
Reviewer 2 

This brief communication presents an interesting approach to derive snow depth through 
temperature data recorded with easy-to-deploy sensors. Authors exploit machine learning 
models (random forest) to predict snow depth from snow-soil interface temperature. While the 
brief communication reads well and it is suitable to be published in The Cryosphere, some 
points must be addressed before publication. 

Thank you for your review of our manuscript. We appreciate the time and thought that you have 
put into your comments. 

First of all, the approach tested is trained in two sites and then evaluated in these two sites, but 
also in 10 other sites, what I might highlight in both the abstract and the introduction.  

Per your suggestion, we have highlighted this point in the introduction of the revised manuscript: 

P2-L[8]: “The model was trained at two small sites on the Seward Peninsula, Alaska, USA, 
and evaluated at ten sites distributed across Alaska, Colorado, and New Mexico (USA), 
Svalbard (Norway), and Siberia (Russia).” 

The abstract is limited to 100 words so we did not have space to highlight this point there. 

Through this test on model transferability it is clear that this approach works well in cold and 
high latitude areas, but in temperate areas where ROS events can occur or temperatures are 
milder, it fails.  This has to be highlighted in the abstract and the conclusions. 

We agree with your suggestion that the shortcomings of this approach should be highlighted 
earlier on. One thing to note is that some issues related to zero-curtains and warm, ephemeral 
snowpacks can largely be avoided when using temperature collected at the snow-ground 
interface. This is because below ground sensors are impacted by the soil freeze-thaw cycle, 
whereas the above ground sensors are not. In the abstract and introduction, we highlight results 
from RF-Seward, and therefore do not discuss the additional shortcomings of using RF-Below.  

We added text to the abstract to highlight the shortcomings of our model at temperate sites:  

P1-L[17] “It performed poorly at temperate sites with deeper snowpacks, partially due to 
training data limitations.” 

We were unable to mention the ROS limitation in the abstract because we are limited to 100 
words, but that shortcoming is highlighted in the conclusions.  The full description of 
shortcomings in the conclusion now reads:  

P9-L[19]: “While the model generally performed well, rain-on-snow events and zero-
curtain periods cause the model to erroneously predict snow accumulation events. 
Further, the model failed to replicate deep snow depths (greater than 1.5 m) observed in 
Colorado, USA. For optimal performance, the model should be applied to temperatures 



recorded at the snow-ground interface. Predictions made using temperatures recorded 
below the ground surface were impacted by varying soil types, vegetation properties, 
and latent heat processes.” 

More details about the training study sites (spatial distribution of DTP’s within the domain), 
image of the DTPs, and photograph of them would be desirable. I guess number of figures are 
limited, but some of these can be included in Figure 1. 

A map of DTP locations was provided in the supplemental material and is copied below for your 
convenience:  

 
“Figure A1. Locations of iButton Link Thermochron (DS1921G-F5#) temperature sensors 
deployed in (green circles) and outside (white circles) of shrubs over the 2022 – 2023 
snow season at a) Teller27 and c) Kougarok64. Background imagery from Esri, Garmin, 
USGS, Maxar, 2024, ArcGIS RGB Basemap. Locations of DTP temperature sensors that 
recorded both above and below ground temperature (yellow triangles) or only above 
ground temperature (red circles) over the 2021 – 2022 snow season at b) Teller27 and d) 
Kougarok64. Blue background imagery shows snow depth in April 2022 estimated using 
Light Detection and Ranging (LiDAR) data (Singhania et al., 2023b, a).” 
 



We also introduced an additional figure to the supplemental material (Figure A2) to provide 
more information on the DTP sensors:  

 
“Figure A2. Set up of DTP and iButton sensors.” 

The application of the training, validation and evaluation datasets it is not clear. This point has to 
be clarified in methods section.  

We have added a figure to the supplemental material (Figure B1) to visually show how the 
training, validation, and test datasets are applied during model development.  The validation 
dataset is used to test how different feature combinations impact model performance. This way, 
none of the test dataset is used to inform the development of the final model. The new figure is 
shown below and referred to in the updated methods section.  



 

“Figure B1. Use of training, validation, and test datasets in model development. We split 
the training data into groups of DTPs rather than groups of daily data points to maintain 
the independence of entire snow depth/ temperature time series during model testing.  
Different combinations of input features were tested using the validation dataset. After 
the best-performing set of input features was determined, the final model was trained 
using both the training dataset and validation dataset. The test dataset was excluded 
completely from the model development process.” 
 

Similarly, it is not clear if, for sites where the models are transferred, these are evaluated with a 
similar dataset of observation (DTPs spatially distributed) or just data compared with automatic 
weather station data from a single location. 

Model predictions at these sites are compared with snow depth data collected at a single 
location within 5 m of the temperature data. Snow depth predictions were recorded using sonic 
sensors, except for at a site in New Mexico where we manually recorded snow depth. To clarify 
that we are using individual snow depth measurements and not measurements averaged over a 
network of sensors, we add an additional sentence below: 



P4-L[3]: “Further, we applied RF-Seward and RF-Below to ten evaluation datasets where 
TSG and snow depth measurements were collocated (within approximately 5 m of each 
other). Sites were located in the United States (Alaska, Colorado, and New Mexico), 
Norway (Svalbard) and Russia (Siberia), with temperature sensors placed at the snow-
ground interface or within the top 5 cm of soil (see Table C1). Snow depth was also 
recorded at the sites (e.g., snow sonic sensors at automated weather stations), and was 
used to evaluate model performance. ” 

 

Minor comments 

Line 30: I assume you already know somehow the spatial distribution of the snowpack in the 
study area (lidar/uav data?) or you are just modeling and testing in the exact location of your 
DTP sensors? I think it is the second but it is not clear. 

The depth and density values presented here were from end-of-winter snow surveys conducted 
at the study sites. We clarified this in the text:  

P2-L[16]: “According to end-of-winter snow surveys, the average peak snow depth from 
2017-2019 at Teller27 was 0.96 m, with an average density of 310 kg/m3 (Bennett et al., 
2022). In 2018, snow depth was shallower at Kougarok64 than at Teller27, with an 
average end-of-winter depth of 0.75 m and density of 290 kg/m3 (Bennett et al., 2022).” 

Line 38 and 39: Please include snow density units in the international system (Kg/m3). 

We have corrected this throughout the manuscript and supplemental material. 

Line 9. There are some works which have already exploited random forest to analyze, and 
simulate snow distribution, showing suitable performances. You might cite here: Meloche et al., 
2022 (https://doi.org/10.1002/hyp.14546), Revuelto et al., 2020 
(https://doi.org/10.1002/hyp.13951) and Hsu et al., 2024 (https://doi.org/10.31223/X57391) 

We agree that these studies are relevant to our research. Bennett et al. (2022) developed a 
random forest machine learning model to predict peak SWE at our study site. Because we are 
limited on the number of citations we can include, we chose to cite the Bennett et al. (2022) 
study in our introduction as it is most relevant to our paper:  

P2-L[3]: “Machine learning (ML) models can be used to extrapolate snow survey data, but 
these estimates still only represent a single point in time (Bennett et al., 2022).” 

Bennett, K. E., Miller, G., Busey, R., Chen, M., Lathrop, E. R., Dann, J. B., Nutt, M., Crumley, 
R., Dillard, S. L., Dafflon, B., Kumar, J., Bolton, W. R., Wilson, C. J., Iversen, C. M., and 
Wullschleger, S. D.: Spatial patterns of snow distribution in the sub-Arctic, The Cryosphere, 16, 
3269–3293, https://doi.org/10.5194/tc-16-3269-2022, 2022. 

https://doi.org/10.31223/X57391


 

Line 69-70: Did you apply an “out of the bag” approach to validate evaluate? I do not 
understand why you use a 24 DTP validation data and a 31 DTP evaluation dataset, which is 
the difference here? If not, why don’t you use an out of the bag test? 

We did not use an “out of the bag” approach because the model is trained using daily data, and 
we wanted to hold out entire sensors for validation/testing rather than individual daily data 
points. We suspected that if we held out individual (daily) data points (as done in an “out of the 
bag” approach), our error estimates would underestimate model error, as the model likely would 
have seen similar data from neighboring days recorded using the same DTP sensor during 
model training. By holding out entire sensors, we hoped that our error estimates would be more 
realistic. 

To clarify why we chose to split our training/validation/test datasets into groups of sensors, we 
add the following sentence to the caption for Figure B1:  

“We split the training data into groups of DTPs rather than groups of daily data points to 
maintain the independence of entire snow depth/ temperature time series during model 
testing.” 

We hope that our addition of Figure B1 helps clarify how we use the training/validation/test 
tests. Mainly, we use the validation set to evaluate how different combinations of input features 
impact model performance.  

Lines 72-77: Impact of sensor burial. I would present this section on section 2.2. 

Thank you for this suggestion. We have made this change in the updated manuscript.  

Line 90: How many sensors are used to train RF-Deep in senator Beck Basin? is this a similar 
test area (i.e. same number of DTPs or equivalent sensors)? 

Far fewer training data points were used to train RF-Deep than the other machine learning 
models. At Senator Beck Basin, there were two automated weather stations which recorded 
both snow depth and snow-ground interface temperature. We combined this data with the data 
collected at the Seward Peninsula. We then balanced the combined Seward Peninsula + 
Senator Beck training dataset such that deeper snow represented a reasonable proportion of 
the training data (10 %) to reflect the distribution of snow depths at the sites in Colorado. If we 
included the entire DTP training dataset, we worried that the model would remain biased low, as 
any snow depths above 1.77 m would reflect a very small percentage of data points. Our 
updated description of these methods is given below:  

P4-L[13]: “The training data at our study sites was limited to a maximum of 1.77 m due to 
the length of DTP probes, and thus RF-Seward and RF-Below cannot predict depths 
greater than 1.77 m. To test if ML could accurately predict deeper snow depths, we 
trained a third ML model, which we refer to as “RF-Deep”. To train this model, we 



supplemented our original Seward Peninsula training dataset with additional data from 
two model evaluation sites in Senator Beck Basin, CO, USA with deeper snowpacks 
(Table C1). The model was applied to one site and trained with data from the other (in 
addition to the Seward Peninsula DTP data). To mimic the distribution of snow depths at 
these sites, we ensured that 10 % of the training data consisted of snow depths above 2 
m. This reduced the training dataset size compared to other models (Table B2).” 

We also added Table B2 in the supplemental material to show how many training data points 
were used to train each machine learning model:  

Model Number of 
training data 
points 

Related figure   

RF-Seward (applied to the test dataset) 20,963 1a 
RF-Seward (trained at Teller27 and tested at 
Kougarok64) 

17,171 1b 

RF-Seward (trained at Kougarok64 and tested at 
Teller27) 

9,272 1c 

RF-Seward (retrained on all DTP data; applied to 
evaluation sites) 

25,418 2a-g, h 

RF-Below (applied to the test dataset) 15,197 1d 
RF-Below (trained at Teller27 and tested at 
Kougarok64) 

11,396 1e 

RF-Below (trained at Kougarok64 and tested at 
Teller27) 

7,980 1f 

RF-Below (retrained on all DTP data; applied to 
evaluation sites) 

18,968 2c-h 

RF-Deep (applied to first Senator Beck Basin Site) 1,305 2i 
RF-Deep (applied to second Senator Beck Basin 
Site) 

3,294 2j 

  
Table B2. Number of training data points (days) used to train the random forest models. 

 

Line 114. I would briefly state here how do you test these models. You are directly comparing 
the observed snow depth at the sensor location in different stations with that modeled, right? 

Thank you for this suggestion. We are testing these models by comparing them to snow depth 
measured at the site. We have clarified this in the methods:  

P4-L[6]: “Snow depth was also recorded at the sites (e.g., snow sonic sensors at 
automated weather stations), and was used to evaluate model performance.” 



Figure 2. Some symbols of the study area are quite difficult to identify (eg. Bayleva station or 
Siberian), please increase their size. Also captions and graphs sizes are too small, can this 
figure be extended and increase captions size. For instance, you can remove the names above 
the graphs and just include the letter inside each one (a), b), c),…). 

We have made the caption and graph sizes larger as you suggested. We also added letters 
(a,b,c, etc.) to the site map to make the symbols easier to identify and pair with their 
corresponding time series plot. The updated figure is shown below:  



 

“Figure 2. ML performance at a) Bayelva Station, Svalbard, Norway; b) Imnaviat Creek, 
Alaska, USA; c,d) Council, Alaska, USA; e) Samoylov Island, Siberia, Russia; f) Ivotuk, 
Alaska, USA; g) Los Alamos, New Mexico, USA; h) Grand Mesa, Colorado, USA; and i,j) 
Senator Beck Basin, Colorado, USA. Locations are shown on a map, with the yellow star 
indicating the Seward Peninsula of Alaska, where RF-Seward was trained. Black lines 
show measured snow depth at each site. Y-axis and RMSE values indicate snow depth in 



meters. f) Note adjusted y-axis for Los Alamos, New Mexico. For this site, we also show 
RF-Seward and RF-Below predictions when RF-Below was applied above ground and RF-
Seward was applied belowground (dotted lines).” 

Conclusions: It must be highlighted that this method is suitable to predict snow depth in cold 
regions and that its applicability in temperate areas must be further investigated. 

Thank you for your review of our manuscript. We hope that our additions to the abstract, 
introduction, and conclusions help highlight this point.  

Citation: https://doi.org/10.5194/egusphere-2024-2249-RC2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


