
Response to Reviewer 2 Comments 
Thank you for your letter commenting on our manuscript entitled “Innovative Cloud 

Quantification: Deep Learning Classification and Finite Sector Clustering for Ground-

Based All Sky Imaging” (MS No.: egusphere-2024-678).  These comments are valuable 

and very helpful for the revision and improvement of our paper. We have carefully studied 

and made corrections, and hope to get your approval. The main changes of the paper and 

the responses to the review comments are as follows. 

 

Comments 1: The review of existing traditional cloud detection methods is not comprehensive 
enough, and a more systematic evaluation of their strengths and limitations is needed. 

 
Response 1: Thank you very much for your valuable suggestions on the review section 
of traditional cloud detection methods. In the original manuscript, we indeed did not 
provide a comprehensive and systematic assessment of the existing traditional cloud 
detection methods, especially failing to fully elaborate on the advantages and limitations 
of each method. To improve this, we will deepen and expand this section in the revised 
manuscript to ensure that readers can gain a more complete and in-depth 
understanding. 

In the "Introduction" chapter of the new revised version, we will introduce the application 
of traditional image processing techniques in cloud detection, including threshold segmentation 
and texture analysis, compare their performance in different scenarios, and analyze their 
adaptations in dealing with complex lighting conditions, cloud diversity, and ground object 
occlusion, etc., and analyze their adaptability and limitations when dealing with complex lighting 
conditions, cloud type diversity, and ground occlusion. At the same time, we will cite more related 
research literature to reflect the comprehensiveness and objectivity of the evaluation of existing 
methods. 

In addition, we will especially emphasize the characteristics of traditional methods in data 
processing and real-time, such as the advantages of cloud radar in vertical structure detection 
and satellite remote sensing in large-area coverage, while pointing out their deficiencies in 
resolution, local small-scale cloud detection, and light sensitivity. Through such comparative 
analysis, we will be able to highlight more clearly the innovation and necessity of adopting deep 
learning and adaptive segmentation strategies in this research. 

Once again, we thank you for your professional guidance in this research direction, 
and we will fully incorporate your comments in the upcoming revisions, with a view to 
making this paper a stronger demonstration of the advancement and practicability of 
our proposed method based on evaluating and comparing traditional cloud detection 
methods. 

 
 



Comments 2: Although data from the Tibetan Plateau site was used, the spatial 
representativeness is still limited due to the use of a single site. Future work should consider 
incorporating data from multiple regions to enhance the model's broad applicability. 

 
Response 2: Dear reviewer, you have pointed out that this study only uses data from 
the Yangbajing station on the Tibetan Plateau, so there are some limitations in spatial 
representativeness, which is a direction we should focus on when further improving and 
expanding our research work in the future. We also recognize the limitations of single-
site data in revealing the pattern of cloud cover change over a larger region, and we have 
decided to incorporate more data from meteorological stations with different 
geographic locations and climatic conditions into our future studies to enhance the 
generalizability of the model to a wide range of geographic environments and climatic 
scenarios. We plan to build a dataset containing multi-site, cross-geographic cloud amount and 
cloud type data. By integrating and comparing data from different locations, we can not only 
validate and optimize the currently proposed cloud quantification method, but also assess its 
applicability and accuracy in different climatic contexts. 

In the next iteration of the study, we intend to actively collaborate with other 
meteorological observatories to share and integrate all-sky imaging data from multiple 
meteorological stations around the globe, with the aim of creating a large dataset that is 
more reflective of the diversity of global climatic features and cloud variability. The 
purpose of doing so is to further enhance the value and credibility of the application of 
automatic cloud identification and quantification techniques in global climate research. 

We thank you again for your review and guidance, and we have made substantial 
improvements in the "Discussion" section of the revised manuscript in response to this 
suggestion, and will fully reflect these improvements in future revisions of the paper. 

 
 

Comments 3: While the association between cloud amount and solar radiation is mentioned, no 
in-depth discussion is provided. It is recommended to further analyze the influence of different 
cloud types on solar radiation characteristics. 

 
Response 3: Your valuable suggestions on this study are sincerely appreciated. You have 
pointed out that although the correlation between cloudiness and solar radiation is 
mentioned in the paper, the extent to which the relationship between the two is explored 
in depth is not yet sufficient, in particular the lack of a specific analysis of the effect of 
different types of cloud cover on the solar radiation characteristics. We fully recognize 
your comments and set out for you in this response how we plan to improve this section. 

In the Discussion section of the revised manuscript, we plan to discuss the effects of different 
types of clouds on solar radiation characteristics, analyzing in detail how cirrus, cumulus, 
stratocumulus, and clear-sky conditions can alter the Earth's energy balance through their 
different absorption, scattering, and reflection characteristics of shortwave and longwave 
radiation. We will analyze a large amount of satellite image data to construct a solar radiation 
model using machine learning techniques such as XGBoost, CNN-LSTM, etc., in conjunction 
with the research results of Rocha and Santos (2022), in order to deeply investigate the 



mechanism of the various types of clouds affecting the solar radiation in the temporal and spatial 
dimensions. Meanwhile, the cloud detection technique proposed in this study is utilized to more 
precisely quantify the blocking and greenhouse effects of different types of clouds on solar 
radiation flux, especially how different types of clouds affect surface temperature and energy 
balance in different seasonal and regional contexts. In addition, we will draw on the research 
ideas of Matsunobu et al. (2021) to visualize the specific effects of different cloud amounts on the 
solar radiation balance by analyzing the unique visual characteristics of cloud cover in remote 
sensing images. 

We will practically implement your suggestions in the subsequent revisions to 
enhance the overall academic value and impact of the paper. 
 

 
Comments 4: Although the methodology is clearly presented, some details regarding equations, 
parameters, and symbols are not comprehensively explained, requiring further elaboration and 
clarification to ensure the reproducibility and transparency of the research work. Specifically:  
An explanation of the variables TP, FP, TN, and FN used in the evaluation metrics such as 
precision, recall, and F1-score, along with their calculation methods, should be provided to 
facilitate better understanding of the evaluation system.  

 
Response 4: Thank you very much for your valuable suggestions on the calculation 
methods of cloud classification performance evaluation metrics in this paper. Based on 
your review comments, we will further clearly explain the three core variables used in 
the evaluation metrics, TP, FP, and FN, as well as their specific calculation methods in 
the revised paper to enhance readers' understanding of the whole evaluation system. 

In the context of cloud classification tasks, we define the following: 
True Positive (TP): The actual number of positive samples correctly predicted by the model 

(i.e., cloud category), representing the number of true cloud images identified by the model. 
False Positive (FP): The number of samples incorrectly predicted as positive but actually 

belonging to the negative class (non-cloud category), indicating the number of cloud images 
erroneously classified by the model. 

False Negative (FN): The number of samples incorrectly predicted as negative but actually 
belonging to the positive class, representing the number of cloud images missed by the model. 

We have explained these concepts and their calculations in detail in the "Cloud 
Classification Evaluation Indicators" section of the revised draft so that readers can 
better grasp the performance evaluation criteria of the model in cloud classification 
tasks. 

 
 

Comments 5: Although the methodology is clearly presented, some details regarding equations, 
parameters, and symbols are not comprehensively explained, requiring further elaboration and 
clarification to ensure the reproducibility and transparency of the research work. Specifically:  
The details of the image enhancement algorithm for dehazing need to be thoroughly described, 
especially the processes for obtaining the key parameters, atmospheric light A and transmission 
rate t, to ensure the reproducibility of the image enhancement step. 



 
Response 5: Thank you for your attention and valuable suggestions on the details of 
image enhancement algorithm de-fogging in this paper. In the revised paper, we have 
fully responded to your request by describing in detail the key steps of the de-fogging 
process and the parameter acquisition method to ensure the reproducibility of the image 
enhancement session. Our image enhancement algorithm adopts the dark channel prior 
algorithm, and its main process is as follows: 

(a) Computing the dark channel image: For each pixel in the input image, the dark channel 
image is computed by selecting the minimum value among its RGB channels. The dark channel 
image reflects the minimum brightness within pixel regions, where low brightness regions 
typically correspond to areas containing haze, providing us with clues for estimating haze 
information. 

(b) Estimating the global atmospheric light A: The global atmospheric light intensity A is 
estimated using the minimum non-zero value in the dark channel image. Atmospheric light serves 
as the background light source that affects the overall scene brightness, playing a crucial role in 
the haze scattering model. 

(c) Obtaining the transmission rate t: Based on the atmospheric scattering model, the 
transmission rate t is calculated for each pixel in the image, representing the visibility of the pixel. 
The transmission rate reflects the extent of haze's impact on light propagation. 

(d) Applying the dehazing formula: The dehazed enhanced image J(x) = I(x) * (1 - A)t + A is 
applied, where J represents the dehazed image, and I is the original input image. Through this 
dehazing algorithm, haze in the image can be effectively removed, making cloud layers and the 
boundary of the blue sky more distinct, which is beneficial for generating high-quality cloud cover 
data. 

In particular, when dealing with different types of cloud layers, we have devised adaptive 
enhancement strategies for varying cloud thicknesses. For instance, for thin stratocumulus 
clouds, to avoid excessive enhancement and filter out cloud layer details, a smaller atmospheric 
light value A is chosen. In contrast, for thicker cumulus, stratocumulus, and clear sky images, a 
larger atmospheric light value A is used to enhance the removal of overexposed areas and achieve 
a more uniform sky distribution. 

Thank you again for your review and guidance, and we believe that the 
requirement of ensuring the reproducibility of the image enhancement steps has been 
fulfilled by the above detailed description. If necessary, we can also provide more 
detailed algorithm implementation steps and parameter adjustment basis for peer 
scholars' reference and verification. 

 
 

Comments 6: Although the methodology is clearly presented, some details regarding equations, 
parameters, and symbols are not comprehensively explained, requiring further elaboration and 
clarification to ensure the reproducibility and transparency of the research work. Specifically:  
The finite sector K-means clustering segmentation strategy employs different numbers of sectors 
for different cloud types, but the rationale and basis for this setting are not explained. The authors 
should clarify the reasons behind the chosen sector numbers for each cloud type. 

 



Response 6: Thank you for your valuable comments on the paper, particularly regarding 
the rationale and basis for setting different numbers of sectors for different cloud types 
in the finite sector K-means clustering segmentation strategy. Based on your feedback, 
we recognize the need for a more detailed explanation of this key design decision. In the 
study in this paper, we have designed different sectorization schemes for each of the 
four typical cloud patterns - cirrus, clear sky, cumulus, and stratocumulus. This 
differentiated setup is based on the following rationale: 

(a) Cirrus clouds, due to their weak shape and color similarity to the sky, pose significant 
identification challenges. To capture cirrus cloud features more finely, we segment the entire sky 
image into 72 sector areas. More sectors aid in extracting subtler color and texture variations, 
thereby enhancing the clustering algorithm's accuracy in distinguishing cirrus clouds from other 
celestial elements. 

(b) Clear sky images, containing fewer elements, require only 4 sectors for effective 
differentiation. This avoids unnecessary subdivisions, reducing computational complexity and 
enhancing algorithmic execution efficiency and classification accuracy in simple scenes. 

(c) Cumulus clouds exhibit distinct edges, but uneven lighting may cause visual 
disturbances. To balance edge information capture and internal structure consistency, we divide 
them into 36 sector areas. This ensures both cloud boundary recognition and adaptation to 
potential lighting differences within cumulus clouds. 

(d) Stratocumulus images consist of relatively few and evenly distributed elements. 
Therefore, they are also divided into 4 sectors to meet the clustering analysis requirements, 
maintaining necessary spatial resolution while avoiding noise and redundant calculations 
resulting from excessive sectorization. 

The selection of these sectors is based on a large amount of measured data and an in-depth 
understanding of cloud morphology, and we experimentally verified that these adaptive 
segmentation strategies significantly improve the accuracy of the clustering algorithm in 
identifying different types of cloud cover. In the "3.4 Finite Sector Segmentation and K-means 
Clustering" section of the revised paper, we will further clarify the theoretical basis for choosing 
a specific number of sectors for each cloud type, in order to let the readers understand and agree 
with our methodological foundation more comprehensively. We hope that readers will more fully 
understand and agree with the basis of our methodology. Thank you again for your review 
and suggestions, and we look forward to answering your questions and improving the 
quality and scientific value of the paper in the revised manuscript. 
 

 


