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Abstract. Temporally continuous snow depth estimates are vital for understanding changing snow patterns and impacts on 

permafrost in the Arctic. We train a random forest machine learning model to predict snow depth from variability in snow-

ground interface temperature. The model performed well on Alaska’s Seward Peninsula where it was trained, and at pan-Arctic 

evaluation sites (RMSE ≤ 0.15 m). Small temperature sensors are cheap and easy-to-deploy, so this technique enables spatially 

distributed and temporally continuous snowpack monitoring to an extent previously infeasible.  15 

1 Introduction 

In the Arctic, snow is an important control on permafrost, as it insulates the ground from cold winter temperatures 

(Shirley et al., 2022a). Changing snow patterns and associated ground insulation may accelerate permafrost thaw, leading to 

the release of large amounts of carbon to the atmosphere. Further, changing snow seasonality may alter the growing season 

and carbon uptake (Shirley et al., 2022b). Snow distribution is highly variable at fine spatial scales due to drifting snow that is 20 

affected by topography, vegetation, and wind (Bennett et al., 2022). Snow drifts form in topographic concavities (e.g., stream 

beds), while shrubs entrap blowing snow. These processes are poorly characterized in physics-based models (Crumley et al., 

2024), and model improvements require robust and fine-scale snow depth validation. However, monitoring the spatio-temporal 

variability of the snowpack remains a challenge. End-of-winter snow surveys in remote, high-latitude regions (e.g., Bennett et 

al., 2022) are logistically difficult but capture the spatial distribution of peak snow. Automated instruments (e.g., snow sonic 25 

sensors and Snow Telemetry (SNOTEL) stations; Fleming et al., 2023) can monitor the temporal evolution of snow depth at a 

single point in space, but spatially distributed deployment is time consuming and expensive. Remote sensing methods to detect 

snow depth spatially over time are available but remain a challenge in high latitude regions (e.g., Tsang et al. 2022). To 

overcome these challenges, we designed a machine learning (ML) algorithm to extract snow depth from small, inexpensive 

temperature sensors. The model accurately estimates snow depths at sites across Alaska and the pan-Arctic.  Snow 30 

characteristics have been identified using snow-ground interface temperature (TSG) measurements (Lundquist and Lott, 2008; 
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Staub and Delaloye, 2017), but this is the first time, to our knowledge, that a complete time series of snow depth has been 

extracted from TSG measurements alone. 

2 Methods  

We used data collected at two sites on the Seward Peninsula, Alaska (Fig. S1): 1) A 2.3 km2 gently sloping watershed 35 

located at mile marker 27 along the Nome-Teller Highway near Nome, Alaska (hereafter Teller27) and 2) a 2.5 km2 hillslope 

at mile marker 64 of the Nome-Taylor Highway (hereafter Kougarok64). The average peak snow depth from 2017-2019 at 

Teller27 was 0.96 m, with an average density of 0.31 g/cm3 (Bennett et al., 2022). In 2018, snow depth was shallower at 

Kougarok64 than at Teller27, with an average end-of-winter depth of 0.75 m and density of 0.29 g/cm3 (Bennett et al., 2022).  

2.1 Data collection at Teller27 and Kougarok64 40 

Collocated snow depth and TSG data were collected at Teller27 and Kougarok64 over the 2021-2022 snow season via 

151 paired snow and soil Distributed Temperature Profiling systems (DTPs; locations shown in Fig. S1), which measure 

temperatures above (snow DTP) and below (soil DTP) ground. Snow DTPs measure temperature in 5 cm increments (sensor 

1-7) and 10 cm increments (sensor 8-15), to a maximum height of 1.6 m (Wang et al., 2024). When a sensor is covered by 

snow, high-frequency fluctuation of temperature drops dramatically, allowing snow depth to be estimated from sensor heights 45 

(Wang et al., in prep). We estimated TSG from the temperature sensor closest to the snow-ground interface, which ranged from 

1 cm to 5 cm above the ground surface. 15-minute DTP data was averaged into 4-hour intervals to match the temporal 

resolution of miniature temperature sensors.  

Additionally, miniature iButton temperature sensors were deployed at the sites (Fig. S1). These sensors recorded TSG 

from October 1, 2022 to September 18, 2023 in 4-hour intervals. iButtons were placed in vacuum sealed bags and distributed 50 

over variable topography and vegetation types to capture a broad range of snow conditions. We use the term “shrubs” to refer 

to deciduous shrubs greater than 0.4 m tall with the capacity to reach heights over 2 m (Sulman et al., 2021). Fifty-nine iButtons 

were placed in shrubs (89 outside of shrubs) at Teller27, while 41 were placed in shrubs (48 outside of shrubs) at Kougarok64. 

2.2 Machine learning model  

Using collocated DTP TSG and snow depth estimates (Sect. 2.1), we developed a random forest ML model to predict 55 

snow depth from TSG-derived features, which we refer to hereafter as “RF-Seward”. We also tested a linear model, a simple 

neural network, and a Long Short Term Memory (LSTM) model. We chose a random forest as it outperformed or performed 

similarly to other models. A random forest is simple to design, computationally inexpensive, and easy to interpret (via feature 

importances). For example, permutation importance shows how random forest model performance changes when an input 

feature is randomly shuffled, with larger decreases in performances indicating greater feature importance (Breiman, 2001).  60 
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We trained RF-Seward on features derived from the 4-hour DTP TSG data using hyperparameter values shown in 

Table S2. To temporally situate RF-Seward (i.e., incorporate information on neighboring snow conditions) and to smooth its 

predictions, we included daily TSG standard deviations averaged over a 30-day window (length tuned using validation dataset) 

prior to, surrounding, and following each day as features in the model. Ultimately, RF-Seward generated a snow depth 

prediction for each individual day based on the following TSG-derived features (listed in order of permutation feature 65 

importance): window-surrounding, window-following, window-prior, daily TSG range, and daily TSG maximum. We also 

considered TSG minimum, mean, and standard deviation, but these features were highly correlated (Pearson’s r > 0.9) with 

other, higher performing, features. Air temperature-derived features did not measurably improve RF-Seward and are excluded 

from our final model. After finalizing RF-Seward, we retrained the model on all training (96 DTPs) and validation (24 DTPs) 

data and evaluated its performance on the randomly selected test dataset (31 DTPs). 70 

2.3 Model evaluation   

Impact of sensor burial: Temperature sensors are often buried under a small layer of soil and vegetation to protect sensors 

from direct solar radiation or to monitor soil temperatures (e.g., Lundquist and Lott, 2008). To test if ML can retrieve snow 

depth from shallow soil temperature measurements, we trained a second ML model, which we refer to as “RF-Below”. We 

used the same hyperparameters and features as RF-Seward, but calculated features from DTP subsurface temperature 75 

measurements recorded 1 to 5 cm below the ground surface. Ninety-five DTP sensors measured shallow subsurface 

temperatures (locations shown in Fig. S1), which we split into 76 training sensors and 19 test sensors. 

 

Model transferability: To test model transferability, we trained RF-Seward and RF-Below at Teller27 and tested at 

Kougarok64, and vice versa. Further, we applied RF-Seward and RF-Below to eight evaluation datasets where TSG and snow 80 

depth measurements were collocated (within approximately 5 m of each other). Sites were located in Alaska, Norway, Siberia, 

Colorado (CO), and New Mexico, with temperature sensors placed at the snow-ground interface or within the top 5 cm of soil 

(see Table S3). End-of-season snowpack bulk densities varied between sites and ranged from 0.18 g/cm3 (Samoylov Island, 

Siberia, Russia) to 0.45 g/cm3 (Senator Beck Basin, CO, USA).  Vegetation also varied across sites. At Samoylov Island, the 

temperature sensor was deployed beneath a thick layer of tundra vegetation, while sites in New Mexico consisted of sparse 85 

grasses. Prior to this evaluation, we retrained RF-Seward and RF-Below on all available DTP data (training and test data). By 

training on all available data, we aim to maximize model performance by introducing the model to a broader range of snow 

depths and temperature responses. 

 

Performance in deep snow: The training data available was limited to a maximum of 1.77 m due to the limited length of DTP 90 

probes, and thus RF-Seward and RF-Below cannot be used to estimate snow deeper than 1.77 m. To test if ML can be used to 

monitor deeper snowpacks, we trained a third ML model which we refer to as “RF-Deep”. For each evaluation site, we trained 

https://doi.org/10.5194/egusphere-2024-2249
Preprint. Discussion started: 22 August 2024
c© Author(s) 2024. CC BY 4.0 License.



4 
 

RF-Deep on data from all other evaluation sites (e.g., Senator Beck Basin, CO) and then ensured that snow depths above 2 m 

consisted of approximately 20 % of the training data.  

2.4 Model application: evaluating snow-vegetation-permafrost interactions  95 

To assess how shrubs affect snow depth and TSG, we divided the iButtons deployed at Teller27 and Kougarok64 (Sect. 

2.1) into two groups: within and outside of shrubs. We averaged TSG measurements and RF-Seward snow depth predictions 

over a period corresponding to peak snow (March 20-April 9). We used the non-parametric Wilcoxon rank-sum test (Wilcoxon, 

1945) to assess statistical differences in snow and TSG conditions between shrubs and no-shrubs.  

3 Results and discussion   100 

RF-Seward performed well on the test dataset (R2 = 0.87; RMSE = 0.15 m; Fig. 1a, g), but underestimated snow 

depths when trained at Teller27 and tested at Kougarok64 (R2 = 0.85; RMSE = 0.17 m; Fig. 1b) and overestimated when 

trained at Kougarok64 and tested at Teller27 (R2 = 0.72; RMSE = 0.23 m; Fig 1c). Differing air temperature regimes between 

Teller27 (warmer) and Kougarok64 (colder) may have contributed to these biases (i.e. same snow depth at the two locations 

corresponds to different TSG). However, all RF-Seward features were derived from TSG variability (not magnitudes), except for 105 

TSG maximum. Excluding TSG maximum from the model (not shown) did not eliminate the biases seen in Fig. 1c, d, suggesting 

that these errors may be tied to factors that affect TSG ranges (e.g., latent heat processes). RF-Below performed worse than RF-

Seward and did not transfer as well between sites (Fig. 1d – f, h, i), likely due to variability in ground insulation properties (i.e. 

soil type, vegetation, etc.) which confound the snow insulation effect. Further, warmer and/or wetter sites (e.g., Teller27) 

undergo more freezing and thawing than colder and/or dryer sites (e.g., Kougarok64), producing zero curtain periods where 110 

the key snow depth predictor (temperature variability) flattens at 0°C (Staub and Delaloye, 2017). 
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Figure 1. Performance of RF-Seward a) evaluated using test data, b) when trained at Teller27 and tested at Kougarok64, and c) 

visa versa. d-f) Same as a-c but for RF-Below. Time series plots of DTP snow depth data vs. ML estimates when g) trained at both 

sites, h) trained at Teller2, and i) trained at Kougarok64. The dotted red line shows daily temperature range, with narrower 115 
temperature ranges occurring under deeper snow cover.  

RF-Seward performed well at the two sites where TSG data were available in the Arctic: Bayelva station in Norway 

(RMSE = 0.15 m; Fig. 2a) and Imnavait Creek, on Alaska’s north slope (RMSE = 0.08 m; Fig. 2b), indicating that the model 

may be transferable to other pan-Arctic locations. Additionally, we tested RF-Seward and RF-Below at four sites in the Arctic 

where temperature was recorded below the ground surface. At Samoylov Island (Fig. 2e), sensors were placed below an 120 

insulating layer of wet tundra vegetation, which caused RF-Seward to overpredict snow depth (mean bias = 0.40 m). RF-Below 

decreased overestimations at Samoylov Island (mean bias = 0.14 m) and at other sites in Alaska (Fig. 2 c,d,f). RF-Below 

performed best at Council, likely because vegetation at these sites is most similar to vegetation at the training study sites.  

In New Mexico, paired iButtons recorded above and below ground temperature data at two sites (A and B). Predictions 

from iButtons placed above the ground surface were averaged into a single RF-Seward estimate, while predictions from 125 

iButtons placed below the ground surface were averaged into a single RF-Below estimate. At Site B, RF-Seward and RF-

Below underpredicted peak snow by about 0.07 m (Fig. 2g). RF-Seward performed better at Site A (observed peak snow = 

0.18 m; predicted = 0.16 m), although RF-Below still underpredicted by 0.10 m, possibly because the model expected 

insulating tundra vegetation. Both models performed poorly when applied in the wrong context (i.e. RF-Seward overpredicted 

peak snow by 13 cm when applied to below ground data; RF-Below underpredicted peak snow by 16 cm when applied to 130 

above ground data), indicating that excess insulation from a thin layer of soil or vegetation will be confused for snow. 
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Performance at the New Mexico sites fell within RF-Seward and RF-Below’s typical ranges, despite the higher end-

of-season bulk density compared to Arctic snow (~ 0.4 g/cm3 vs. 0.3 g/cm3). One above ground iButton erroneously showed 

delayed snowmelt due to a prolonged zero-curtain period, possibly caused by water pooling and freezing on top of the iButton’s 

vacuum-sealed bag.  Zero curtain periods were also observed in the below ground temperature data during snow-free periods 135 

of the winter, indicating the repetitive freezing and thawing of the soils. During these periods, TSG remained static, causing 

RF-Below to erroneously predict the presence of snow (e.g. early accumulation in Fig. 2g). These results suggest that RF-

Below will perform poorly for warm, ephemeral snowpacks, which are expected to become more common as the climate 

warms (Wieder et al., 2022). Zero curtain periods at the snow-ground interface can be triggered by rain-on-snow (ROS) as 

water percolates through the snowpack and freezes at the ground surface (Staub and Delaloye, 2017). In New Mexico, ROS 140 

events occurred from January 21 – 25, 2024, leading to erroneous increases in ML snow depth predictions.  

Below ground temperature data was recorded at Grand Mesa, CO (Fig. 2h), while TSG was recorded at two sites in 

Senator Beck Basin, CO (Fig. 2i-j). These sites accumulated more snow (up to 2.85 m) than the sites where RF-Seward was 

trained (maximum depth = 1.77 m), resulting in underpredictions of deep snow at these sites (Fig. 2h-j). RF-Deep predicted 

deeper snow depths than RF-Seward, although predictions still leveled off prematurely for some years (e.g., 2008 and 2009 in 145 

Senator Beck 2, Fig. 2j). RF-Deep also appeared visually noisy compared to RF-Seward, possibly due to the smaller training 

dataset and lower quality training data (i.e., temperature and snow depth measurements were not perfectly co-located). RF-

Deep’s poor performance indicates that at a certain depth, TSG may be dampened to the extent that the ML model can no longer 

accurately predict snow depth. Past research has shown that snow depths greater than 1 m can completely insulate the ground, 

although even snowpacks deeper than 4 m are not always fully insulating (Staub and Delaloye, 2017, their Fig. 5).  Because 150 

of this, it is likely that deep snow decreases the predictive value of TSG measurements, which will have a minimal effect on 

understanding soil temperature but could cause major errors when estimating water availability from snow depth predictions. 
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Figure 2. ML performance at sites in Svalbard (Norway), Alaska (USA), Siberia (Russia), New Mexico (USA), and CO (USA). 

Locations are shown on a map, with the yellow star indicating the Seward Peninsula of Alaska, where RF-Seward was trained. The 155 
color of map markers corresponds to evaluation panel outlines. f) Note adjusted color bar for Los Alamos, New Mexico. For this 

site, we also show RF-Seward and RF-Below predictions when RF-Below was applied aboveground and RF-Seward was applied 

belowground (dotted lines).   
 

Model application: Shrubs can entrain blowing snow, resulting in snow drifts (Bennett et al., 2022). Averaged from 160 

March 20th-April 9th, the ML model estimated 33.3 cm more snow for iButtons deployed in shrubs than outside of shrubs (p < 

0.001). This result may be biased low as RF-Seward rarely predicted more than 1.5 m of snow due to training data limitations. 
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TSG averaged from March 20th to April 9th was 1.65 °C warmer in shrubs than outside of shrubs (p < 0.001). This suggests 

that Arctic shrubification (Mekonnen et al., 2021) may increase snow depths, insulate the subsurface in winter, and accelerate 

permafrost thaw. Topographic and landscape characteristics can drive the formation of deep snow drifts even without the 165 

presence of shrubs (Parr et al., 2020). The iButton with the third highest snow depth prediction averaged from March 20th to 

April 9th (1.46 m) was placed in short grasses adjacent to a stream bed, which likely experienced snow drifting due to 

topographic concavity (Parr et al., 2020). Similarly, the iButton with the fourth highest snow depth prediction (1.45 m) was 

placed near the edge of dense shrubs, where snow may have also accumulated (Currier and Lundquist, 2018).  

4 Conclusions  170 

We trained a ML model to predict snow depth from variability in snow-ground interface temperature. The model 

performed well on the test dataset and at two Arctic evaluation sites (RMSE <= 0.15 m). Small temperature sensors are cheap 

and easy-to-deploy, so this technique enables spatially distributed and temporally continuous snowpack monitoring to an extent 

previously infeasible. While the model generally performed well, rain-on-snow events and zero curtain periods cause the model 

to erroneously predict snow accumulation events. Additional co-located TSG and snow depth observations could be used to 175 

retrain the ML model and enhance its transferability. For optimal performance, the model should be applied to temperatures 

recorded at the snow-ground interface. Predictions made using temperatures recorded below the ground surface were impacted 

by varying soil types, vegetation properties, and latent heat processes. Using ML predictions, we found that snow at Teller27 

and Kougarok64 was significantly deeper in shrubs than outside of shrubs (p < 0.001), and that TSG  averaged from March 20th 

to April 9th was on average 1.58 °C warmer within shrubs (p <0.001). Future research should focus on developing this 180 

technique for locations where peak snow depths exceed 1.5 m (e.g., CO), as these regions are crucial for water security across 

the world. The models developed in this study failed to accurately predict deep snow, and whether this ML technique can 

perform well under deep snow given a higher quality training dataset requires more investigation. Similarly, how varying end-

of-season snowpack bulk densities affect model results remains unclear. The sites examined here typically experienced frozen 

soil prior to snowmelt, and therefore, how unfrozen soils affect ML predictions should be explored. 185 
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Code/Data Availability: Snow depth predictions and machine learning model code are available on the Environmental System 

Science Data Infrastructure for a Virtual Ecosystem (ESS-DIVE) data portal (https://doi.org/10.15485/2371854). The data 

package includes a *.csv file of RF-Seward and RF-Below predictions at sites in Alaska, Norway, Siberia, New Mexico, and 190 

Colorado. The code package includes a *.joblib file of the trained random forest models, which can be downloaded and directly 

applied to new datasets. Example workflows for cleaning data inputs, training machine learning models, and making 

predictions are also included in a *ipynb file. iButton temperature measurements at Teller27 and Kougarok64 

(https://doi.org/10.15485/2319246) and at the Los Alamos, NM study sites (https://data.ess-

dive.lbl.gov/view/doi:10.15485/2338028) are available on ESS-DIVE.  195 
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