the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The Joint Effect of Mid-latitude Winds and the Westerly Quasi-Biennial Oscillation Phase on the Antarctic Stratospheric Polar Vortex and Ozone
Abstract. The quasi-biennial oscillation (QBO) dynamically interacts with the extratropical atmosphere. However, the relationship between the QBO in austral winter and the Antarctic stratospheric polar vortex in spring remains unclear. Here, we proposed a joint predictor involving the QBO for the Antarctic polar vortex and ozone in austral spring. During the westerly QBO phase (WQBO), positive anomalies in the zonal-mean zonal wind at 20° S−40° S in the upper stratosphere in July, named as the extratropical positive mode, can lead to a stronger Antarctic stratospheric polar vortex and lower ozone concentration in November, with correlations reaching 0.75 and 0.60. The mechanism is summarized as follows: the positive extratropical mode triggers a secondary circulation, which further alters the environmental condition for wave propagation in the stratosphere, pushing the positive anomalous zonal-mean zonal wind towards the pole. While during the easterly QBO phase (EQBO), the correlation of the extratropical mode and the strength of polar vortex is only 0.1. Due to stronger upward motions in the tropics, which opposes the secondary circulation caused by the extratropical mode, the EQBO cannot sustain the positive anomalous zonal-mean zonal wind until November. Our results highlight that the extratropical mode during WQBO could serve as a reliable predictor of the Antarctic stratospheric polar vortex and Antarctic ozone hole with a five-month time lag.
- Preprint
(2403 KB) - Metadata XML
- BibTeX
- EndNote
Status: open (until 27 Oct 2024)
-
RC1: 'Comment on egusphere-2024-2669', Anonymous Referee #1, 03 Oct 2024
reply
This paper establishes a robust connection between the QBO signal in winter and the stratospheric polar vortex in spring with a time-lag of five months. Their results indicated that zonal-mean zonal winds in the mid-latitude upper stratosphere play a crucial role in facilitating the tropic-polar connection in Southern Hemisphere. Specifically, during WQBO, the positive zonal-mean zonal winds anomalies at 20°S−40°S in the upper stratosphere in July can lead to a stronger Antarctic stratospheric polar vortex and lower ozone concentrations in November. This finding on predicting the Antarctic polar vortex and ozone in spring could be of broad interest, and the authors have presented a comprehensive body of work on it. Overall, this paper presents an interesting and convincing and well-written analysis. I think this study would be of interest to the readership Atmospheric Chemistry and Physics and recommend its publication after addressing the comments listed below.
General comments:
- In the introduction, the authors mentioned that most researches focus on the QBO-polar connection in the Northern Hemisphere (NH), where the upward-propagating planetary waves are strong. A more detailed explanation of the underlying mechanisms, along with a discussion of whether this connection in the NH is robust, would strengthen the introduction. I think this would offer readers more useful information about why there is less attention on the QBO-polar connection in the Southern Hemisphere.
- The study defines the QBO phase using zonal-mean zonal wind at 20 hPa. However, I noticed that most researches define the QBO as being in its easterly (westerly) phase using the zonal mean zonal wind at 50 hPa. It would be very instructive to show why defining the QBO phase at 20 hPa is reasonable for establishing the QBO-polar connection in the SH.
- The correlation between the winter extratropical mode and the polar vortex reaches 0.75 during WQBO. It seems the winter extratropical mode could serve as a good predictor of the spring Antarctic stratospheric polar vortex. Additionally, in Figure 3c, a positive extratropical mode in July usually corresponds to a strong polar vortex. Would it be possible that the author uses these relationships to ‘predict’ the strength of the Antarctic polar vortex from 1950 to 1979 using the ERA5 reanalysis?
Specific comments:
Line 25 Please specify how QBO modify the upward-propagating planetary waves.
Line 51 The QBO is only considered as a predictor of the Arctic stratospheric polar vortex and the near-surface climate in the NH. Please clarify this point.
Line 74 Monthly to monthly
Line 77 what is the vertical range being considered?
Line 96 Why not use the traditional refraction index to diagnose the wave-propagation in the stratosphere?
Line 102 The word size of the equation (7) is too large. Please correct.
Line 136 I note that in the CESM, the stratospheric conditions are nudged to the JRA-55 reanalysis. Why is the model forced using different types of reanalysis data?
Figure 1b It seems no apparent connection between the QBO in July and the Antarctic stratospheric polar vortex in austral spring. However, in the introduction, how previous studies have shown that the QBO can modulate the Antarctic polar vortex during austral spring?
Figures 3a and 3b The first paired mode explains 98.2% of the total variance. How is it possible for the first mode to account for nearly all of the total variance?
Figure 4 ‘horizontal component unit: 107 kg s−2; vertical component unit: 105 kg s−2’. Please correct the units.
Line 249 W* to w*
Line 306 ‘25 ensembles’ to 20 ensembles
Line 381 positive anomalies in the zonal-mean zonal wind à positive zonal-mean zonal wind anomalies
Line 400 ‘EQBO has a greater influence on the stratospheric polar vortex than the WQBO’ Please explain.
Citation: https://doi.org/10.5194/egusphere-2024-2669-RC1
Viewed
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
100 | 16 | 26 | 142 | 2 | 2 |
- HTML: 100
- PDF: 16
- XML: 26
- Total: 142
- BibTeX: 2
- EndNote: 2
Viewed (geographical distribution)
Country | # | Views | % |
---|
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1