Preprints
https://doi.org/10.5194/egusphere-2023-190
https://doi.org/10.5194/egusphere-2023-190
15 Mar 2023
 | 15 Mar 2023

Bridging the spatial gaps of the Ammonia Monitoring Network using satellite ammonia measurements

Rui Wang, Da Pan, Xuehui Guo, Kang Sun, Lieven Clarisse, Martin Van Damme, Pierre-François Coheur, Cathy Clerbaux, Melissa Puchalski, and Mark A. Zondlo

Abstract. Ammonia (NH3) is a key precursor to fine particulate matter (PM2.5) and a primary form of reactive nitrogen. The limited observations of NH3 hinders further understanding of its impacts on air quality, climate, and biodiversity. Currently, NH3 ground monitoring networks are limited in number across the globe, and even in the most established networks, large spatial gaps exist between sites and only a few sites have records that span longer than a decade. Satellite NH3 observations can be used to discern trends and fill spatial gaps in networks, but many factors influence the syntheses of the vastly different spatiotemporal scales between surface networks and satellite measurements. To this end, we intercompared surface NH3 data from the Ammonia Monitoring Network (AMoN) and satellite NH3 total columns from the Infrared Atmospheric Sounding Interferometer (IASI) in the contiguous United States (CONUS) and then performed trend analyses using both datasets. We explored the sensitivity of correlations between the two datasets to factors such as satellite data availability and distribution over the surface measurement period as well as agreement within selected spatial and temporal windows. Given the short lifetime of atmospheric ammonia and consequently sharp gradients, smaller spatial windows show better agreement than larger ones except in areas of relatively uniform, low concentrations where large windows and more satellite measurements improve the signal-to-noise ratio. A critical factor in the comparison is having satellite measurements across most of the measurement period of the monitoring site. When IASI data are available for at least 80 % days of AMoN’s 2-week sampling period within a 25 km spatial window of a given site, IASI NH3 column concentrations and the AMoN NH3 surface concentrations have a correlation of 0.74, demonstrating the feasibility of using satellite NH3 columns to bridge the spatial gaps existing in the surface network NH3 concentrations. Both IASI and AMoN show increasing NH3 concentrations across CONUS (median: 6.8 % · yr−1 vs. 6.7 % · yr−1) in the last decade (2008–2018), stressing the rising importance of NH3 in terms of nitrogen deposition. NH3 trends for AMoN sites correlates with IASI NH3 trend IASI and AMoN NH3 trend (r = 0.66) and show a similar spatial pattern, with the highest increases in the Midwest and eastern U.S., and NH3 trend for AMoN sites correlates with IASI NH3 trend (r = 0.66). In spring and summer, increases of NH3 were larger than 10 % · yr−1 in the eastern U.S. and Midwest (cropland dominated) and western U.S. (pastureland dominated), respectively. In terms of trend in NH3 hotpots (defined as regions where the IASI NH3 column is larger than the 95th percentile of 11-year CONUS map, 6.7 × 1015 molec/cm2), these largest emissions sources are also experiencing increasing concentrations over time with the median of NH3 trend is 4.7 % · yr−1. IASI data show large NH3 increases in urban areas (8.1 % · yr−1), including 8 of the top 10 most populous regions in the CONUS, where AMoN sites are sparse. The increasing NH3 could have detrimental effects on nearby eco-sensitive regions through nitrogen deposition and on aerosol chemistry in the densely populated urban areas, hence needs immediate attention.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.

Journal article(s) based on this preprint

19 Oct 2023
Bridging the spatial gaps of the Ammonia Monitoring Network using satellite ammonia measurements
Rui Wang, Da Pan, Xuehui Guo, Kang Sun, Lieven Clarisse, Martin Van Damme, Pierre-François Coheur, Cathy Clerbaux, Melissa Puchalski, and Mark A. Zondlo
Atmos. Chem. Phys., 23, 13217–13234, https://doi.org/10.5194/acp-23-13217-2023,https://doi.org/10.5194/acp-23-13217-2023, 2023
Short summary
Rui Wang, Da Pan, Xuehui Guo, Kang Sun, Lieven Clarisse, Martin Van Damme, Pierre-François Coheur, Cathy Clerbaux, Melissa Puchalski, and Mark A. Zondlo

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
AR by Rui Wang on behalf of the Authors (16 Aug 2023)  Author's response   Author's tracked changes   Manuscript 
ED: Publish as is (22 Aug 2023) by Leiming Zhang
AR by Rui Wang on behalf of the Authors (29 Aug 2023)

Post-review adjustments

AA: Author's adjustment | EA: Editor approval
AA by Rui Wang on behalf of the Authors (12 Oct 2023)   Author's adjustment   Manuscript
EA: Adjustments approved (12 Oct 2023) by Leiming Zhang

Journal article(s) based on this preprint

19 Oct 2023
Bridging the spatial gaps of the Ammonia Monitoring Network using satellite ammonia measurements
Rui Wang, Da Pan, Xuehui Guo, Kang Sun, Lieven Clarisse, Martin Van Damme, Pierre-François Coheur, Cathy Clerbaux, Melissa Puchalski, and Mark A. Zondlo
Atmos. Chem. Phys., 23, 13217–13234, https://doi.org/10.5194/acp-23-13217-2023,https://doi.org/10.5194/acp-23-13217-2023, 2023
Short summary
Rui Wang, Da Pan, Xuehui Guo, Kang Sun, Lieven Clarisse, Martin Van Damme, Pierre-François Coheur, Cathy Clerbaux, Melissa Puchalski, and Mark A. Zondlo
Rui Wang, Da Pan, Xuehui Guo, Kang Sun, Lieven Clarisse, Martin Van Damme, Pierre-François Coheur, Cathy Clerbaux, Melissa Puchalski, and Mark A. Zondlo

Viewed

Total article views: 795 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
582 193 20 795 8 12
  • HTML: 582
  • PDF: 193
  • XML: 20
  • Total: 795
  • BibTeX: 8
  • EndNote: 12
Views and downloads (calculated since 15 Mar 2023)
Cumulative views and downloads (calculated since 15 Mar 2023)

Viewed (geographical distribution)

Total article views: 780 (including HTML, PDF, and XML) Thereof 780 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Latest update: 19 Sep 2024
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
Ammonia (NH3) is a key precursor to fine particulate matter (PM2.5) and a primary form of reactive nitrogen yet with sparse ground measurements. We perform the first comprehensive comparison between ground observations and satellite retrievals in the U.S., demonstrating that satellite NH3 data can help fill spatial gaps in the current ground monitoring networks. Trend analyses using both datasets highlight increasing NH3 trends across the U.S., including the NH3 hotspots and urban areas.