Preprints
https://doi.org/10.5194/egusphere-2023-792
https://doi.org/10.5194/egusphere-2023-792
28 Apr 2023
 | 28 Apr 2023

Modeling saline fluid flow through subglacial ice-walled channels and the impact of density on fluid flux

Amy Jenson, Mark Skidmore, Lucas Beem, Martin Truffer, and Scott McCalla

Abstract. Subglacial hydrological systems have impacts on ice dynamics, as well as, nutrient and sediment transport. There has been extensive effort to understand the dynamics of subglacial drainage through numerical modeling. These models, however, have focused on freshwater in warm ice and neglected the consideration of fluid chemistry such as salts. Saline fluid can exist in cold-based glacier systems where freshwater cannot and understanding the routing of saline fluid is important for understanding geochemical and microbiological processes in these saline cryospheric habitats. A better characterization of such terrestrial environments may provide insight to analogous systems on other planetary bodies. We present a model of channelized drainage from a hypersaline subglacial lake and highlight the impact of salinity on melt rates in an ice-walled channel. The model results show that channel walls grow more quickly when fluid contains higher salt concentrations which lead to higher discharge rates. We show this is due to a higher density fluid moving through a gravitational potential. This model provides a framework to assess the impact of fluid chemistry and properties on the spatial and temporal variation of fluid flux.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

25 Nov 2024
Modeling saline-fluid flow through subglacial channels
Amy Jenson, Mark Skidmore, Lucas Beem, Martin Truffer, and Scott McCalla
The Cryosphere, 18, 5451–5464, https://doi.org/10.5194/tc-18-5451-2024,https://doi.org/10.5194/tc-18-5451-2024, 2024
Short summary
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
Water in some glacier environments contains salt which increases the density of the fluid and...
Share