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Abstract. Climate emulators are models calibrated on Earth System Models (ESMs) to replicate their 

behaviour. Thanks to their low computational cost, these tools are becoming increasingly important to 

accelerate the exploration of emission scenarios and the coupling of climate information to other models. 10 

However, the emulation of regional climate extremes and water cycle variables has remained challenging. 

The MESMER emulator was recently expanded to represent regional temperature extremes in the new 

“MESMER-X” version, which is targeted at impact-related variables, including extremes. This paper 

presents a further expansion of MESMER-X to represent indices related to fire weather and soil moisture. 

Given a trajectory of global mean temperature, the extended emulator generates spatially-resolved 15 

realisations for the seasonal average of the Canadian Fire Weather Index (FWI), the number of days with 

extreme fire weather, the annual average of the soil moisture and the annual minimum of the monthly 

average soil moisture. For each ESM, the emulations mimic the statistical distributions and the spatial 

patterns of these indicators. For each of the four variables considered, we evaluate the performances of 

the emulations by calculating how much do their quantiles deviate from those of the ESMs. We argue 20 

that this framework can be expanded to further variables, given how it performs over a large range of 

annual indicators. Overall, the now expanded MESMER-X emulator can emulate several climate 

variables, including climate extremes and soil moisture availability, and is a useful tool for the exploration 

of regional climate changes and their impacts. 

 25 
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1 Introduction 

Changes in climate extremes and water cycle variables have received an increased attention in recent 

years, for instance with dedicated chapters in the recent 6th Assessment Report of the Intergovernmental 

Panel on Climate Change (IPCC) (Seneviratne et al., 2021; Douville et al., 2021; Caretta et al., 2022). 30 

These assessments, also confirming the IPCC Special Report on 1.5°C of global warming (IPCC, 2018; 

Hoegh-Guldberg et al., 2018) showed that both climate extremes and changes in water cycle are 

substantially changing with increasing global warming, even when shifting from 1.5°C to 2°C of global 

warming. Evaluating the societal and economic impacts of these climate change requires different 

approaches (IPCC, 2014). They show that climate extremes and changes in water cycle affect many 35 

aspects of our societies, such as agriculture (Wiebe et al., 2015; Vogel et al., 2019; Hasegawa et al., 2021), 

the energy sector (Schaeffer et al., 2012; Perera et al., 2020), and human health (Libonati et al., 2022). 

However, exploring regional changes in climate extremes and the water cycle, as well as their associated 

impacts, remains a challenging endeavour for multiple reasons. First, climate extremes occur with a lower 

frequency, thus robust analyses require larger samples to correctly represent their distributions (Kim et 40 

al., 2020). Besides, changes in the water cycle are more challenging to represent than changes in 

temperature (Allan et al., 2020). However, impacts of changes in climate extremes and water cycle 

conditions are essential to assess in the context of climate change projections, since they may also be of 

relevance to the emissions scenarios derived by Integrated Assessment Models (IAMs) (Stehfest et al., 

2014). For instance, IAMs simulate the mitigation of climate change by using bio-energies with carbon 45 

capture and storage (BECCS) and afforestation. Yet, these nature-based solutions would be impacted by 

droughts and fires (Fuss et al., 2014; Smith et al., 2016; Anderson and Peters, 2016). Thus, accurately 

replicating regional changes in climate extremes and water conditions simulated by Earth System Models 

(ESMs) at a lower computational cost would help in exploring mitigation potentials and  new emissions 

scenarios. 50 

The MESMER emulator has been developed with this purpose, first for regional mean variables (Beusch 

et al., 2020a; Beusch et al., 2022b), and more recently also extended to the MESMER-X version 

representing TXx, the annual maximum temperatures (Quilcaille et al., 2022). Given a trajectory of global 

mean surface temperature, MESMER-X evaluates TXx for every land grid point of the Earth, over an 
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arbitrary number of emulations, reproducing the natural variability and the local statistical distributions 55 

of TXx. Each one of these emulations account for the spatial and temporal correlations in TXx. 

MESMER-X was trained on each available ESM of the Climate Model Intercomparison Project Phase 6 

(CMIP6) over 1850-2100 (Eyring et al., 2016; O'Neill et al., 2016). 

So far, climate emulators have focused on the representation of global properties (Nicholls et al., 2020; 

Nicholls et al., 2021), often without natural variability. Comparatively, there are few spatially-resolved 60 

climate emulators, and even less with natural variability (Link et al., 2019; Beusch et al., 2020a; Nath et 

al., 2021; Liu et al., 2023). There are even less emulators for climate extremes, either without representing 

natural variability (Tebaldi et al., 2020) or for a single ESM (Watson-Parris et al., 2022). Alternatives to 

emulators are also envisaged (Tebaldi et al., 2022). Good performances for the emulation of TXx over all 

available ESMs were shown for MESMER-X (Quilcaille et al., 2022), and its method has the potential to 65 

be extended to other climate extremes.  

Here, we present new extensions that build on the MESMER-X framework to emulate annual indicators 

of interest for fire weather and soil moisture (Abatzoglou et al., 2019; Cook et al., 2020). These specific 

variables were chosen because they offer a range in statistical properties to stress-test the capacity of the 

emulator in various situations. While we focus here on the emulation of annual average of the soil 70 

moisture and the annual minimum of the monthly average of the soil moisture, these variable are related 

to changes in drought occurrence (Seneviratne et al., 2021). Furthermore, fire weather and soil moisture 

are both relevant to assess the potential of nature-based solutions to mitigate climate change, such as 

BECCS and afforestation (Wang et al., 2014; von Buttlar et al., 2017; Vogel et al., 2019; Lüthi et al., 

2021). These variables are thus of high relevance for the further extension of the MESMER-X emulator. 75 

2 General method of MESMER-X 

2.1 MESMER-X as extension of MESMER 

The spatially resolved emulator MESMER provides realizations of local annual mean temperature given 

a scenario of Global Mean Surface Temperature (Δ𝑇 ) (Beusch et al., 2020a). These emulations results 

from a local average response to the global climate signal and from a local term for the natural variability. 80 
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The forced response relies on pattern scaling (Tebaldi and Arblaster, 2014; Herger et al., 2015; Alexeeff 

et al., 2018). The natural variability is a stochastic term deduced from a temporal auto-regressive process 

with spatially correlated innovations. The model can be calibrated using climate model output, e.g. from 

the CMIP6 collection (Eyring et al., 2016) using the historical simulations and the SSP scenarios up to 

2100 (O'Neill et al., 2016). Note that each ESM is calibrated separately to reproduce their individual 85 

responses. MESMER has already been used for different applications. For example, it can integrate spatial 

observational constraints to improve the local temperature projections (Beusch et al., 2020b). 

Furthermore, MESMER has also been coupled to the simple climate model MAGICC (Meinshausen et 

al., 2011), allowing for an efficient calculation of the local response to emissions scenarios, including not 

only uncertainties in modelling but also natural variability (Beusch et al., 2022b). An application of this 90 

coupling is the evaluation of the contributions of emitters to regional warming (Beusch et al., 2022a). A 

first extension of MESMER was achieved, allowing the emulation of monthly local temperatures (Nath 

et al., 2021). 

The MESMER-X emulator is an extension of MESMER, dedicated to the representation of impact-related 

variables, including climate extremes, has already been described and showcased for annual maximum 95 

temperature (Quilcaille et al., 2022). 

 

2.2 The MESMER-X approach: emulating spatially resolved climate variability by sampling from 

conditional distributions 

The method used in the MESMER-X emulator can be summarized in two steps. First, MESMER-X 100 

replaces the pattern scaling of MESMER using conditional distributions with a more flexible 

“distribution” scaling (Tebaldi and Arblaster, 2014). Then, the training of the spatio-temporal correlations 

is similar to MESMER, albeit performed not on the residuals of the pattern scaling, but by projecting the 

sample onto a standard normal distribution using a probability integral transform. 

We represent the climate variable 𝑋𝑠,𝑡  for grid points 𝑠 and at annual time steps 𝑡. Typically, 𝑋𝑠,𝑡  is 105 

deduced from CMIP6 historical and SSP scenarios, covering 1850-2100 and the whole Earth. The first 

assumption is that this variable can be represented locally by a probability distribution 𝒟. For instance, 

block-extrema (e.g. annual maximum of temperature, monthly minimum of soil moisture) may be 
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represented by a Generalized Extreme Value distribution (GEV) (Coles, 2001). Similarly, averages (e.g. 

annual mean temperature) may be represented by a normal distribution. The second assumption is that 110 

this distribution 𝒟  depends on variables expressing changes in global climate. Explicitly, the 𝑝 

parameters 𝛼𝑠,𝑡,𝑝 of 𝒟 at grid points 𝑠 are functions 𝑓𝑠,𝑝 of a matrix of global variables 𝑽𝒕. The columns 

of the matrix 𝑽𝒕 contain covariants, explanatory variables such as global mean temperature anomalies, 

while the rows of 𝑽𝒕 correspond to time steps. The functions 𝑓𝑠,𝑝 may be linear, quadratic, sigmoid or 

other functions of the covariants 𝑽𝒕. In equation (1), we summarize how the probability 𝑃 of 𝑋𝑠,𝑡 follows 115 

a distribution 𝒟 conditional on global climate through its parameters 𝛼𝑠,𝑡,𝑝 as functions 𝑓𝑠,𝑝 of changes in 

global climate 𝑽𝒕. We call configuration 𝐸 the choice of a distribution 𝒟 combined with the equations for 

𝑓𝑠,𝑝. 

𝐸: {
𝑃(𝑋𝑠,𝑡) =  𝒟( 𝑋𝑠,𝑡|𝛼𝑠,𝑡,𝑝)

𝛼𝑠,𝑡,𝑝 = 𝑓𝑠,𝑝(𝑽𝒕)
 (1) 

In the case where 𝒟 is a normal distribution and 𝑓𝑠,𝑝 is linear on the mean and constant on the standard 120 

deviation of the distribution, this approach is equivalent to (Beusch et al., 2020a). Similarly, if 𝒟 is a 

GEV, equation (1) is equivalent to the formalism introduced in the article showcasing MESMER-X 

(Quilcaille et al., 2022). 

Equation (1) offers a large flexibility in terms of modeling. Using variables such as global mean surface 

temperature, radiative forcing or ocean heat content facilitates the representation of the most relevant 125 

processes within the Earth system. Using lagged variables such as the global mean temperature at Δ𝑇𝑡−𝑛 

or accumulated warming over the past 𝑛 years would also help in representing more advanced dynamics 

such as inertias in the water cycle. Such a capacity is of particular interest for overshoot scenarios. Yet, 

equation (1) has also its limits: it would not account for changes in local climate drivers (e.g. land-use, 

combination of individual radiative forcings) that would compensate at a global scale. Such effects may 130 

still be modeled (Nath et al., 2022), but are not integrated in this framework. 

Nevertheless, these conditional distributions in each grid-cell are not enough, because they do not account 

for the spatio-temporal correlations. For instance, if the annual average soil moisture in one grid point 

happens to be lower than expected, the values in the adjacent grid points are probably also lower. To 

integrate these effects, we follow the approach of (Beusch et al., 2020a), that parametrizes internal climate 135 
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variability using the spatially autoregressive (SAR) noise model described in (Cressie and Wikle, 2011; 

Humphrey and Gudmundsson, 2019). The SAR model reproduces the temporal and spatial 

autocorrelation structure of the training data, using two components. Temporal correlations are 

represented by an auto-regressive process (equation 3). Spatial correlations are reproduced with spatially 

correlated innovations, randomly generated from a multivariate Gaussian with zero mean and covariance 140 

matrix derived from the training sample (equations 4 to 6). However, it assumes that the residual 

variability of equation (1) is stationary in time and is normally distributed. This is valid only if 𝒟 is 

assumed to be a normal distribution and if it matches the considered sample. Here, we exploit that 

equation (1) provides the local distributions of the full sample. It means that we can use a probability 

integral transform to project the training sample 𝑋𝑠,𝑡 on a standard normal distribution (Angus, 1994; 145 

Gneiting et al., 2007; Gudmundsson et al., 2012). We define ℱ𝒟 as the cumulative distribution function 

(CDF) and ℱ𝒟
−1as the quantile function of 𝒟 (or inverse CDF). We also write 𝒩 the standard normal 

distribution, with 0 mean and unit variance. We write ℱ𝒩 and ℱ𝒩
−1 respectively as its CDF and inverse 

CDF. We then employ the probability integral transform, obtaining a normalized variable Φ𝑠,𝑡, where 

Φ𝑠,𝑡 has no trend and follows a standard normal distribution such that  150 

Φ𝑠,𝑡 = ℱ𝒩
−1 (ℱ𝒟(𝑋𝑠,𝑡|𝑽𝒕, 𝑓𝑠,𝑝)) . (2) 

Note that equation (2) works equally well if 𝒟 is a discrete distribution, as illustrated in Appendix 6.1. 

The normalized variable Φ𝑠,𝑡  are then characterized using an autoregressive process with spatially 

correlated innovations (Beusch et al., 2020a). In each grid point, a temporal auto-regressive process of 

first order is fitted on Φ𝑠,𝑡, with parameters 𝛾𝑠,0 and 𝛾𝑠,1, such that 155 

Φ𝑠,𝑡 =  𝛾𝑠,0 +  𝛾𝑠,1Φ𝑠,𝑡−1 + 𝜐𝑠,𝑡 𝑤𝑖𝑡ℎ  𝜐𝑠,𝑡~𝒩(0, 𝛴𝜈(𝑟)). (3) 

The residuals 𝜐𝑠,𝑡  represents spatially correlated innovations, drawn from a multivariate normal 

distribution with means 0 and covariance matrix 𝛴𝜈(𝑟)  (Cressie and Wikle, 2011; Humphrey and 

Gudmundsson, 2019). Here, 𝑟 designs the ratio of geographical distance between points and a localization 

radius, and the next paragraphs explaining how 𝛴𝜈(𝑟) is obtained from the empirical covariance matrix. 160 
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The representation of interannual variability is discussed in Appendix 6.2. Using a first order auto-

regression allows to analytically derive the covariance matrix 𝛴𝜈(𝑟) from the covariance matrix of the 

residual variability 𝛴𝜂(𝑟) (Cressie and Wikle, 2011), such that  

𝛴𝜈(𝑟)𝑖,𝑗 = √1 − 𝛾𝑖,1
2 . √1 − 𝛾𝑗,1

2 . 𝛴𝜂(𝑟)𝑖,𝑗  (4) 

where 𝑖 and 𝑗 are two grid points. In the simplest case, 𝛴𝜂(𝑟) would be the empirical covariance matrix 165 

𝛴̃𝜂 , estimated from 𝜐𝑠,𝑡 . However, in the usual settings of climate model emulation, the resulting 

covariance matrix is rank deficient since the number of spatial locations by far exceeds the number of 

considered time steps. To compensate for this rank deficiency, the empirical covariance matrix 𝛴̃𝜂  is 

regularized using localization, an approach well established in data assimilation (Carrassi et al., 2018). 

The principle is to apply a function that conserves correlations for points relatively close to each other, 170 

but that shrinks distant points to zero. This localization is described in equation (5), with ∘ the Hadamard 

product and 𝐺 the Gaspari-Cohn function (Gaspari and Cohn, 1999) such that 

𝛴𝜂(𝑟) = 𝛴̃𝜂 ∘ 𝐺(𝑟) (5) 

Where the Gaspari-Cohn function, that takes 𝑟 as input, the ratio of the geographical distance between 

two grid points and a localization radius 𝐿, is defined as 175 

𝐺(𝑟) =

{
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 (6) 

Equations (1-6) correspond to the full training of MESMER-X, with equation (1) to train the grid-cell 

specific conditional distributions, equation (2) as interface to the training of the spatio-temporal structure 

and equations (3-6) for this final part of the training. The emulations of climate extremes for a scenario, 

typically over 1850-2100, require time series of anomalies in global climate 𝑽𝒕 over the period of the 180 

scenario, so that equation (1) generates the distributions at each grid point and each time step. Equation 

(3) generates an arbitrary number 𝑛 of realizations Φ̃𝑠,𝑡,𝑛. The emulations 𝑋̃𝑠,𝑡,𝑛 are then the consequence 

of a back probability integral transform, as described in equation (7).  

𝑋̃𝑠,𝑡,𝑛 = ℱ𝒟
−1(ℱ𝒩(Φ̃𝑠,𝑡,𝑛)|𝑽𝒕, 𝑓𝑠,𝑝) (7) 
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2.3 Configuration of MESMER-X 185 

The performance of the emulator relies principally on the two assumptions made for equation (1): the 

choice of a distribution and the equations for its parameters, i.e. the configuration 𝐸. To assess and 

compare the performances, we use the ensemble Continuous Rank Probability Score ( 𝐶𝑅𝑃𝑆 ), a 

generalization of mean absolute errors for probabilistic forecasts. The 𝐶𝑅𝑃𝑆  measures differences in the 

cumulative distribution functions of the emulations 𝑋̃𝑠,𝑡,𝑛 and of the training data 𝑋𝑠,𝑡 (Hersbach, 2000; 190 

Wilks, 2011). It is also used to define the Continuous Rank Probability Skill Score (𝐶𝑅𝑃𝑆𝑆) by comparing 

the 𝐶𝑅𝑃𝑆 of a configuration 𝐸  to the 𝐶𝑅𝑃𝑆 of a benchmark 𝐸0 . Both scores are commonly used in 

atmospheric sciences (Wilks, 2011; Jolliffe and Stephenson, 2012). Equations (8) and (9) respectively 

detail the calculation of the 𝐶𝑅𝑃𝑆 and of the 𝐶𝑅𝑃𝑆𝑆, where 𝟙 is the Heavyside step function.  

𝐶𝑅𝑃𝑆𝐸(𝑋̃𝑠,𝑡,𝑛, 𝑋𝑠,𝑡)𝑠,𝑡 = ∫
1

𝑛
∑[𝟙(𝑋 ≥ 𝑋̃𝑠,𝑡,𝑛) − 𝟙(𝑋 ≥ 𝑋𝑠,𝑡)]

2

𝑛

𝑑𝑋
+∞

−∞

 (8) 195 

𝐶𝑅𝑃𝑆𝑆𝑠,𝑡
𝐸 = 1 −

𝐶𝑅𝑃𝑆𝑠,𝑡
𝐸

𝐶𝑅𝑃𝑆𝑠,𝑡
𝐸0⁄  (9) 

Here we consider a fit with a stationary distribution as the benchmark. A high 𝐶𝑅𝑃𝑆 for this benchmark 

means that the differences between the cumulative distribution functions are too big, which implies that 

a stationary distribution does not correctly reproduce the statistical properties of the training sample, while 

a distribution reproducing perfectly the training sample would have a 𝐶𝑅𝑃𝑆 of zero (Hersbach, 2000), as 200 

illustrated with Figure A. 1, in the Appendix 6.3. A high 𝐶𝑅𝑃𝑆𝑆 for a proposed configuration means that 

it improves the reproduction of the statistical properties of the sample. To simplify the comparisons, the 

𝐶𝑅𝑃𝑆𝑆 is averaged over space, time and scenarios. 

3 Emulations for fire weather 

Many factors contribute to the burned area by wildland fires. Agricultural expansion and landscape 205 

fragmentation tend to decrease the burned area (Andela et al., 2017), though the global wildfire danger 

itself tends to increase (Jolly et al., 2015). The strong wildfires observed over the past years had their risk 

of happening increased by climate change (Li et al., 2019; van Oldenborgh et al., 2021), because it affects 
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the conditions to have ignition and spreading of wildfires. Such conditions are termed as fire weather. 

The strengthening of the fire weather favours longer-lasting and more intense fires (Abatzoglou et al., 210 

2019; Ranasinghe et al., 2021; Seneviratne et al., 2021). The effect of climate change on fire weather is 

especially strong for the extreme events of fire emissions and burned area (Jones et al., 2022; Ribeiro et 

al., 2022). The Canadian Fire Weather Index (FWI) is one of the indices used to evaluate how daily 

temperatures, precipitations, wind and relative humidity are locally conducive to the occurrence and 

spread of fires (Van Wagner, 1987; Abatzoglou et al., 2019). The FWI is relevant to investigate the 215 

impacts of fire weather, thanks to its relationships to the burned area (Bedia et al., 2015; Abatzoglou et 

al., 2018; Grillakis et al., 2022; Jones et al., 2022). 

In the following we adapt the MESMER-X framework presented in Section 2.2 for annual indicators of 

the FWI. We describe the data used for the training and emulation of the fire weather (Section 3.1), then 

extend the method of MESMER-X to the emulation of seasonal average of the FWI (Section 3.2) and the 220 

number of days with extreme fire weather (Section 3.3). 

 

3.1 Data for the annual indicators of the Fire Weather Index 

Here we consider annual indicators of the FWI computed using CMIP6 data (Quilcaille et al., 2023). The 

algorithm used combines adjustments from various packages to the original algorithm (Van Wagner, 225 

1987), each aiming at extending the applicability of the FWI (Quilcaille et al., 2023). The calculations 

were applied over the historical period and the Shared Socioeconomic Pathways scenarios used by ESMs 

(O'Neill et al., 2016). All runs with available daily temperature, relative humidity, wind speed and 

precipitations were computed, in order to maximize the number of ensemble members for the ESMs, 

reaching a total of 1486 runs. The daily FWI is regridded onto a common 2.5° x 2.5° longitude-latitude 230 

grid using second order conservative remapping (Jones, 1999; Brunner et al., 2020). 

The data presented by (Quilcaille et al., 2023) are available in four annual indicators that represent 

different aspects of fire weather: the local annual maximum of the FWI (𝐹𝑊𝐼𝑥𝑥), the number of days 

with extreme fire weather (𝐹𝑊𝐼𝑥𝑑), the length of the fire season (𝐹𝑊𝐼𝑙𝑠) and the seasonal average of the 

FWI (𝐹𝑊𝐼𝑠𝑎). Here we consider only 𝐹𝑊𝐼𝑥𝑑 and 𝐹𝑊𝐼𝑠𝑎, for a greater variety in our approaches and 235 
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less repetitions. 𝐹𝑊𝐼𝑥𝑑 is defined by counting the number of days exceeding each year a local threshold 

defined as the 95th percentile over 1850-1900, while 𝐹𝑊𝐼𝑠𝑎 is defined as the local annual maximum of a 

90-day running average over time. 

 

3.2 Emulation of the seasonal average of the Fire Weather Index 240 

To emulate 𝐹𝑊𝐼𝑠𝑎, the first step is to propose an appropriate distribution as explained in Section 2. 

𝐹𝑊𝐼𝑠𝑎 is defined as the annual maximum of a 30-days running average over time. As a block-maxima, 

a GEV distribution may represent correctly the distribution of 𝐹𝑊𝐼𝑠𝑎 (Coles, 2001). However, the 30-

days running average may be a reason to use a normal distribution. The second step for emulations is to 

propose evolutions of the parameters of the distributions. From a physical perspective, 𝐹𝑊𝐼𝑠𝑎  is a 245 

product from daily time series of temperature, relative humidity, precipitations and wind speed, which 

may support relatively elaborated expressions. From a statistical perspective, the evolutions of 𝐹𝑊𝐼𝑠𝑎 

with Δ𝑇 shows a relatively linear dependency of the average and sometimes on the spread of the samples. 

Some grid points show ground for quadratic dependencies, especially in South America. We represent in 

Figure 1 all the configurations investigated. For a normal distribution, the parameters 𝛼 introduced in 250 

equation (1) are the location and scale, written respectively 𝜇 and 𝜎 in Figure 1, corresponding to the 

mean and standard deviation of the distribution. For a GEV distribution, the parameters 𝛼 are the location, 

scape and shape, written respectively 𝜇, 𝜎 and 𝜉 in Figure 1.   
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 255 

Figure 1: Selection of the configuration for the seasonal average of the FWI (𝑭𝑾𝑰𝒔𝒂). For each 

ESM, the CRPS and CRPSS are averaged over space, time and scenarios. The darker is the colour of a 

cell, the better is the configuration at reproducing the distribution of the ESM. The upper row (white to 

black) corresponds to the CRPS of the configuration used as benchmark. A higher CRPS (lighter colour) 

indicates that the stationary distribution used as benchmark does not reproduce well the distribution of 260 

the ESM. The next rows (white to red) correspond to the CRPSS of the tested configurations, relatively 

to the benchmark. A higher CRPSS (darker colour) indicates that the proposed configuration improves 

the reproduction of the distribution of the ESM. 

A stationary GEV distribution is used as benchmark for all the other configurations. Comparing this 

benchmark 𝐸0  to a stationary normal distribution (𝐸7 ) show that the two of them are equivalent as 265 

benchmark. We note that ESMs with higher CRPS tend to have higher CRPSS. For these ESMs, stationary 

distributions are worse at representing their potentially stronger climate signal, meaning that the 
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improvement over a stationary distribution would be relatively higher. We note that the two 

configurations with the best average CRPSS are 𝐸2 and 𝐸9, that differ only by their distribution. Both 

have linear terms on the location and the scale. 𝐸2 performs slightly better than 𝐸9 because some points 270 

present skewed distributions, better represented by a GEV distribution. Using quadratic evolutions tend 

to increase the performance of the fit in only a minority of grid points while decreasing the performance 

over the rest of the land area. For this reason, the next results shown in Figure 2 and Figure 3 are performed 

using configuration 𝐸2. We point out that the local performances for this configuration are shown in the 

Appendix 6.4, along with those of the other variables emulated. 275 

𝐸2: 𝐹𝑊𝐼𝑠𝑎𝑠,𝑡 ~ 𝐺𝐸𝑉( 𝜇𝑠,0 + 𝜇𝑠,1Δ𝑇𝑡, 𝜎𝑠,0 + 𝜎𝑠,1Δ𝑇𝑡, 𝜉𝑠,0) (10) 
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Figure 2: Examples of results for the emulations of the seasonal average of the FWI (𝑭𝑾𝑰𝒔𝒂) under 280 

UKESM1-0-LL. The left column (a) represents maps of 𝑭𝑾𝑰𝒔𝒂 in 2014 according to UKESM1-0-LL 

on the first row, while the three following rows correspond to three emulations chosen randomly in the 

full set. The middle column (b) reproduces the same structure, although in 2100 of SSP5-8.5. The third 

column (c) shows time series of UKESM1-0-LL, the three emulations used for maps, but also the full 

spread of the emulations (shaded area). The rows correspond from top to bottom to the West of North 285 

America, the North of South America, a grid point in Amazonia close to Manaus and a grid point in 

Portugal close to Lisbon. 

We show examples of emulations in Figure 2a,b, illustrating the capacity of the emulator, here on 

UKESM1-0-LL shown on the top row. Be it in 2014 or in 2100, the three random emulations on the three 
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other rows reproduce the spatial patterns of the ESM. There are some minor differences that are related 290 

to internal variability (ESM) and the stochastic representation thereof (emulator). Figure 2c illustrates the 

transient responses of 𝐹𝑊𝐼𝑠𝑎 of the emulations and of the ESM over the course of SSP5-8.5. Note that 

each row of column (c) is a chosen grid point or regional average. The red dots correspond to the 

realizations by UKESM1-0-LL for all ensemble members available, while the black shaded area 

represents the distribution of emulations. Over 2014-2100, the realizations by UKESM1-0-LL remain 295 

mostly within the range of the emulations, except for the third row that corresponds to a grid point close 

to Manaus in Amazonia. Figures similar to Figure 2 are provided in the Appendix 6.5 for low and mid 

warming scenarios. 

Figure 3 provide more details on the deviation of quantiles of MESMER-X for each ESM and land region 

(Iturbide et al., 2020), thereafter called ESMs x regions. Overall, the panel (a) shows that the quantiles at 300 

97.5% of the emulations is lower than those of the ESMs, but higher for the quantiles at 2.5%, shown in 

panel (c). This underdispersion is common for spatial emulators (Beusch et al., 2020a; Quilcaille et al., 

2022), and regional aggregation contribute to this effect. For the quantile 97.5%, the deviation of quantiles 

range from +1.5% to -7.3%, with an average at -1.5%. In other words, the quantile 97.5% of the 

emulations woud actually rather be at 96% on average when compared to the ESMs. For the median, the 305 

deviations range from -8.4% to 13.3%, with an average of -0.3%. Finally, the deviations at the quantile 

2.5% range from -1.2% to 16.0%, with an average at 2.2%. We note that the stronger deviations on the 

median occur when replicating NorESM2-LM. Because MESMER-X only aims at replicating the 

behaviour of ESMs, it cannot be used to diagnose the reasons for this difference. First analysis might 

suggest that the response of 𝐹𝑊𝐼𝑠𝑎 to ΔT is stronger than for other ESMs and that quadratic terms in the 310 

configurations may have a greater importance for this model. 

In summary, the deviations of quantiles is less than 5% in absolute value for at least 92% of the ESMs x 

regions. Respectively for the quantiles 97.5%, 50% and 2.5%, these proportions of ESMs x regions below 

5% of deviation are 98%, 93% and 92%. 

 315 
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Figure 3: Deviations of quantiles for the seasonal average of the FWI (𝑭𝑾𝑰𝒔𝒂) at each ESM and 

each AR6 regions. A positive deviation of quantiles (red) indicates that the quantile of emulations is 

higher than the one of the ESM, found by counting how often the ESM crosses the threshold set by the 

emulations. The deviation is calculated on all available scenarios. The upper panel (a) shows the 320 

deviations for the quantile 97.5%, the middle panel (b) for the median and the lower panel (c) for the 

2.5% quantile. 
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3.3 Emulation of the number of days with extreme fire weather 

For emulating the number of days with extreme fire weather (𝐹𝑊𝐼𝑥𝑑 ) we consider the Poisson 325 

distribution, since it describes number of events occurring over a fixed period (Coles, 2001). Using this 

distribution implicitly assumes that the events are independent of each other, which is not exactly the case 

here. Assuming that a day matches the criteria for extreme fire weather (Quilcaille et al., 2023) for 

instance during the fire season, there are higher chances to have the next days also matching this criteria, 

compared to a period out of the fire season. Nevertheless, we choose this distribution because of its 330 

relative simplicity. Similarly to 𝐹𝑊𝐼𝑠𝑎, linear and quadratic terms are investigated given the physical 

basis and the observed responses to ΔT (Jain et al., 2022). The comparison of the envisioned 

configurations are summarized in Figure 4. Here, the parameters 𝛼 introduced in equation (1) are the rate 

𝜆 and a shift 𝜇. The training of the distribution gains in freedom using this shift of the distribution by 𝜇, 

with its mean becoming 𝜇 + 𝜆, while the variance remains 𝜆. 335 

 

 

 

Figure 4: Similar to Figure 1, although for the number of days with extreme fire weather (𝑭𝑾𝑰𝒙𝒅). 
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A stationary Poisson distribution is used as benchmark, showing a range of performances in CRPS greater 340 

for 𝐹𝑊𝐼𝑥𝑑 (9 to 15) greater than the one obtained for 𝐹𝑊𝐼𝑠𝑎 (2.1 to 2.6). Because the higher is a CRPS, 

the worse is the distribution at representing the training sample, two results can be deduced. First, 

stationary GEV distributions are much better at reproducing 𝐹𝑊𝐼𝑠𝑎 than stationary Poisson distributions 

are at reproducing 𝐹𝑊𝐼𝑥𝑑. It may be because 𝐹𝑊𝐼𝑥𝑑 has stronger responses to climate change than 

𝐹𝑊𝐼𝑠𝑎 , meaning that stationary distributions, Poisson or GEV, cannot correctly reproduce these 345 

evolutions. It may also be because the shape of a Poisson distribution cannot reproduce the shape of the 

observed 𝐹𝑊𝐼𝑥𝑑 as well as a GEV can for 𝐹𝑊𝐼𝑠𝑎. From Figure 4, we observe that the best configuration 

is 𝐸1, with only a linear evolution of the location of the distribution. The configuration 𝐸2 had almost the 

same quality, although not as good for CMCC-CM2-SR5, MPI-ESM1-2-HR and NorESM2-LM. Like 

𝐹𝑊𝐼𝑠𝑎, few grid points, especially in South America would benefit from a quadratic term. Though, 350 

increasing the complexity of the functions for the parameters improved the fit only in few grid points, 

while decreasing the performances in many other places. The configuration 𝐸1  has the best overall 

performances in spite of its simplicity, thus we use this one for the results presented in Figure 5 and Figure 

6. 

𝐸1: 𝐹𝑊𝐼𝑥𝑑𝑠,𝑡 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛( 𝜇𝑠,0 + 𝜇𝑠,1Δ𝑇𝑡, 𝜆𝑠,0) (11) 355 

 

 



18 

 

 

Figure 5: Similar to Figure 2, although for the number of days with extreme fire weather (𝑭𝑾𝑰𝒙𝒅) 

under HadGEM3-GC31-MM. The rows correspond from top to bottom to the North-West of South 360 

America, South-East Asia, a grid point in Amazonia encompassing the Jaú National Parc and a grid point 

in Democratic Republic of Congo encompassing the Salonga National Park. 

Just like Figure 2, we show in Figure 5 examples of outputs for the emulation of 𝐹𝑊𝐼𝑥𝑑. The spatial 

patterns are overall well respected, be it in 2014 or in 2100 (Figure 5a, b). There are indeed some 

differences due to natural variability. For instance, in 2014 (Figure 5a), HadGEM3-GC31-MM returns 365 

higher 𝐹𝑊𝐼𝑥𝑑 to the south of Sahel, but lower in South America. In 2100 (Figure 5b) in the centre of 
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Africa and in South-East Asia, we see differences in these patterns, though the emulations always 

relatively similar. Looking at the transient regional responses (Figure 5c), the two regions and the two 

grid points represented show that HadGEM3-GC31-MM and the emulations have similar evolutions, with 

the distribution of the emulations correctly encompassing the dispersion of the ESM. We point out one 370 

exception in these time series on the third row. This grid point in Amazonia shows that the 𝐹𝑊𝐼𝑥𝑑 of 

HadGEM3-GC31-MM increases faster than the emulations replicates. The same effect appears on the 

first row, although to a lesser extent. Some grid points in South America would benefit from a quadratic 

response to ΔT, although Figure 4 shows that a linear response has better overall performances. Figures 

similar to Figure 5 are provided in the Appendix 6.6 for low and mid warming scenarios. 375 

We show in Figure 6 the regional performances of the emulator by assessing the deviations of its quantiles 

to the ESM. On average, the emulators are -2.8% lower than ESMs for the 97.5% quantile, 4.4% higher 

for the median and 1.41% higher for the 2.5%. Overall, the emulators show lower performances in some 

regions such as South-East Asia, as shown in Figure 5, or to mimic some models such as NorESM2-LM. 

Reasons for the latter cannot be pinpointed to specific processes, as explained in Section 3.2. We observe 380 

that the median shows overall lower performances than for the tails of the distribution. 

To summarize the performances on 𝐹𝑊𝐼𝑥𝑑, the deviations of quantiles are less than 5% in absolute value 

for 95% of the ESMs x regions at the 97.5% quantile. At the 2.5% quantile, the fraction of these ESMs x 

regions below 5% of deviation decreases to 92%. However, at the median, only 54% of the ESMs x 

regions are below 5% of deviation. A potential explanation may be the temporal dependence of the events, 385 

not respecting one of the conditions for the use of a Poisson distribution. As detailed at the beginning of 

this section, this work using a Poisson distribution is a first attempt with discrete distributions. Using 

other distributions that would not assume independent events may improve these results but would require 

a higher degree of complexity. 
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 390 

Figure 6: Similar to Figure 3, although for the number of days with extreme fire weather (𝑭𝑾𝑰𝒙𝒅). 
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4 Emulations for soil moisture 

4.1 Data for the annual indicators of soil moisture 

We base the annual indicators for soil moisture on the total soil moisture content (CMIP6 variable mrso). 

Ideally, soil moisture in the root zone would be more relevant to investigate droughts. Thus, soil moisture 395 

in soil layer (CMIP6 variable mrsos or mrsol) would have been more adapted (Qiao et al., 2022). 

Similarly, the total soil moisture content includes all water phases, thus frozen soil moisture as well. We 

deem that the total soil moisture content remains relevant for droughts, in regions without high frozen 

soil moisture, that is to say not higher latitudes or mountainous regions like the Himalaya. Nevertheless, 

a majority of ESMs only provide the total soil moisture content, thus choosing this variable ensures that 400 

the capacity of the emulator can be evaluated on more models and ensemble members. 

Before computation of the annual indicators, the total soil moisture content of all available CMIP6 runs 

is regridded onto a common 2.5° x 2.5° longitude-latitude grid using second order conservative remapping 

(Jones, 1999; Brunner et al., 2020). 

Two annual indicators are deduced from the total soil moisture content. By averaging this variable over 405 

the year, we obtain the annual average of soil moisture (𝑆𝑀). Besides, we calculate the average over each 

month and deduce their minimum, thus obtaining the annual minimum of the monthly average soil 

moisture (𝑆𝑀𝑚𝑚). These two annual indicators are both relevant to assess the evolutions of droughts 

(Cook et al., 2020). The annual average 𝑆𝑀 provides an indicator for the whole year, while the annual 

minimum 𝑆𝑀𝑚𝑚 informs about the worst period of the year. 410 

 

4.2 Emulation of the annual average of soil moisture 

As for the fire weather, the first step for emulation is to choose a proper distribution. As an annual average, 

𝑆𝑀 may be represented by a normal distribution according to the central limit theorem. The second step 

is to propose evolutions for the parameters. The impact of global temperature on the local total soil 415 

moisture content is not as straightforward as for the two former cases. Many processes affect this variable, 

through evapotranspiration, precipitations or runoff (Cook et al., 2020). Some regions show a decreasing 

trend in the soil moisture, others an increase (van den Hurk et al., 2016; Qiao et al., 2022). A first choice 
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could be to propose a linear evolution on the mean (Greve et al., 2018). Though, going through local 

responses of 𝑆𝑀 to ΔT show that they may often be non-linear, e.g. following a sigmoid response. Such 420 

responses are characteristic of an evolution between two regimes, illustrated in Figure 7. 

Another feature of these local responses are lagged effects. The response under SSP1-2.6 (blue points) 

decreases faster with ΔT than SSP2-4.5 (dark green points). The same effect happens with SSP3-7.0 

(brown points) and SSP5-8.5 (orange points). The faster the warming increases and the slower is the slope 

in the response of 𝑆𝑀 to ΔT. A potential explanation would be that different timescales are at play in the 425 

response of 𝑆𝑀 to ΔT. In high warming scenarios, the ΔT increases relatively fast to the response of 𝑆𝑀 

to the change in ΔT, not letting the 𝑆𝑀 stabilize. In SSP1-2.6 however, the ΔT stabilizes, allowing the 

𝑆𝑀 to stabilize as well. To a broader extent, this effect is related to the response of the whole water cycle, 

with rapid adjustments and slow feedback responses, both in precipitations and evapotranspiration(Allan 

et al., 2020). Different methods may be used to represent the effect of different timescales, such as lagged 430 

variables or impulse response functions. Here, as a first attempt to reproduce this effect, we will test in 

the configuration a lagged variable using the Δ𝑇 at the former year. This lagged variable is obtained by 

shifting the Δ𝑇 of the ESM by one year. From a modeling perspective, having both Δ𝑇𝑡  and Δ𝑇𝑡−1 is 

equivalent to having the value at year 𝑡 and its first derivative. 

 435 
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Figure 7: Example of local response of the annual average soil moisture (𝑺𝑴) to ΔT under CNRM-

CM6-1. The grid point is in Sichuan, in the vicinity of Chengdu, the same one shown in Figure 9, column 

(c), fourth row. The distribution shown follows the configuration 𝑬𝟒 described in equation (12). 

Figure 8 shows the results for all the tested configurations, with the coefficients 𝜇 and 𝜎 corresponding 440 

respectively to the location and the scale of the normal distribution. For all ESMs except ACCESS-ESM1-

5 and CNRM-ESM2-1, the best performances according to the CRPSS are met with 𝐸4. For these two 

other ESMs, the better configuration 𝐸5 differs only from the linear response on the standard deviation of 

the distribution. We note that introducing a logistic response on the mean (𝐸3) improves the performances 

in a large majority of the grid points, more than a linear effect (𝐸1). Introducing the lagged effect has an 445 

effect not as clear (𝐸4), because the CRPSS is averaged over time and scenarios. Given these results, we 
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choose to use the configuration with the best performances for most ESMs. The results presented in Figure 

9 and Figure 10 will then use the configuration 𝐸4. 

𝐸4: 𝑆𝑀𝑠,𝑡 ~ 𝒩 ( 𝜇𝑠,0 + 𝜇𝑠,𝐿 +
𝜇𝑠,𝑅 − 𝜇𝑠,𝐿

1 + 𝑒𝑥𝑝(𝜆𝑠,1Δ𝑇𝑡 + 𝜆𝑠,2Δ𝑇𝑡−1 − 𝜇𝑠,𝜀)
, 𝜎𝑠,0) (12) 

 450 

  

 

Figure 8: Similar to Figure 1, although for the annual average soil moisture (𝑺𝑴). 

In Figure 9, we illustrate the emulations of 𝑆𝑀 for CNRM-CM6-1. Just like for 𝐹𝑊𝐼𝑠𝑎 (Figure 2) and 

𝐹𝑊𝐼𝑥𝑑 (Figure 5), the spatial patterns are correctly reproduced. Note that the mean climate signal is 455 

dominating and thus effects of internal variability are hardly visible. The time series in Figure 9c show, 

however, that the natural variability is in general well reproduced over the course of SSP5-8.5. In the 

region West & Central Europe, the ESM seems to be often below the 5% quantile of the emulations, 

especially around 2050. In the region West of Southern Africa, the spread of the distribution is relatively 

large, but represents relatively well the spread of the ESM in this region. We point out that the six 460 

ensemble members shown in this figure combined to the large regional spread show many points 

relatively far from the 90% range of the emulations, but the repartition of the realizations by CNRM-

CM6-1 in this region is still well respected. Figure 9c shows however that some aspects of the dynamics 

are not entirely captured by the emulator, such as the short increase over 2040-2050 in Brazil. It may 

indicate that choosing the Δ𝑇 over the former year is not good enough to represent lagged effects, or that 465 
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there are additional processes that cannot be represent as such by MESMER-X. Figures similar to Figure 

9 are provided in the Appendix 6.7 for low and mid warming scenarios. 

In Figure 10, we show the deviations on the regional quantiles of the emulations in each ESM x region. 

Just like with 𝐹𝑊𝐼𝑠𝑎 (Figure 3) and 𝐹𝑊𝐼𝑥𝑑 (Figure 6), the emulations are overall underdispersive. The 

97.5% quantile (panel a) shows that the emulations have their quantiles -1.9% on average lower than their 470 

ESMs counterparts, up to -10.3%. There, the lower performances of MESMER-X occur in Sahara and in 

South-East Asia. Panel (b) shows that the median of emulations are on average 0.4% higher than the 

ESMs, these deviations ranging from 18.9% to -12.7%. We note lower performances in regions of 

Australia and in the Caribbean. Finally, the deviations on the 2.5% quantile shows that the emulations are 

on average 1.5% higher than the ESMs, up to 15.7% of deviations. The emulator for FGOALS-g3 exhibits 475 

lower performances than for other ESMs, although the reason for this remains unclear. 

As a summary on the performances of the emulations of 𝑆𝑀, the deviations are limited to 5% in 96% of 

the ESMs x regions at the 97.5% quantile, 88% at the median and 97% at the 2.5% quantile. 

 

 480 
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Figure 9: Similar to Figure 2, although for the annual average soil moisture (𝑺𝑴) under CNRM-

CM6-1. The rows correspond from top to bottom to the West & Central Europe, the West of South Africa, 

a grid point in the west of Brazil in Acre and a grid point in Sichuan close to Chengdu. 485 



27 

 

 



28 

 

Figure 10: Similar to Figure 3, although for the annual average soil moisture (𝑺𝑴). 

 

4.3 Emulation of the annual minimum of the monthly average of soil moisture 

Emulating the annual minimum of the monthly average soil moisture is analogue to the emulation of 490 

annual average soil moisture. As an average over a month, 𝑆𝑀𝑚𝑚 may be represented using a normal 

distribution, although as the minimum over the months, it may be represented by a GEV distribution. 

Though, sampling a block-maxima over 12 values, the months, is too small to converge towards a GEV 

distribution. Thus, a normal distribution is used. Checking the local evolutions of the sample leads to 

similar observations than observed for the annual average of the soil moisture illustrated in Figure 7. 495 

Thus, the same configurations are used for 𝑆𝑀𝑚𝑚 than for 𝑆𝑀. 

  

 

Figure 11: Similar to Figure 1, although for the annual minimum of the monthly average of soil 

moisture (𝑺𝑴𝒎𝒎). 500 

We summarize in Figure 11 the performances for the emulations of 𝑺𝑴𝒎𝒎  over the different 

configurations, with the coefficients 𝝁 and 𝝈 corresponding respectively to the location and the scale of 

the normal distribution. The configuration with the best performances is 𝑬𝟒, with the mean as a logistic 

function of 𝚫𝑻 at the year and the former year, while the standard deviation remains constant.  
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𝐸4: 𝑆𝑀𝑚𝑚𝑠,𝑡 ~ 𝒩 ( 𝜇𝑠,0 + 𝜇𝑠,𝐿 +
𝜇𝑠,𝑅 − 𝜇𝑠,𝐿

1 + 𝑒𝑥𝑝(𝜆𝑠,1Δ𝑇𝑡 + 𝜆𝑠,2Δ𝑇𝑡−1 − 𝜇𝑠,𝜀)
, 𝜎𝑠,0) (13) 505 

Note that both 𝑺𝑴 and 𝑺𝑴𝒎𝒎 have the same best configuration. Both annual indicators are averages 

and 𝑺𝑴𝒎𝒎 has for upper limit 𝑺𝑴, which may explain this result. We also note that ACCESS-CM2 

shows better performances with a linear evolution of the standard deviation, though the opposite occurs 

with NorESM2-LM. Without logistic evolution, we note lower performances for high warming scenarios, 

because linear fits fail at reproducing the non-linear evolutions at high 𝚫𝑻. Without 𝚫𝑻 at the former year, 510 

the performances of the emulations are reduced for low warming scenarios, because the water cycle get 

more time to stabilize to the current regime.  

 

The results for the emulations of 𝑆𝑀𝑚𝑚 under this configuration are illustrated in Figure 12. The spatial 

patterns of the ESM shown here on the top row, CNRM-CM6-1, are correctly reproduced by the 515 

emulations on the three following rows. The right column shows that the regional responses are correctly 

reproduced, with a majority of the ESM points being within the range of the emulations. Their dispersions 

seem to respect the distribution of the emulation, as will be confirmed with the regional performances in 

Figure 13. Just like 𝑆𝑀, the realizations by CNRM-CM6-1 in the grid point in Brazil on the third row of 

column (c) shows a decrease in 𝑆𝑀𝑚𝑚 over 2020-2050, then an increase over 2050-2060, then a decrease 520 

over 2060-2100. In the meantime, the emulations fail to reproduce these evolutions, decreasing at a slower 

pace over 2020-2050 and not increasing over 2050-2060. The processes explaining for such evolutions 

are not reproduced by the emulator, and more research would be needed to integrate them. Figures similar 

to Figure 12 are provided in the Appendix 6.8 for low and mid warming scenarios. 

The performances of the emulations for the retained configuration for 𝑆𝑀𝑚𝑚 are shown in Figure 13. 525 

The deviations of quantiles of the emulations to the ESMs are summarized for each ESM and AR6 region 

respectively at the quantile 97.5%, 50% and 2.5%. The emulators are here again overall underdispersive. 

On average, the fraction of points above the 97.5% quantile of emulations indicate that this quantile of 

the emulations are too low by -2.0%. At the median, the emulations are +1.1% too high. At the 2.5% 

quantile, the emulations are +1.4% too high. The fraction of ESMs x regions with a deviation of quantiles 530 

limited to 5% is limited to 96% for both 97.5% and 2.5% quantiles and at 85% for the median. Overall, 
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the distributions are relatively well reproduced, although some regions show lower performances. Here 

again, the emulator performs lower in South-East Asia than in the other regions. As explained in other 

sections, this may be an effect of less land grid points affecting the reproduction of spatial correlations. 

On the median, the emulator of MCM-UA-1 has lower performances than for the other ESMs. The 535 

emulator of NorESM2-LM has lower performances on the two other shown quantiles. These results 

cannot be used directly to diagnose different effects in the ESMs. Instead, further research will be needed 

to understand and integrate these effects in the modelling framework of MESMER-X.  

 

 540 
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Figure 12: Similar to Figure 2, although for the annual minimum of the monthly average of soil 

moisture (𝑺𝑴𝒎𝒎) under CNRM-CM6-1. The rows correspond from top to bottom to the West & 

Central Europe, the West of South Africa, a grid point in the west of Brazil in Acre and a grid point in 

Sichuan close to Chengdu. 
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Figure 13: Similar to Figure 3, although for the annual minimum of the monthly average of soil 

moisture (𝑺𝑴𝒎𝒎). 

5 Conclusions 

The emulator MESMER-X, an extension of the MESMER emulator (Beusch et al., 2020a; Beusch et al., 

2022b) which is focused on the emulation of impact-relevant variables, including extremes, was 550 

introduced and showcased for TXx (Quilcaille et al., 2022), suggesting a potential for extension to other 

climate variables. Here, we have confirmed this potential with a range of yearly indicators of the fire 

weather index and soil moisture. We illustrated that several distributions may be used in this framework, 

such as the GEV for TXx and FWIsa, the normal distribution for SM and SMmm and finally the Poisson 

distribution for FWIxd. It clearly shows how the MESMER-X framework can be easily adapted to sample 555 

from additional probability distribution, thereby facilitating its adaptation to further climate variables. 

Moreover, the non-linear response of soil moisture to global mean temperature required a more 

sophisticated parameterization, including a logistic response and the consideration of time-lagged 

predictor variables. This latter extension highlights that the MESMER-X setup can be easily adapted to 

also account for a non-linear climate response in the considered variable. 560 

We have shown good performances for these emulators, typically with deviation on quantiles limited to 

5% in about 90% of the ESMs x AR6 regions, with variations on the indicators and quantiles. We have 

pointed out some limitations. The main one was observed with FWIxd, with lower performances on the 

median of emulations. In this case, the Poisson distribution may not be adequate, more flexibility in the 

moments of the distribution may be necessary for instance to allow fat tails. Another limitation is that 565 

there are regions that would benefit from local responses with different parametrizations, e.g. with fire 

indicators in South America. Such effects have not been accounted for here, to preserve simplicity in the 

modeling. Making parametrizations dependent on the grid point would be a solution but wasn’t 

implemented for this article. Finally, some local aspects of the dynamics are not captured by the 

emulations, e.g. with soil moisture indicators in Amazonia. Using time-lagged predictors may be not good 570 

enough locally, or there may even be processes that cannot be entirely captured in this framework. 
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Given these results, the further expanded MESMER-X emulator is capable of emulating several annual 

impact-related variables, including climate extremes and a drought-related water-cycle variable, with 

satisfactory performances. It can emulate variables distributed over GEV, normal and Poisson 

distribution. Linear, quadratic and logistic evolutions on the parameters have been shown here. An 575 

example of lagged effect is shown here. This method is very flexible, relatively simple, and yet has good 

performances. We have identified limitations, but also proposed potential solutions. 

The expanded MESMER-X is thus a tool now capable of exploring impact-related variables, including 

climate extremes and a drought-related water-cycle variable, and may be used to provide information to 

assess climate impacts under a range of emissions scenarios, also upcoming scenarios to be developed in 580 

preparation to the 7th Assessment report of the IPCC. As such, the MESMER-X emulator is 

complementary to the ESMs: it relies on ESMs for training but is fast enough for coupling with other 

models in need of climate information. Finally, ESMs may carry some biases (Kim et al., 2020), even on 

climate extremes (Schewe et al., 2019). Tools such as MESMER-X may foster the integration of 

observations constraints to correct these biases. 585 

6 Appendices 

6.1 Application of a Probability Integral Transform to discrete distributions 

The Probability Integral Transform (PIT) introduced in Equation (2) of the manuscript transforms values 

from a known distribution to another distribution, here a normal distribution of mean 0 and standard 

deviation 1, thus “gaussianising” the sample. We illustrate here how the PIT applies to discrete 590 

distributions. For the sake of clarity, these explanations are not based solely on statistical data instead of 

climate data. 

We consider here a GEV distribution and a Poisson distribution. To facilitate the comparison, the 

parameters are picked so that their cumulative distribution functions (CDFs) would be relatively similar. 

We show in Figure A. 1 their respective CDFs, how the PIT would apply to two values. 595 

We note that events with a value of 4 would have higher transformed values under a Poisson distribution 

than under a GEV distribution. This observation may raise issues regarding the use of a PIT for a discrete 
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distribution. However, we remind that a value of 4 is representative of the values in the interval [3.5; 4.5[. 

Thus, over [3.5; 4[, the transformed values over a Poisson distribution would be below those of a GEV, 

while over [4; 4.5[, they would be higher than those of a GEV. According to this effect, applying a PIT 600 

to a discrete distribution would lead to partially compensating errors. 

Intervals from the discrete distribution are represented by a single value, thus a single value in the 

“gaussianised” space. However, the realizations from the auto-regressive process with spatially correlated 

innovations are back-transformed using another PIT, as described in Equation (7). These realizations are 

continuous, not taking only the values taken by a Poisson distribution after PIT. As such, the same effect 605 

occurs, though in the other way round: intervals of values in the realizations are transformed into single 

values. 

As a result, applying a PIT to a discrete distribution appears to have the intended effect. This is due to the 

matching of intervals of values to single values, which lead to partially compensating effects. 

Furthermore, this effect occurs another time during the back transformation. We acknowledge the extent 610 

of the compensations of these effects, will investigate further in this direction and welcome other 

contributions. 

 

Figure A. 1: Illustration of a Probability Integral Transform applied to continuous and discrete 

distributions. 615 
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6.2 Representation of the interannual variability for each variable 

An important aspect of the impacts of climate change is their potential persistency. Hazardous climate 

conditions impact the Earth system and our societies, but such conditions maintained over several years 

may result in even higher impacts. For instance, droughts lasting several years would have stronger 

impacts in terms of food security than the impacts of non-adjacent droughts. 620 

As such, representing the interannual variability matters when emulating variables related to climate 

impacts or the water cycle. In MESMER-X, it is modeled using an auto-regressive process of 1st order, 

as shown in equation (3). It is applied on the climate variable after the probability integral transform of 

equation (2), to ensure a “gaussianised” distribution, required by the auto-regressive process. However, 

the training of this process is performed over the whole training sample, and the interannual variability of 625 

the ESM may change over time, for instance due to changes in large scale oscillations.  

Here, we evaluate the local evolutions of the interannual variability in the trained ESMs and is 

representation by MESMER-X. For each climate variable emulated in this paper, we use the ESM used 

for illustration of its emulator in time series and maps. We choose three periods, the preindustrial (1851-

1900), the end (2051-2100) of a low warming scenario SSP1-2.6 and the end (2051-2100) of a high 630 

warming scenario SSP5-8.5. In each case, we apply the probability integral transform as shown in 

equation (2), as a form of detrending and so that the new sample follows a standard normal distribution. 

In each grid point, we calculate an auto-regressive process of 1st order, and average its coefficient over 

available members. For the emulator, we verify that these calculation effectively lead to the parameters 

𝛾𝑠,1 of equation (3), because the spatially correlated innovations over the realizations. All these results 635 

are shown in Figures A.15 to A.18. 

These figures show that all the variables presented in this article are mostly positively correlated. Besides, 

𝑆𝑀 and 𝑆𝑀𝑚𝑚 have higher correlations than 𝐹𝑊𝐼𝑠𝑎 and 𝐹𝑊𝐼𝑥𝑑. This is due to inertias in the water 

cycle, with relatively long recovery time from droughts. The evolutions of these correlations in the ESM 

are relatively slow, mostly in Québec, Greenland and in Murmansk. Its MESMER-X counterpart is the 640 

average in time of these correlations, thus reproducing well the interannual variability of the ESM. 
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Figure A. 2: First order coefficient of a temporal auto-regressive process for 𝑭𝑾𝑰𝒔𝒂  with 

UKESM1-0-LL and MESMER-X using the configuration presented in equation (10). 

 645 

Figure A. 3: First order coefficient of a temporal auto-regressive process for 𝑭𝑾𝑰𝒙𝒅  with 

ACCESS-CM2 and MESMER-X using the configuration presented in equation (11). 
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Figure A. 4: First order coefficient of a temporal auto-regressive process for 𝑺𝑴 with CNRM-CM6-

1 and MESMER-X using the configuration presented in equation (12). 650 

 

Figure A. 5: First order coefficient of a temporal auto-regressive process for 𝑺𝑴𝒎𝒎 with CNRM-

CM6-1 and MESMER-X using the configuration presented in equation (13). 

 

6.3 Interpretability of the CRPS 655 

All CRPS scores of this manuscript have been calculated thanks to the Python package properscoring 

available at https://pypi.org/project/properscoring/, more specifically with its function calculating 

crps_ensemble. Below is an illustration of the CRPS obtained using this function.  

https://pypi.org/project/properscoring/
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For interpretability of the CRPS, one may consider the expression for an observation X and the Normal 

distribution, with 𝑓  and ℱ  respectively its probability density and cumulative distribution functions, 660 

derived from the equation 8.55, p. 353 of (Wilks, 2011): 

𝐶𝑅𝑃𝑆 =  𝜎 (𝑋(2 ℱ𝒩(𝑋, 𝜇, 𝜎) − 1) + 2𝑓𝒩(𝑋, 𝜇, 𝜎) −
1
√𝜋
⁄ ) 

Similar equations may be obtained for a GEV from equation 9 of (Friederichs and Thorarinsdottir, 2012), 

or other distributions (http://cran.nexr.com/web/packages/scoringRules/vignettes/crpsformulas.html).  

 665 

Figure A. 6: CRPS obtained with an observed value of 5 and gaussian distributions sampled over 

10.000 members over different values of its parameters. 

 

6.4 Performances of the emulators for each variable 

The grid-cell level parameters of MESMER-X are trained by minimizing the negative log-likelihood of 670 

the training sample given a prescribed configuration for each grid-cell independently. We show here the 

averaged negative log-likelihood at the grid cell level for the retained configuration and with the ESM 

used to illustrate the performances of MESMER-X. The value is averaged to account for the number of 

time steps used during training and facilitate the comparisons. 

http://cran.nexr.com/web/packages/scoringRules/vignettes/crpsformulas.html
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 675 

Figure A. 7: Negative log-likelihood obtained during training of MESMER-X on 𝑭𝑾𝑰𝒔𝒂 using the 

configuration presented in equation (10) and for the ESM used in Figure 2. 

 

Figure A. 8: Negative log-likelihood obtained during training of MESMER-X on 𝑭𝑾𝑰𝒙𝒅 using the 

configuration presented in equation (11) and for the ESM used in Figure 5. 680 



41 

 

 

Figure A. 9: Negative log-likelihood obtained during training of MESMER-X on 𝑺𝑴 using the 

configuration presented in equation (12) and for the ESM used in Figure 9. 

 

Figure A. 10: Negative log-likelihood obtained during training of MESMER-X on 𝑺𝑴𝒎𝒎 using 685 

the configuration presented in equation (13) and for the ESM used in Figure 12. 
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6.5 Emulations of the seasonal average of the Fire Weather Index over low and mid warming 

scenarios 

In Section 3.2, we emulate the seasonal average of the Fire Weather Index (𝐹𝑊𝐼𝑠𝑎), that we illustrate in 

Figure 2 with the high warming scenario SSP5-8.5. While this scenario allows to explore a large range of 690 

warming for the model, it does not show evolutions over more advisable warming ranges, nor does it 

show potential stabilisation effects over low warming scenarios. Here, we produce the equivalent of 

Figure 2 for SSP1-2.6 and SSP2-4.5. 

  

Figure A. 11: Similar to Figure 2, although with the mid warming scenario SSP2-4.5. 695 
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Figure A. 12: Similar to Figure 2, although with the low warming scenario SSP1-2.6. 

6.6 Emulations of the number of days with extreme fire weather over low and mid warming 

scenarios 

Like done in Section 6.3 for the seasonal average of the Fire Weather Index, we extend Section 3.3, where 700 

we emulated the number of days with extreme fire weather (𝐹𝑊𝐼𝑥𝑑) and illustrated in Figure 5 with the 

high warming scenario SSP5-8.5. Again, while this scenario allows to explore a large range of warming 

for the model, it does not show evolutions over more advisable warming ranges, nor does it show potential 

stabilisation effects over low warming scenarios. Here, we produce the equivalent of Figure 5 for SSP1-
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2.6 and SSP2-4.5. We highlight that the SSP2-4.5 was not provided by the ESM HadGEM3-GC31-MM. 705 

Also, its counterpart HadGEM3-GC31-LL provided only one member for SSP1-2.6. For the sake of 

visualisation, we opt to show the results with ACCESS-CM2 which provided 5 members for both SSP1-

2.6 and SSP2-4.5. 

 

Figure A. 13: Similar to Figure 5, although with ACCESS-CM2 and the mid warming scenario 710 

SSP2-4.5. 
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Figure A. 14: Similar to Figure 5, although with ACCESS-CM2 and the low warming scenario 

SSP1-2.6. 

 715 

6.7 Emulations of the annual average of the soil moisture over low and mid warming scenarios 

Like done in Section 6.3 for the seasonal average of the Fire Weather Index, we extend Section 4.2, where 

we emulated the annual average of the soil moisture (𝑆𝑀) and illustrated in Figure 9 with the high 

warming scenario SSP5-8.5. Again, while this scenario allows to explore a large range of warming for 
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the model, it does not show evolutions over more advisable warming ranges, nor does it show potential 720 

stabilisation effects over low warming scenarios. Here, we produce the equivalent of Figure 9 for SSP1-

2.6 and SSP2-4.5. 

In Figure A. 16, the time series on the last row show that the emulations are more optimistic than the ESM 

in this grid point from 2080. A potential explanation would be that the effect introduced by lagged 

temperatures becomes too strong. As outlined in this article, different parametrizations of the inertias in 725 

the water cycle may improve the representation of such local effects or having parametrizations depending 

on the grid point instead of being identical for all of them. 
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Figure A. 15: Similar to Figure 9, although with the mid warming scenario SSP2-4.5. 

 730 

Figure A. 16: Similar to Figure 9, although with the low warming scenario SSP1-2.6. 

6.8 Emulations of the annual minimum of the monthly average soil moisture over low and mid 

warming scenarios 

Like done in Section 6.3 for the seasonal average of the Fire Weather Index, we extend Section 4.3, where 

we emulated the annual average of the soil moisture (𝑆𝑀𝑚𝑚) and illustrated in Figure 12 with the high 735 

warming scenario SSP5-8.5. Again, while this scenario allows to explore a large range of warming for 

the model, it does not show evolutions over more advisable warming ranges, nor does it show potential 
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stabilisation effects over low warming scenarios. Here, we produce the equivalent of Figure 12 for SSP1-

2.6 and SSP2-4.5.  

 740 

Figure A. 17: Similar to Figure 12, although with the mid warming scenario SSP2-4.5. 
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Figure A. 18: Similar to Figure 12, although with the low warming scenario SSP1-2.6. 
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