Preprints
https://doi.org/10.5194/egusphere-2023-589
https://doi.org/10.5194/egusphere-2023-589
17 Apr 2023
 | 17 Apr 2023

Extending MESMER-X: A spatially resolved Earth system model emulator for fire weather and soil moisture

Yann Quilcaille, Lukas Gudmundsson, and Sonia Isabelle Seneviratne

Abstract. Climate emulators are models calibrated on Earth System Models (ESMs) to replicate their behaviour. Thanks to their low computational cost, these tools are becoming increasingly important to accelerate the exploration of emission scenarios and the coupling of climate information to other models. However, the emulation of regional climate extremes and water cycle variables has remained challenging. The MESMER emulator was recently expanded to represent regional temperature extremes in the new “MESMER-X” version, which is targeted at impact-related variables, including extremes. This paper presents a further expansion of MESMER-X to represent indices related to fire weather and soil moisture. Given a trajectory of global mean temperature, the extended emulator generates spatially-resolved realisations for the seasonal average of the Canadian Fire Weather Index (FWI), the number of days with extreme fire weather, the annual average of the soil moisture and the annual minimum of the monthly average soil moisture. For each ESM, the emulations mimic the statistical distributions and the spatial patterns of these indicators. For each of the four variables considered, we calculate how much do the quantiles of the emulations deviate from those of the ESMs, resulting in good performances. Moreover, we argue that this framework can be expanded to further variables, given that it works over a large range of annual indicators. Overall, the now expanded MESMER-X emulator can emulate several climate variables, including climate extremes and soil moisture availability, and is a useful tool for the exploration of regional climate changes and their impacts.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

21 Dec 2023
Extending MESMER-X: a spatially resolved Earth system model emulator for fire weather and soil moisture
Yann Quilcaille, Lukas Gudmundsson, and Sonia I. Seneviratne
Earth Syst. Dynam., 14, 1333–1362, https://doi.org/10.5194/esd-14-1333-2023,https://doi.org/10.5194/esd-14-1333-2023, 2023
Short summary
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
Climate models are powerful tools, but with high computational costs, hindering their use to...
Share