
Reviewer 1  

Summary & General Comments: 

This brief communication presents a novel approach to derive snow depth from low-cost 
temperature sensors deployed at the snow-ground interface using a random forest model. This 
method would hypothetically allow snow depth monitoring at far greater number of sites than 
currently available, a significant finding well within the remit of The Cryosphere journal. The 
manuscript is concise and well-written. I recommend this manuscript be published subject to 
minor revisions, as detailed below. 

Thank you for your review of our manuscript. We appreciate your thoughtful feedback.  

As an aside, I would be interested to see what you think the impact of snow stratigraphy may be 
on the depth estimates from your model (particularly when it comes to evaluating snow depth at 
sites beyond the Arctic, such as the New Mexico site), but I understand that you are unlikely to 
have this data for comparison. 

This is an interesting question which we have not yet explored. I would think that the accuracy 
of the machine learning algorithm may decrease at locations where the stratigraphy (and more 
generally, snowpack physical properties) is different from where the model has been trained, but 
we do not have the data to test this. We have added a mention of snow stratigraphy to the 
conclusions to address this area of uncertainty:  

P10-L[3]: “Additionally, how snow stratigraphy and density affect model results remains 
unclear .” 

Minor/Technical Comments: 

This is a broad and minor stylistic comment, but I would remove the italics for above and below 
ground throughout. 

We have removed italics from above and below ground and agree that it improves the 
manuscript.  

Section 2.1: Could you add a photo of one of your DTPs to Fig S1? Please also give an 
indication of how deep into the soil these profilers go, and when they were deployed relative to 
the start of the snow season. 

Thank you for your suggestion. We have added to the Supplemental section Figure A2 showing 
the DTP and iButton setup, and we provide pictures of both instruments in this figure (see 
below). The DTP sensors measure temperature down to 100 cm to 160 cm depending on the 
DTP design. We have incorporated this information into the figure caption below. DTPs were 
deployed late September 2021 and snowfall started on October 20, 2021, information which we 
have also incorporated into the Methods section of the paper.  



 
Figure A2. Set up of DTP and iButton sensors. Only shallow soil temperature data was used in this 
study, but the soil DTPs can measure temperature down to 100 to 160 cm of depth. 

 

Line 46: Please give the precision of the snow depth estimates. 

The estimated snow depth has an uncertainty of ±2.5 cm or ±5 cm, depending on the sensor 
spacing (5 and 10 cm, respectively). We have incorporated this information into the Methods 
section of the paper. 

Line 47: Is the value of the closest temperature sensor used as the value for TSG, or is TSG 
estimated from the sensor temperature using another method (such as a linear extrapolation)? 

The value of the closest temperature sensor is used. We do not apply linear interpolation 
because temperature data collected below soil/moss is affected by insulation from that layer, 
and therefore incorporating those measurements into our TSG estimate could confound snow 
depth predictions.  

To clarify this, we provided more detail in the revised manuscript:  

P2-L[29]: “We estimated TSG from the temperature sensor closest to the snow-ground 
interface, which ranged from 1 to 5 cm above the ground surface and thus avoided 
impacts of soil or moss on the TSG estimate.”  

Line 76-77: Does “shallow subsurface” refer to the 1 - 5 cm temperature measurements from 
the previous sentence? Consider rephrasing these two sentences for clarity. 



Yes, it does. However, we agree that how we phrased it was unclear. Thank you for catching 
this. We have rephrased these sentences in the revised manuscript.  

P2-L[31]: “Additionally, we extracted shallow subsurface temperature measurements 
recorded 1 to 5 cm below the ground surface from soil DTPs deployed into the ground.” 

P3-L[29]: “We used the same hyperparameters and features as RF-Seward, but calculated 
features from DTP subsurface temperature measurements recorded 1 to 5 cm below the 
ground surface.” 

Line 84: Consider adding vegetation type for all sites to table S3 and refer to this after the 
statement “Vegetation also varied across sites”. Vegetation for 2 sites is given in the following 
text but this info isn’t currently in the table, whereas vegetation for other sites is included in the 
sensor details column.  

We have added vegetation type to the table (Table C1 in revision) for all sites where sensors 
were buried beneath the ground surface. We did this because vegetation type only affects snow 
ground interface temperature measurements when the sensor is placed beneath that 
vegetation. We then referred to this table after the line “Vegetation also varied” as you 
suggested. We also added a description of vegetation at the Teller27 and Kougarok64 sites 
where the machine learning models were trained:  

P2-L[19]: “Vegetation at Teller27 consisted of mixed sedge-willow-Dryas tundra and 
mixed shrub-sedge tussock tundra-bog, with some areas of tall willow shrubs (Bennett et 
al., 2022). Vegetation at Kougarok64 consisted of tussock-lichen tundra, alder savanna, 
tall willow shrubs in willow-birch tundra, tall alder shrubs in alder shrublands, and rocky 
areas with birch-ericaceous-lichen and sparse Dryas-lichen dwarf shrub tundra (Bennett 
et al., 2022; Breen et al., 2020).” 

Lines 92-94: I am confused as to how you trained RF-Deep when you are unable to derive 
depth estimates for snowpacks deeper than the 1.77m length of the temperature probes. Please 
clarify what data was used to train the deep model. 

We have rewritten our description of RF-Deep. RF-Deep was trained using some of the original 
DTP training data collected on the Seward Peninsula combined with data available at two sites 
in Senator Beck Basin, Colorado. This data was not collected using DTPs, but rather collocated 
snow sonic sensors and temperature sensors at an automated weather station. We only used 
“some” of the original DTP training data because we wanted to balance the dataset such that 
deeper snow represented a reasonable proportion of the training data (10 %) to reflect the 
distribution of snow depths at the sites in Colorado. If we included the entire DTP training 
dataset, we worried that the model would remain biased low, as any snow depths above 1.77 m 
would reflect a very small percentage of data points. Our updated description of these methods 
is given below:  

P4-L[13]: “The training data at our study sites was limited to a maximum of 1.77 m due to 
the length of DTP probes, and thus RF-Seward and RF-Below cannot predict depths 



greater than 1.77 m. To test if ML could accurately predict deeper snow depths, we 
trained a third ML model, which we refer to as “RF-Deep”. To train this model, we 
supplemented our original Seward Peninsula training dataset with additional data from 
two model evaluation sites in Senator Beck Basin, CO, USA with deeper snowpacks 
(Table C1). The model was applied to one site and trained with data from the other (in 
addition to the Seward Peninsula DTP data). To mimic the distribution of snow depths at 
these sites, we ensured that 10 % of the training data consisted of snow depths above 2 
m. This reduced the training dataset size compared to other models (Table B2).” 

Line 95: I would role this section into the previous one. 

Thank you for this suggestion. We have made this change in the revised manuscript.  

Line 115/Figure 1: My initial thought was that “temperature range” referred to the range of 
temperature measured along the whole depth of the DTP, not just as the snow:ground interface. 
Consider changing this to “daily TSG range” in both line 115 and the red y-axis for plots g - i. 
Additionally, the use of blue and green to distinguish between the two different models is not 
accessible to those with colour vision deficiencies. Please change one of these colours – 
something like blue and orange or green and purple would work.   

Thank you for these edits for Figure 1. We have made the suggested changes and updated the 
color scheme. See below:  



 
“Figure 1. Performance of RF-Seward a) evaluated using test data, b) when trained at 
Teller27 and tested at Kougarok64, and c) visa versa. d-f) Same as a-c but for RF-Below. 
Time series plots of DTP snow depth data vs. ML estimates when g) trained at both sites, 
h) trained at Teller2, and i) trained at Kougarok64. The dotted red line shows daily TSG  

range, with narrower temperature ranges occurring under deeper snow cover. “Train N” 
refers to the number of DTP sensors used to train each model.” 

 

Line 138: Could this poor performance for ephemeral snowpacks be improved by including 
more ephemeral snowpacks in the training dataset? 

This is a good question. Because zero-curtains completely decrease temperature variability, 
they mask the impact of snow depth on snow-ground interface temperature and remove the 
predictive value of temperature data during that period. Therefore, we expect that even with a 
larger/ more representative dataset, the model would perform poorly during these periods. 
However, incorporating new features related to zero-curtain periods could potentially reduce 
these errors. 



To address this question in the manuscript, we add the following lines:  

P6-L[21]: “ZCPs completely dampen TSG variability and therefore uncouple TSG from snow 
depth. Even given training data more representative of ZCPs, snow depth estimates may 
remain unreliable during these periods. Incorporating features into the model which 
indicate the presence of ZCPs may reduce these errors. Further, deploying iButtons at 
the snow-ground interface (rather than below ground) decreases the number of ZCPs in 
the temperature data.” 

We also reorganized the paragraph to better highlight this message.  

Line 149: The insulative capacity of some snowpacks has been shown to be reached at much 
shallower depths than 1 m (e.g., Slater et al, 2017), particularly in Arctic environments like 
where the original model was trained. Potentially reconsider the use of this 1m value. 

Thank you for sharing this reference with us, after reviewing it, we realized that the 1 m value 
was too high, as you suggest. Therefore, we have changed this value to 50 cm in the text. 

Line 156/Figure 2: The figure caption refers to a colour bar for subplot f), when I think you mean 
the y-axis for subplot g). Please double check. Some units on the y axes are also needed. 
Please also clarify what the black lines refer to – measured snow depth? Also, as for the 
previous figure, the use of blue and green to distinguish between the two different models is not 
accessible to those with colour vision deficiencies. Please change one of these colours. 

Thank you for these suggestions, we have updated the figure and figure caption. See below:  



 

“Figure 2. ML performance at a) Bayelva Station, Svalbard, Norway; b) Imnaviat Creek, 
Alaska, USA; c,d) Council, Alaska, USA; e) Samoylov Island, Siberia, Russia; f) Ivotuk, 
Alaska, USA; g) Los Alamos, New Mexico, USA; h) Grand Mesa, Colorado, USA; and i,j) 
Senator Beck Basin, Colorado, USA. Locations are shown on a map, with the yellow star 
indicating the Seward Peninsula of Alaska, where RF-Seward was trained. Black lines 
show measured snow depth at each site. Y-axis and RMSE values indicate snow depth in 



meters. f) Note adjusted y-axis for Los Alamos, New Mexico. For this site, we also show 
RF-Seward and RF-Below predictions when RF-Below was applied above ground and RF-
Seward was applied below ground (dotted lines).” 

Figure S1: Please clarify what is meant by WY2023 and WY2022 in the figure caption. Can you 
also confirm that snow depth data shown in b) and d) is for a different year to the temperature 
data on which the snow depth model is based. Also see comments for Section 2.1 above. 

By WY2023 we meant the 2023 water year (October 1 2022 - September 30 2023). We have 
clarified this in the figure caption by saying the “2022 - 2023 snow season” instead of WY2023 
and the “2021 - 2022 snow season” instead of WY2022.  

The background snow depth imagery shown in b) and d) was collected in the same year (April 
2022) as the DTP data on which the model was trained. We hope that by clarifying the date 
ranges of data collection we have resolved your uncertainty around this. The figure and updated 
figure caption are shown below for your convenience.  

 
 
“Figure A1. Locations of iButton Link Thermochron (DS1921G-F5#) temperature sensors 
deployed in (green circles) and outside (white circles) of shrubs over the 2022 – 2023 
snow season at a) Teller27 and c) Kougarok64. Background imagery from Esri, Garmin, 



USGS, Maxar, 2024, ArcGIS RGB Basemap. Locations of DTP temperature sensors that 
recorded both above and below ground temperature (yellow triangles) or only above 
ground temperature (red circles) over the 2021 – 2022 snow season at b) Teller27 and d) 
Kougarok64. Blue background imagery shows snow depth in April 2022 estimated using 
Light Detection and Ranging (LiDAR) data (Singhania et al., 2023b, a).” 

 

References: 

Slater, A.G., Lawrence, D.M. and Koven, C.D. (2017) ‘Process-level model evaluation: a snow 
and heat transfer metric’, The Cryosphere, 11 (2), 89–996. https://doi.org/10.5194/tc-11-989-
2017. 

Citation: https://doi.org/10.5194/egusphere-2024-2249-RC1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
Reviewer 2  
 

This brief communication presents an interesting approach to derive snow depth through 
temperature data recorded with easy-to-deploy sensors. Authors exploit machine learning 
models (random forest) to predict snow depth from snow-soil interface temperature. While the 
brief communication reads well and it is suitable to be published in The Cryosphere, some 
points must be addressed before publication. 

Thank you for your review of our manuscript. We appreciate the time and thought that you have 
put into your comments. 

First of all, the approach tested is trained in two sites and then evaluated in these two sites, but 
also in 10 other sites, what I might highlight in both the abstract and the introduction.  

Per your suggestion, we have highlighted this point in the introduction of the revised manuscript: 

P2-L[8]: “The model was trained at two small sites on the Seward Peninsula, Alaska, USA, 
and evaluated at ten sites distributed across Alaska, Colorado, and New Mexico (USA), 
Svalbard (Norway), and Siberia (Russia).” 

The abstract is limited to 100 words so we did not have space to highlight this point there. 

Through this test on model transferability it is clear that this approach works well in cold and 
high latitude areas, but in temperate areas where ROS events can occur or temperatures are 
milder, it fails.  This has to be highlighted in the abstract and the conclusions. 

We agree with your suggestion that the shortcomings of this approach should be highlighted 
earlier on. One thing to note is that some issues related to zero-curtains and warm, ephemeral 
snowpacks can largely be avoided when using temperature collected at the snow-ground 
interface. This is because below ground sensors are impacted by the soil freeze-thaw cycle, 
whereas the above ground sensors are not. In the abstract and introduction, we highlight results 
from RF-Seward, and therefore do not discuss the additional shortcomings of using RF-Below.  

We added text to the abstract to highlight the shortcomings of our model at temperate sites:  

P1-L[17] “It performed poorly at temperate sites with deeper snowpacks, partially due to 
training data limitations.” 

We were unable to mention the ROS limitation in the abstract because we are limited to 100 
words, but that shortcoming is highlighted in the conclusions.  The full description of 
shortcomings in the conclusion now reads:  



P9-L[19]: “While the model generally performed well, rain-on-snow events and zero-
curtain periods cause the model to erroneously predict snow accumulation events. 
Further, the model failed to replicate deep snow depths (greater than 1.5 m) observed in 
Colorado, USA. For optimal performance, the model should be applied to temperatures 
recorded at the snow-ground interface. Predictions made using temperatures recorded 
below the ground surface were impacted by varying soil types, vegetation properties, 
and latent heat processes.” 

More details about the training study sites (spatial distribution of DTP’s within the domain), 
image of the DTPs, and photograph of them would be desirable. I guess number of figures are 
limited, but some of these can be included in Figure 1. 

A map of DTP locations was provided in the supplemental material and is copied below for your 
convenience:  

 
“Figure A1. Locations of iButton Link Thermochron (DS1921G-F5#) temperature sensors 
deployed in (green circles) and outside (white circles) of shrubs over the 2022 – 2023 
snow season at a) Teller27 and c) Kougarok64. Background imagery from Esri, Garmin, 
USGS, Maxar, 2024, ArcGIS RGB Basemap. Locations of DTP temperature sensors that 
recorded both above and below ground temperature (yellow triangles) or only above 
ground temperature (red circles) over the 2021 – 2022 snow season at b) Teller27 and d) 



Kougarok64. Blue background imagery shows snow depth in April 2022 estimated using 
Light Detection and Ranging (LiDAR) data (Singhania et al., 2023b, a).” 
 

We also introduced an additional figure to the supplemental material (Figure A2) to provide 
more information on the DTP sensors:  

 
“Figure A2. Set up of DTP and iButton sensors.” 

The application of the training, validation and evaluation datasets it is not clear. This point has to 
be clarified in methods section.  

We have added a figure to the supplemental material (Figure B1) to visually show how the 
training, validation, and test datasets are applied during model development.  The validation 
dataset is used to test how different feature combinations impact model performance. This way, 
none of the test dataset is used to inform the development of the final model. The new figure is 
shown below and referred to in the updated methods section.  



 

“Figure B1. Use of training, validation, and test datasets in model development. We split 
the training data into groups of DTPs rather than groups of daily data points to maintain 
the independence of entire snow depth/ temperature time series during model testing.  
Different combinations of input features were tested using the validation dataset. After 
the best-performing set of input features was determined, the final model was trained 
using both the training dataset and validation dataset. The test dataset was excluded 
completely from the model development process.” 
 

Similarly, it is not clear if, for sites where the models are transferred, these are evaluated with a 
similar dataset of observation (DTPs spatially distributed) or just data compared with automatic 
weather station data from a single location. 

Model predictions at these sites are compared with snow depth data collected at a single 
location within 5 m of the temperature data. Snow depth predictions were recorded using sonic 
sensors, except for at a site in New Mexico where we manually recorded snow depth. To clarify 
that we are using individual snow depth measurements and not measurements averaged over a 
network of sensors, we add an additional sentence below: 



P4-L[3]: “Further, we applied RF-Seward and RF-Below to ten evaluation datasets where 
TSG and snow depth measurements were collocated (within approximately 5 m of each 
other). Sites were located in the United States (Alaska, Colorado, and New Mexico), 
Norway (Svalbard) and Russia (Siberia), with temperature sensors placed at the snow-
ground interface or within the top 5 cm of soil (see Table C1). Snow depth was also 
recorded at the sites (e.g., snow sonic sensors at automated weather stations), and was 
used to evaluate model performance. ” 

 

Minor comments 

Line 30: I assume you already know somehow the spatial distribution of the snowpack in the 
study area (lidar/uav data?) or you are just modeling and testing in the exact location of your 
DTP sensors? I think it is the second but it is not clear. 

The depth and density values presented here were from end-of-winter snow surveys conducted 
at the study sites. We clarified this in the text:  

P2-L[16]: “According to end-of-winter snow surveys, the average peak snow depth from 
2017-2019 at Teller27 was 0.96 m, with an average density of 310 kg/m3 (Bennett et al., 
2022). In 2018, snow depth was shallower at Kougarok64 than at Teller27, with an 
average end-of-winter depth of 0.75 m and density of 290 kg/m3 (Bennett et al., 2022).” 

Line 38 and 39: Please include snow density units in the international system (Kg/m3). 

We have corrected this throughout the manuscript and supplemental material. 

Line 9. There are some works which have already exploited random forest to analyze, and 
simulate snow distribution, showing suitable performances. You might cite here: Meloche et al., 
2022 (https://doi.org/10.1002/hyp.14546), Revuelto et al., 2020 
(https://doi.org/10.1002/hyp.13951) and Hsu et al., 2024 (https://doi.org/10.31223/X57391) 

We agree that these studies are relevant to our research. Bennett et al. (2022) developed a 
random forest machine learning model to predict peak SWE at our study site. Because we are 
limited on the number of citations we can include, we chose to cite the Bennett et al. (2022) 
study in our introduction as it is most relevant to our paper:  

P2-L[3]: “Machine learning (ML) models can be used to extrapolate snow survey data, but 
these estimates still only represent a single point in time (Bennett et al., 2022).” 

Bennett, K. E., Miller, G., Busey, R., Chen, M., Lathrop, E. R., Dann, J. B., Nutt, M., Crumley, 
R., Dillard, S. L., Dafflon, B., Kumar, J., Bolton, W. R., Wilson, C. J., Iversen, C. M., and 
Wullschleger, S. D.: Spatial patterns of snow distribution in the sub-Arctic, The Cryosphere, 16, 
3269–3293, https://doi.org/10.5194/tc-16-3269-2022, 2022. 

https://doi.org/10.31223/X57391


 

Line 69-70: Did you apply an “out of the bag” approach to validate evaluate? I do not 
understand why you use a 24 DTP validation data and a 31 DTP evaluation dataset, which is 
the difference here? If not, why don’t you use an out of the bag test? 

We did not use an “out of the bag” approach because the model is trained using daily data, and 
we wanted to hold out entire sensors for validation/testing rather than individual daily data 
points. We suspected that if we held out individual (daily) data points (as done in an “out of the 
bag” approach), our error estimates would underestimate model error, as the model likely would 
have seen similar data from neighboring days recorded using the same DTP sensor during 
model training. By holding out entire sensors, we hoped that our error estimates would be more 
realistic. 

To clarify why we chose to split our training/validation/test datasets into groups of sensors, we 
add the following sentence to the caption for Figure B1:  

“We split the training data into groups of DTPs rather than groups of daily data points to 
maintain the independence of entire snow depth/ temperature time series during model 
testing.” 

We hope that our addition of Figure B1 helps clarify how we use the training/validation/test 
tests. Mainly, we use the validation set to evaluate how different combinations of input features 
impact model performance.  

Lines 72-77: Impact of sensor burial. I would present this section on section 2.2. 

Thank you for this suggestion. We have made this change in the updated manuscript.  

Line 90: How many sensors are used to train RF-Deep in senator Beck Basin? is this a similar 
test area (i.e. same number of DTPs or equivalent sensors)? 

Far fewer training data points were used to train RF-Deep than the other machine learning 
models. At Senator Beck Basin, there were two automated weather stations which recorded 
both snow depth and snow-ground interface temperature. We combined this data with the data 
collected at the Seward Peninsula. We then balanced the combined Seward Peninsula + 
Senator Beck training dataset such that deeper snow represented a reasonable proportion of 
the training data (10 %) to reflect the distribution of snow depths at the sites in Colorado. If we 
included the entire DTP training dataset, we worried that the model would remain biased low, as 
any snow depths above 1.77 m would reflect a very small percentage of data points. Our 
updated description of these methods is given below:  

P4-L[13]: “The training data at our study sites was limited to a maximum of 1.77 m due to 
the length of DTP probes, and thus RF-Seward and RF-Below cannot predict depths 
greater than 1.77 m. To test if ML could accurately predict deeper snow depths, we 
trained a third ML model, which we refer to as “RF-Deep”. To train this model, we 



supplemented our original Seward Peninsula training dataset with additional data from 
two model evaluation sites in Senator Beck Basin, CO, USA with deeper snowpacks 
(Table C1). The model was applied to one site and trained with data from the other (in 
addition to the Seward Peninsula DTP data). To mimic the distribution of snow depths at 
these sites, we ensured that 10 % of the training data consisted of snow depths above 2 
m. This reduced the training dataset size compared to other models (Table B2).” 

We also added Table B2 in the supplemental material to show how many training data points 
were used to train each machine learning model:  

Model Number of 
training data 
points 

Related figure   

RF-Seward (applied to the test dataset) 20,963 1a 
RF-Seward (trained at Teller27 and tested at 
Kougarok64) 

17,171 1b 

RF-Seward (trained at Kougarok64 and tested at 
Teller27) 

9,272 1c 

RF-Seward (retrained on all DTP data; applied to 
evaluation sites) 

25,418 2a-g, h 

RF-Below (applied to the test dataset) 15,197 1d 
RF-Below (trained at Teller27 and tested at 
Kougarok64) 

11,396 1e 

RF-Below (trained at Kougarok64 and tested at 
Teller27) 

7,980 1f 

RF-Below (retrained on all DTP data; applied to 
evaluation sites) 

18,968 2c-h 

RF-Deep (applied to first Senator Beck Basin Site) 1,305 2i 
RF-Deep (applied to second Senator Beck Basin 
Site) 

3,294 2j 

  
Table B2. Number of training data points (days) used to train the random forest models. 

 

Line 114. I would briefly state here how do you test these models. You are directly comparing 
the observed snow depth at the sensor location in different stations with that modeled, right? 

Thank you for this suggestion. We are testing these models by comparing them to snow depth 
measured at the site. We have clarified this in the methods:  

P4-L[6]: “Snow depth was also recorded at the sites (e.g., snow sonic sensors at 
automated weather stations), and was used to evaluate model performance.” 



Figure 2. Some symbols of the study area are quite difficult to identify (eg. Bayleva station or 
Siberian), please increase their size. Also captions and graphs sizes are too small, can this 
figure be extended and increase captions size. For instance, you can remove the names above 
the graphs and just include the letter inside each one (a), b), c),…). 

We have made the caption and graph sizes larger as you suggested. We also added letters 
(a,b,c, etc.) to the site map to make the symbols easier to identify and pair with their 
corresponding time series plot. The updated figure is shown below:  



 

“Figure 2. ML performance at a) Bayelva Station, Svalbard, Norway; b) Imnaviat Creek, 
Alaska, USA; c,d) Council, Alaska, USA; e) Samoylov Island, Siberia, Russia; f) Ivotuk, 
Alaska, USA; g) Los Alamos, New Mexico, USA; h) Grand Mesa, Colorado, USA; and i,j) 
Senator Beck Basin, Colorado, USA. Locations are shown on a map, with the yellow star 
indicating the Seward Peninsula of Alaska, where RF-Seward was trained. Black lines 
show measured snow depth at each site. Y-axis and RMSE values indicate snow depth in 



meters. f) Note adjusted y-axis for Los Alamos, New Mexico. For this site, we also show 
RF-Seward and RF-Below predictions when RF-Below was applied above ground and RF-
Seward was applied belowground (dotted lines).” 

Conclusions: It must be highlighted that this method is suitable to predict snow depth in cold 
regions and that its applicability in temperate areas must be further investigated. 

Thank you for your review of our manuscript. We hope that our additions to the abstract, 
introduction, and conclusions help highlight this point.  

Citation: https://doi.org/10.5194/egusphere-2024-2249-RC2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Reviewer 3  
 

Summary 

This brief communication describes a new method to use inexpensive temperature sensors and 
machine learning to estimate snow depth in the Arctic, with cross-validation in temperate 
regions. The manuscript presents the results clearly and succinctly, and my only major 
comments relate to the presentation of information, rather than the analyses conducted. I 
recommend that this manuscript be published following minor revisions. 

Thank you for your review of our manuscript. We appreciate the time and thought that you have 
put into your comments. 

Major comments 

The non-Arctic sites should be introduced somewhere in the methods – as it is, they come as a 
bit of a surprise in the results, making it difficult to track what data are used and how. 

Thank you for your suggestion. We have introduced these sites earlier in the manuscript now.  

Our abstract is very limited on space (100 words maximum), but we have added the following 
sentence:  

P1-L[17]: “It performs poorly at temperate sites with deeper snowpacks, partially due to 
training data limitations.” 

 We have also added text to the introduction:  

P2-L[8]:  “The model was trained at two small sites on the Seward Peninsula, Alaska, 
USA, and evaluated at ten sites distributed across Alaska, Colorado, and New Mexico 
(USA), Svalbard (Norway), and Siberia (Russia).” 

These sites are also mentioned in the methods section:  

P4-L[3]: “Further, we applied RF-Seward and RF-Below to ten evaluation datasets where 
TSG and snow depth measurements were collocated (within approximately 5 m of each 
other). Sites were located in the United States (Alaska, Colorado, and New Mexico), 
Norway (Svalbard) and Russia (Siberia), with temperature sensors placed at the snow-
ground interface or within the top 5 cm of soil (see Table C1).” 

We hope that these sites come as less of a surprise now that they are mentioned in the abstract 
and introduction.  

I’m sure space is short, but I worry that the description in the abstract noting that the model 
performed “well” is a little bit misleading, as the RMSE = 0.15 m is among the lowest you report, 



and whether or not that should be considered good performance is a matter of judgement. I’d 
like to see a little more nuance in the abstract – maybe a brief description of the conditions 
under which the model performs best and worst, with the relevant RMSE values provided.  

Our abstract is limited to 100 words, but we have added that the model performs poorly at 
temperate sites (e.g., Colorado). We hope that our changes to the abstract clarify that the 
statistic of RMSE = 0.15 m only holds true for Arctic sites:  

P1-L[16]: “The model performed well on Alaska’s Seward Peninsula where it was trained, 
and at Arctic evaluation sites (RMSE  0.15 m). It performed poorly at temperate sites with 
deeper snowpacks, partially due to training data limitations.” 

A full description of model limitations is provided in the conclusions.  

Percent bias could also be helpful here, given that snow depth is so important to model 
performance. 

We chose to present an RMSE value rather than a percent bias value in the abstract because 
we compare model performance across sites, and RMSE is directly comparable between sites 
whereas percent bias is not. For example, small errors at a site with low snow depths would 
likely result in high percent errors, even though the magnitude of errors is small.  

However, we have added mean bias values to our results section (see P4-L[27-29], for 
example).  

Minor comments 

Line 19 – citation needed here, as this probably refers mainly to potential for increasing snow 
depth? 

Thank you for noting this. We agree, and we have added the following citations:  

Bigalke, S. and Walsh, J. E.: Future Changes of Snow in Alaska and the Arctic under Stabilized 
Global Warming Scenarios, Atmosphere, 13, 541, https://doi.org/10.3390/atmos13040541, 
2022. 

 
Pedron, S. A., Jespersen, R. G., Xu, X., Khazindar, Y., Welker, J. M., and Czimczik, C. I.: More 
Snow Accelerates Legacy Carbon Emissions From Arctic Permafrost, AGU Advances, 4, 
e2023AV000942, https://doi.org/10.1029/2023AV000942, 2023. 

Line 25-26 – Sonic sensors are deployed at SNOTEL stations, along with snow pillows, but this 
currently reads as though sonic sensors and SNOTEL stations are two distinct types of 
monitoring equipment. Suggest rewording. 

You are right that the wording was misleading. We have reworded this sentence:  



P2-L[5]: “The temporal evolution of snow can be monitored using automated instruments 
(e.g., snow sonic sensors deployed at Snow Telemetry (SNOTEL) stations; Fleming et al., 
2023), but spatially distributed deployment is time consuming and expensive. ”  

Line 28 – Can you say why these remain a challenge in Arctic regions? In fact, I would expect 
IceSat-2 to provide better observations in polar than temperate regions, due to the higher 
sampling density. 

Arctic snow depths vary across very fine spatial and temporal scales. This is partially because 
winds in many Arctic regions are very high, so snow blows across the landscape and 
redistributes quickly, which creates a patterned landscape of drifted and scoured areas. 
Satellites cannot capture those fine scale patterns because they operate at relatively coarse 
temporal and spatial scales. It is important to actually measure the fine-scale variations in Arctic 
snowpack because drifts may impact (warm) permafrost. For example, as shrubs expand, it is 
likely that where drifts form on the landscape will change. 

We tied this reasoning into our introduction by adding a few sentences:  

P1-L[26]: “As shrubs expand in the Arctic ( Mekonnen et al., 2021), the spatial distribution 
of snow drifts and subsequent impacts on permafrost may change (Lathrop et al., 2024). 
Thus, monitoring and modeling fine-scale drifting processes are crucial to understanding 
permafrost evolution” 

P2-L[1]: “Satellite data can be used to estimate snow depth (Besso et al., 2024), but 
spatial and temporal resolutions are too coarse to capture the complexity of Arctic 
snowpacks.” 

Line 59 – I don’t think this permutation importance is unique to RF; should remove as a reason 
for selecting RF. Your other reasons for selecting RF are perfectly good, though. 

Thank you for catching this, we have rephrased those sentences. We still say that random 
forests are easier to interpret than other models because more feature importance metrics exist 
for random forests (e.g. gini importance) and individual trees can be examined to understand 
how the model is making its decisions.  

The updated text is shown below:  

P3-L[12]: “We chose a random forest as it outperformed or performed similarly to other 
models. A random forest is simple to design, computationally inexpensive, and easy to 
interpret. We identified key model features using permutation importance, which reflects 
how model performance changes when an input feature is randomly shuffled (Breiman, 
2001). Larger decreases in performances indicate greater feature importance.” 

Line 90 – I think this is the first time the other training sites are being introduced. They should be 
briefly described somewhere. 



 We have now introduced these sites in the abstract and introduction (see previous response).  

Line 134 – I think you should define the zero-curtain period the first time you use the term. 

Thank you for this suggestion. We first use the term “zero-curtain” when discussing Figure 1. 
We have updated the manuscript text to provide a more detailed description of a zero-curtain 
period:  

P5-L[4]: “Further, warmer and/or wetter sites (e.g., Teller27) undergo more freezing and 
thawing than colder and/or dryer sites (e.g., Kougarok64), producing zero-curtain periods 
where the key snow depth predictor (temperature variability) flattens at 0°C as water 
changes phase (Staub and Delaloye, 2017).” 

Line 180-181 – I question whether future work should try to improve the technique for deeper 
snow – it seems that for physical reasons, this may be unlikely. Perhaps it would be more 
productive to discuss how the technique could be combined with other types of observations. 

We agree that it is possible that this technique will never work for deep snow. However, the 
dataset used in this study had no deep snow estimates in it at all, so the model could not 
possibly predict deep snow even if some relationship with depth and temperature still existed. 
Because of this, we think it is worth exploring whether this technique works given a more 
representative training dataset. We did try to test this using “RF-Deep”, but the data used to 
train that dataset was not as high quality as what we used to train RF-Seward and RF-Below, 
and we used far fewer training data points. We have provided a more nuanced discussion of 
this in the conclusions.  

We also agree that this technique could be combined with observations/models to improve 
estimates even in regions where deep snow limits model performance. We have added some 
brief discussion around this in the conclusions as well. See below:  

P9-L[26]: “Future research should focus on developing this technique for locations where 
peak snow depths exceed 1.5 m (e.g., Colorado, USA), as these regions are crucial for 
water security across the world.  While deep snow may completely dampen TSG, it is 
possible that the ML model will perform better given a larger and more representative 
training dataset and/or additional input features. Alternatively, this technique could be 
combined with other monitoring and/or modeling efforts. For example, snow depth 
estimates made early in the snow season (e.g. when snow is shallow) could be used to 
estimate snow variability across the landscape and to downscale coarse model or 
remote sensing snow depth estimates.”  

I also wonder about discussing a more thorough investigation of the relative merits of different 
ML models; an LSTM would make more sense conceptually but is probably harder to 
implement, and we’re not given much information about the implementation you tried that didn’t 
outperform the RF. 



This is a great suggestion. LSTMs have the potential for modeling snow dynamics given their 
ability to capture temporal dependencies. However, they require sufficient data to learn these 
relationships. The lack of a complete snow cycle likely hindered the LSTM's ability to effectively 
learn the seasonal patterns. Additionally, there is a trade off between having more training 
samples with a shorter look-back window and having less samples with a longer look-back 
window. With a longer dataset encompassing multiple years, we anticipate that an LSTM could 
potentially improve performance. We summarized this briefly in the conclusions:  

P9-L[31]: “Further, the application of a ML model tailored towards time series estimates 
(e.g., a Long Short Term Memory Model; LSTM) could improve predictions. In this study, 
we only had one year of data, which likely limited the LSTM’s performance. With a longer-
term dataset, we could provide the LSTM with more training points and a longer look-
back window (e.g., an entire snow season), which would likely enhance its performance. 
” 
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