Preprints
https://doi.org/10.5194/egusphere-2024-2249
https://doi.org/10.5194/egusphere-2024-2249
22 Aug 2024
 | 22 Aug 2024

Brief Communication: Monitoring snow depth using small, cheap, and easy-to-deploy snow-ground interface temperature sensors

Claire L. Bachand, Chen Wang, Baptiste Dafflon, Lauren Thomas, Ian Shirley, Sarah Maebius, Colleen M. Iversen, and Katrina E. Bennett

Abstract. Temporally continuous snow depth estimates are vital for understanding changing snow patterns and impacts on permafrost in the Arctic. We train a random forest machine learning model to predict snow depth from variability in snow-ground interface temperature. The model performed well on Alaska’s Seward Peninsula where it was trained, and at pan-Arctic evaluation sites (RMSE 0.15 m). Small temperature sensors are cheap and easy-to-deploy, so this technique enables spatially distributed and temporally continuous snowpack monitoring to an extent previously infeasible.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

28 Jan 2025
Brief communication: Monitoring snow depth using small, cheap, and easy-to-deploy snow–ground interface temperature sensors
Claire L. Bachand, Chen Wang, Baptiste Dafflon, Lauren N. Thomas, Ian Shirley, Sarah Maebius, Colleen M. Iversen, and Katrina E. Bennett
The Cryosphere, 19, 393–400, https://doi.org/10.5194/tc-19-393-2025,https://doi.org/10.5194/tc-19-393-2025, 2025
Short summary
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
Temporally continuous snow depth estimates are vital for understanding changing snow patterns...
Share