of thick cloud layers 

that are prone to misjudgment as blue sky by traditional methods; (2) The overexposed vicinity of the sun 

where RGB values resemble clouds, potentially causing some blue sky around the sun to be wrongly 485 

judged as white clouds by conventional techniques; (3) Thin edge areas of cloud layers that are difficult to 

accurately recognize by standard NRBR threshold segmentation, leading to deficient cloud quantification. 

 
(a)                                       (b)                                       (c)                                      (d) 

 490 
(e)                                        (f)                                     (g)                                       (h) 

Figure 8. Comparison of sector segmentation effects. (a/e) Cropped original image; (b/f) Adaptive enhancement 

processing results; (c/g) Traditional NRBR threshold segmentation recognition processing results; (d/h) Finite 

sector segmentation k-means clustering results. 

Through adaptive finite sector segmentation, we divide the original image into multiple sectoral regions, 495 

reducing the complexity of directly processing the entire image. This process enables the k-means 

clustering method to more effectively identify clouds in each sector, thereby significantly improving the 

accuracy of detection. This forms the key strategy for our success in cloud amount calculation. As 

illustrated in Figure 9, the curve charts the cloud amount information at 15:00 every afternoon in June 2020 

collected from valid images in Yangbajing area, comparing and analyzing the differences in cloud amount 500 

identification between the traditional NRBR threshold segmentation method and the image enhancement 

technique. Over the course of this month, after image enhancement, the cloud recognition effect has 

conspicuous improvements for whole sky images with cloud cover below 80%. As denoted by the marked 

points in Figure 9, at 15:00 on June 17th, the cloud amount calculated from the enhanced cloud map has an 
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approximated 40% higher precision than that obtained using the traditional NRBR threshold segmentation 505 

method. This is primarily attributed to NRBR threshold segmentation method solely relying on color 

features, whereas the finite sector method synthesizes multiple features including shape and position for 

comprehensive judgment, hence possessing superior recognition effects on the overexposed areas 

surrounding the sun. Similarly, after image enhancement processing, as shown in Figures 8d and 8h, the 

cloud recognition effect at the bottom of thicker cloud layers and overexposed areas around the sun was 510 

significantly improved compared to Figures 8c and 8g. 

 

Figure 9. Comparison of cloud cover between the traditional NRBR threshold segmentation method and the 

finite sector partitioned K-means clustering method in June 2020. 

4.3. Spatial and Temporal Analysis of Cloud Types 515 

To gain deeper insight into the seasonal variations and diurnal patterns of cloud types in the Yangbajing 

area, Tibet, more detailed classification statistics on the 2020 annual daylight data are conducted. As 

depicted in Figure 10, stratus occurred most frequently throughout the year, accumulating 6622 times and 

accounting for 30% of total cloud occurrences. Clear sky and cumulus took the second and third places, 

appearing 5447 and 5365 times respectively, both comprising around 24%. Cirrus occurred least, at 5001 520 

times making up 22%. This aligns with the climate characteristics of the Qinghai-Tibet Plateau. Stratus 

primarily form from atmospheric water vapor condensation, facilitated by the high altitude and greater 

atmospheric thickness in Tibet. Cirrus often develop at relatively lower altitudes and more humid climatic 

conditions (Monier et al., 2006), while the dry climate on the Tibetan plateau is less conducive to their 

formation. Analyzing by seasons, stratus appeared most in spring (March-May), occurring 2678 times and 525 

occupying 42.9% of all daytime cloud types in the season. Cumulus occurred most frequently in summer 

(June-August), reaching 3838 times and taking up 46.5% of total daytime cloud types. Clear sky dominated 

in autumn (September-November), appearing 2249 times and accounting for 42.8% of the daytime varieties. 

Winter (December-February) was also predominated by clear sky, which occurred 2150 times constituting 
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45.7% of the daytime population. The distinct seasonal shifts in cloud types across Tibet match its climate 530 

patterns - increased evaporation in spring facilitates thick cloud buildup; intense convection readily forms 

cumulus in summer (Chen et al., 2012), aligning with the greater summer precipitation; while the relatively 

dry, less snowy winters see more clear sky days. Analyzing diurnal fluctuations reveals that stratus and 

cumulus concentrate in afternoon hours, peaking at 17:00 and 18:00 for stratus (761 and 756 times 

respectively), and 13:00, 14:00 and 15:00 for cumulus (665, 707 and 684 times), potentially related to 535 

convective activity strengthened by afternoon surface heating. Clear sky occurrences are mainly distributed 

in the morning at 9:00, 10:00 and 11:00 (740, 812 and 743 times). Cirrus vary more evenly throughout the 

day. Dividing the daylight hours of 7-20 into 7 periods, we statistically determine the peak timing of 

different cloud types: (1) Stratus peak at 17-18:00, occupying 39.1% of the total occurrences. (2) Cumulus 

peak at 13-14:00, taking up 34.2%. (3) Clear sky peaks at 9-10:00, constituting 40.6%. (4) Cirrus peak at 540 

17-18:00, comprising 24.9%. The common afternoon emergence of cumulus may relate to intensified 

convective motions caused by daytime solar heating of the surface. Because the early air is less volatile and 

has a lower water vapor content than other times of the day, clear skies are more common in the morning. 

Generally speaking, the development of cirrus requires relatively humid circumstances. Late afternoon 

solar radiation warms the surface and causes the air to rise, which aids in the vertical movement that carries 545 

water vapor to higher altitudes where it condenses as cirrus. 

 
Figure 10. Yangbajing Region's Monthly Distribution Trend of Four Types of Clouds for 2020.  
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5 Discussion 

5.1 Comparison of Classification Performance 550 

Cloud detection and identification has long been a research focus and challenge in meteorology and remote 

sensing. Current mainstream ground-based cloud detection methods can be summarized into two categories 

– traditional image processing aproaches and deep learning-based techniques (Hensel et al., 2021). 

Traditional methods like threshold segmentation and texture analysis rely on manually extracted features 

with weaker adaptability to atypical cases, whereas deep learning can automatically learn features for 555 

superior performance. This study belongs to the latter, utilizing the YOLOv8 model for cloud 

categorization to capitalize on deep learning’s visual feature extraction strengths. Compared to other deep 

learning based cloud detection studies, the innovations of this research are three-fold: 1) An adaptive 

segmentation strategy tailored to different cloud types was designed, with segmentation parameters set 

according to cloud morphology to extract representative traits, improving partitioning accuracy. 2) 560 

Adaptive image enhancement algorithms were introduced, which markedly improved detection in regions 

with strong illumination impact like solar vicinity over conventional NRBR threshold segmentation. 3) 

Multi-level refinement was adopted to enhance capturing of cloud edges and bottoms. These aspects 

enhanced adaptivity to various cloud types under complex illumination. Limitations of this study include: 1) 

Small dataset scale containing only Yangbajing area samples due to geographic and instrumentation 565 

constraints; 2) Sophisticated model training and tuning demanding substantial computational resources; 3) 

Room for further improving adaptability to overexposed regions. Future work may address these 

deficiencies via enlarged samples, cloud computing resources, and more powerful models. 

In the context of comparing YOLOv8 model against BoMS method on the TCI dataset for cloud type 

classification, while this study has indeed exhibited superior performance attributes, we acknowledge that 570 

novel image classification algorithms are consistently emerging. In recent scholarly work (Gyasi and 

Swarnalatha, 2023), a streamlined convolutional neural network (CNN) built upon MobileNet architecture 

has achieved substantial enhancements, reaching an overall accuracy as high as 97.45% on analogous 

public datasets. Similarly, other cloud classification networks such as CloudNet (Zhang et al., 2018), 

Transformer-based models (Li et al., 2022b), and Combined convolutional network (Zhu et al., 2022) have 575 

also demonstrated commendable classification efficacy. However, due to the lack of direct comparative 

empirical evaluations between these latest algorithms and our proposed YOLOv8 model within the current 

paper, it is not feasible to conduct a quantitative juxtaposition with these advancements. Despite this 

limitation, considering the cutting-edge achievements reported in the literature and the swift pace of 

technological progress within deep learning, future research endeavors will include meticulous comparative 580 

analyses of these state-of-the-art methods. This strategic move aims at rigorously validating and 

augmenting the robustness and generalization capabilities of our model under intricate meteorological 

circumstances, ensuring its continued competitiveness at the vanguard of research into cloud quantification. 

Ultimately, this drive is directed towards refining our existing framework continually and furnishing 
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climate science research with increasingly accurate and efficient solutions for cloud measurement tasks. 585 

Table 4 shows the comparison of our model with the most recent technical approaches in the literature. 

Table 4. Comparison of this study with the latest technological approaches in the literature. 

Article Dataset Year Model/Method Accuracy(%) 

Li et al. 

(2016) 
TCI 2016 BoMS 93.80 

Zhang et al. 

(2018) 
CCSN 2018 CloudNet 88.0 

Li et al. 

(2022) 

ASGC 

CCSN 

GCD 

2022 Transformer 

94.2 

92.7 

93.5 

Zhu et al. 

(2022) 

MGCD 

NRELCD 
2022 

Combined 

convolutional network 

90.0 

95.6 

Fabel et al. 

(2022) 

All sky images 

(Owned) 
2022 

Self-supervised 

learning 
95.2 

Gyasi et al. 

(2023) 
CCSN 2023 Cloud-MobiNet 97.45 

Ours 
All sky images 

TCI 
2023 YOLOv8 

98.19 

98.31 

 

5.2 Model scalability 

Although only validated at the Yangbajing Comprehensive Atmospheric Observatory in Tibet, this 590 

approach exhibits considerable scalability and versatility. Firstly, the constructed end-to-end recognition 

framework has generalization capability – with appropriate fine-tuning, it can adapt to cloud morphological 

traits in other regions. Secondly, the adaptive image enhancement strategy functions irrespective of specific 

lighting conditions hence widely applicable to diverse environments; the finite sector segmentation with k-

means clustering philosophy can also generalize to cloud quantification at different sites – regions with 595 

more prevalent hazes would benefit well. The modularized design ensures convenient upgradability of 

individual components. Therefore, this proposed technique can be readily transferred within the cloud 

monitoring network to enable coordinated high-precision multi-regional recognition, providing a referential 

paradigm for cloud detection tasks under other challenging illumination circumstances. 

Due to the limitations of single-site data in revealing the pattern of cloud cover change in a larger region, 600 

we decided to incorporate more data from meteorological stations with different geographic locations and 

climatic conditions in our future studies to enhance the model's generalizability to a wide range of 

geographic environments and climatic scenarios. We plan to build a dataset containing multi-site, cross-

geographic cloud amount and cloud type data. By integrating and comparing data from different locations, 

we can not only validate and optimize the currently proposed cloud quantification method, but also assess 605 
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its applicability and accuracy in different climatic contexts. The adaptive image enhancement strategy does 

not depend on specific lighting conditions and can be widely applied to various complex environments; the 

design idea of finite element segmentation combined with K-mean clustering can also be generalized to 

cloud computation in different regions, for example, inland regions where haze occurs more often can also 

be well applied. The modular design of this framework makes each component individually optimized and 610 

upgraded, which is very flexible. 

In this study, although the example validation is only carried out at the Yangbajing station in Tibet, the 

method is highly scalable and universal, and the constructed end-to-end cloud recognition framework has 

the ability of generalization, and can be adapted to the cloud morphology characteristics of other 

geographic locations after appropriate model fine-tuning in the following ways: 615 

(a) The climate characteristics of weather stations in different geographic locations are very different, such 

as high humidity in the tropics, extreme low temperature in the polar regions, and complex terrain in 

mountainous regions, for which the image preprocessing module needs to be adjusted as follows, (1) 

Climate-adapted image preprocessing: introduce region-specific light models and adjust the atmospheric 

light parameter A value in the image enhancement algorithm to adapt to the changes in the light under 620 

different climatic conditions, e.g., for the high latitude regions, the processing intensity of the defogging 

algorithm is strengthened to cope with the frequent fog and low-light conditions in winter; (2) terrain 

influence compensation: for mountainous or urban environments, the original zenith angle cropping range 

is modified to ensure that cloud identification is not interfered by surrounding environmental factors. 

(b) Differences in all-sky camera models, resolutions and installation locations used by weather stations 625 

require the following adjustments to the reading module, (1) Modify the lens parameters in the algorithm 

configuration file, such as the image cropping range, the image suffix (e.g., jpg, png, etc.), and the image 

resolution standard. (2) Adjust the common data interface to ensure that the system can seamlessly access 

different brands and models of cloud cameras and data recording equipment to achieve automatic loading 

and standardized processing of data. 630 

(c) Considering the specific needs of different weather stations, the system can provide highly personalized 

configuration options: (1) Parameter number configuration template: Provide preset parameter templates to 

set the optimal identification parameters and algorithm configurations for different climatic regions (e.g., 

tropical rainforests, deserts, and poles) and the frequency of occurrence of cloud types. (2) Dynamic 

adjustment mechanism: Dynamically adjust the algorithm parameters, such as the K value of K-Means 635 

clustering and the threshold value of cloud type identification, according to the system operation status and 

identification accuracy, in order to optimize the identification effect. 

For overexposed regions: (1) plan to incorporate additional meteorological data, such as temperature, 

humidity, and wind speed, into our predictive models by combining these parameters with image data to 

refine our understanding of cloud formation dynamics and improve model accuracy under variable 640 

atmospheric conditions; (2) explore the temporal evolution of cloud patterns and their response to global 

warming trends, analyze historical and projected climate data to quantify how changes in temperature 



24 

 

gradients, precipitation patterns, and atmospheric stability affect cloud morphology and distribution, and to 

develop models that can predict long-term changes in cloudiness, thereby contributing to climate prediction 

models; (3) To address the challenge of overexposure, we plan to investigate and implement state-of-the-art 645 

exposure correction algorithms, such as adaptive histogram equalization or high dynamic range (HDR) 

imaging, that can mitigate the effects of overexposure and thereby improve the accuracy of models under 

bright conditions. effects, thereby improving the model's ability to accurately identify cloud features under 

bright illumination conditions; (4) combining ground-based imagery with satellite data and potentially other 

remote sensing techniques can provide complementary perspectives on cloud cover and dynamics, and 650 

integrating these different data sources may enhance our ability to comprehensively model cloud systems, 

especially in regions where ground-based observations alone may not be sufficient. 

5.3 Discussion on Clouds and Solar Radiation 

An in-depth exploration of the relationship between cloud cover and solar radiation is a crucial aspect of 

our research. Different types of clouds, such as cirrus, cumulus, and stratus, have varying impacts on solar 655 

radiation. Generally, clouds absorb a portion of shortwave radiation, scatter another portion, and reflect the 

rest back into space, thereby altering the amount of solar radiation reaching the Earth's surface. Cirrus, due 

to their high altitude and composition of ice crystals, exhibit strong scattering of shortwave radiation and 

also significantly affect the emission and absorption of longwave radiation (Marsing et al., 2023; Shi and 

Liu, 2016). Cumulus, with their rough structure, contribute to strong scattering and some degree of 660 

absorption of shortwave radiation. Stratus typically form a thin and continuous layer, resulting in uniform 

attenuation of shortwave radiation. Rocha and Santos utilized machine learning techniques such as 

XGBoost and CNN-LSTM to process and analyze a large volume of image data provided by the GOES-16 

satellite. They constructed a model capable of simulating global horizontal and direct vertical solar 

radiation intensity, capturing the complex effects of different cloud layers on the solar radiation field across 665 

various time and spatial scales. By learning and analyzing cloud features in satellite image data, researchers 

were able to more accurately estimate the impact of different cloud layers on solar radiation energy transfer 

at specific times and locations, thus revealing how clouds influence Earth's energy balance through 

radiation characteristics (Rocha and Santos, 2022). In a study by Matsunobu et al, CNN technology was 

employed to unveil unique visual features of cloud layers in remote sensing images. These features can 670 

effectively distinguish different cloud cover levels and classify the nature of cloud layers (Matsunobu et al., 

2021). By identifying and quantifying the presence and distribution of clouds, it is possible to estimate the 

role of clouds in reflecting shortwave radiation and absorbing and re-emitting longwave radiation, 

contributing to an understanding of the role clouds play in the global climate system. 

6 Conclusions 675 
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This research proposes a novel deep learning based whole sky image cloud detection solution, constructing 

a 4000-image multi-cloud dataset spanning cirrus, clear sky, cumulus and stratus categories that achieved 

markedly improved recognition and quantification outcomes in Tibet’s Yangbajing area. Specifically, this 

study constructs an end-to-end cloud recognition framework. First, different cloud types are accurately 

determined using the YOLOv8 model with an average classification accuracy of more than 98%, and an 680 

average classification accuracy of more than 98% is also achieved on the TCI public dataset. On the basis 

of cloud classification, an adaptive segmentation strategy is designed for different cloud shapes, which 

significantly improves the segmentation accuracy, especially for convolutional clouds with fuzzy 

boundaries. Moreover, adaptive image enhancement algorithms were introduced to significantly improve 

detection in illumination-challenging areas around the sun. Finally, multi-level refinement modules based 685 

on finite sector techniques further upgraded judgment precision of cloud edges and details. Validation on 

the 2020 annual Yangbajing dataset proves stratus constitute the predominant type, appearing in 30% of 

daytime cloud images, delivering valuable data support for regional climate studies. In conclusion, this 

framework significantly raises the automation level of ground-based cloud quantification to create a strong 

technological foundation for research on climate change. It does this by integrating various modules that 690 

cover classification, adaptive segmentation, and image enhancement. Additionally, it offers a referable 

paradigm for other cloud recognition tasks under complex lighting environments. 
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