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Abstract. Ammonia (NH3) is a key precursor to fine particulate matter (PM2.5) and a primary form of reactive
nitrogen. The limited number of NH3 observations hinders the further understanding of its impacts on air quality,
climate, and biodiversity. Currently, NH3 ground monitoring networks are few and sparse across most of the
globe, and even in the most established networks, large spatial gaps exist between sites and only a few sites
have records that span longer than a decade. Satellite NH3 observations can be used to discern trends and fill
spatial gaps in networks, but many factors influence the syntheses of the vastly different spatiotemporal scales
between surface network and satellite measurements. To this end, we intercompared surface NH3 data from
the Ammonia Monitoring Network (AMoN) and satellite NH3 total columns from the Infrared Atmospheric
Sounding Interferometer (IASI) in the contiguous United States (CONUS) and then performed trend analyses
using both datasets. We explored the sensitivity of correlations between the two datasets to factors such as
satellite data availability and distribution over the surface measurement period, as well as agreement within
selected spatial and temporal windows. Given the short lifetime of atmospheric ammonia and consequently sharp
gradients, smaller spatial windows show better agreement than larger ones except in areas of relatively uniform,
low concentrations where large windows and more satellite measurements improve the signal-to-noise ratio. A
critical factor in the comparison is having satellite measurements across most of the measurement period of the
monitoring site. When IASI data are available for at least 80 % of the days of AMoN’s 2-week sampling period
within a 25 km spatial window of a given site, IASI NH3 column concentrations and the AMoN NH3 surface
concentrations have a correlation of 0.74, demonstrating the feasibility of using satellite NH3 columns to bridge
the spatial gaps existing in the surface network NH3 concentrations. Both IASI and AMoN show increasing
NH3 concentrations across the CONUS (median: 6.8 %yr−1 versus 6.7 %yr−1) in the last decade (2008–2018),
suggesting the NH3 will become a greater contributor to nitrogen deposition. NH3 trends at AMoN sites are
correlated with IASI NH3 trends (r = 0.66) and show similar spatial patterns, with the highest increases in the
Midwest and eastern US. In spring and summer, increases in NH3 were larger than 10 %yr−1 in the eastern US
and Midwest (cropland dominated) and the western US (pastureland dominated), respectively. NH3 hotspots are
defined as regions where the IASI NH3 column is larger than the 95th percentile of the 11-year CONUS map
(6.7× 1015 molec.cm−2), they also experience increasing concentrations over time, with a median of NH3 trend
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of 4.7 %yr−1. IASI data show large NH3 increases in urban areas (8.1 %yr−1), including 8 of the top 10 most
populous regions in the CONUS, where AMoN sites are sparse. A comparison between IASI NH3 concentration
trends and state-level NH3 emission trends is then performed to reveal that positive correlations exist in states
with strong agricultural NH3 emissions, while there are negative correlations in states with low NH3 emissions
and large NOx emissions, suggesting the different roles of emission and partitioning in NH3 increases. The
increases in NH3 could have detrimental effects on nearby eco-sensitive regions through nitrogen deposition and
on aerosol chemistry in the densely populated urban areas, and therefore they should be carefully monitored and
studied.

1 Introduction

Gas-phase ammonia (NH3) is the most abundant alkaline gas
in the atmosphere, mainly emitted from agricultural activities
such as nitrogen fertilizer applications and livestock waste
volatilization (Bouwman et al., 1997; Paulot et al., 2014).5

As a major precursor to fine particulate matter (PM2.5), NH3
critically affects aerosol heterogeneous chemistry, air qual-
ity, visibility, human health, and climate (Hauglustaine et al.,
2014; Hill et al., 2019; Lawal et al., 2018; Malm et al.,
2004). Ammonia neutralizes sulfuric acid (H2SO4) and ni-10

tric acid (HNO3) in the atmosphere to form ammoniated
aerosols, ammonium sulfate ((NH4)2SO4), and ammonium
nitrate (NH4NO3), which in total can contribute to more
than 50 % of total PM2.5 mass (Feng et al., 2020). NH4NO3
is critical during wintertime haze periods because the cold15

and humid condition favor its formation (Shah et al., 2018;
Zhai et al., 2021). Moreover, NH3 plays an important role
in the nitrogen cycle. Wet deposition of NH+4 dominates the
wet inorganic nitrogen deposition at nearly 70 % of monitor-
ing sites in the United States (Li et al., 2016). Total NHx20

(≡NH3 (g)+NH+4 (aq)) deposition is expected to become
even more dominant in the future because NOx emissions are
decreasing under new pollution controls, while NH3 emis-
sions are predicted to continue to increase with the rising
global food demands (Erisman et al., 2008; Goldberg et al.,25

2021; Pinder et al., 2008). Excessive NH3 deposition in the
non-agricultural ecosystems can reduce biodiversity, result in
soil acidification, and increase eutrophication, especially in
sensitive ecosystems (Ellis et al., 2013; Phoenix et al., 2006).

Although NH3’s importance has been well recognized,30

routine NH3 observations are lacking even in countries with
comprehensive monitoring networks, partly due to the dif-
ficulty of measuring gas-phase NH3 (von Bobrutzki et al.,
2010; Fehsenfeld et al., 2002). The Ammonia Monitoring
Network (AMoN) (Puchalski et al., 2015) is the only rou-35

tine set of NH3 measurements in the United States, with
110 active AMoN sites in the contiguous United States
(CONUS) in 2021, providing high-quality surface observa-
tions of NH3. AMoN data have been used widely for model
evaluation and long-term trend analysis (Butler et al., 2016;40

Nair et al., 2019; Yao and Zhang, 2016, 2019). AMoN only
provides biweekly NH3 observations, in contrast to monitor-

ing networks for two other important gas-phase precursors
of PM2.5, SO2 and NO2, which provide hourly- or daily-
scale observations. PM2.5, SO2, and NO2 are directly regu- 45

lated as criteria pollutants; however, contributions from NH3
emissions sources must be considered in State Implementa-
tion Plan (SIP) demonstrations for areas out of attainment for
PM2.5, which can be a challenge for areas lacking NH3 mea-
surements (EPA Air Quality Implementation Plans, 2023). 50

Population-weighted PM2.5 concentrations are widely
used to estimate the health effects of PM2.5; however, the
sparse number of NH3 sites with only biweekly or monthly
resolution makes it difficult to derive population-weighted
PM2.5 precursor datasets. Gas-phase NH3 is critical to de- 55

termine the partitioning of the total NHx (Hennigan et al.,
2015), and the lack of gas-phase NH3 observations hampers
the evaluation of chemistry models. The ISORROPIA II ther-
modynamic model has been extensively adopted to compute
the equilibrium composition for the inorganic aerosol sys- 60

tems (Fountoukis and Nenes, 2007) and requires both gas-
and aerosol-phase data as input to provide accurate and ro-
bust results (Hennigan et al., 2015). However, the limited
number of NH3 ground monitoring sites currently prevents
synthesizing the AMoN NH3 data with other ground mon- 65

itoring networks, e.g., the Interagency Monitoring of Pro-
tected Visual Environments (IMPROVE), as input for ISOR-
ROPIA II (Pan et al., 2020). GEOS-Chem implemented with
ISORROPIA II was found to significantly underestimate gas-
phase NH3 and overestimate NH+4 in winter (Holt et al., 70

2015; Nair et al., 2019; Walker et al., 2012), with the normal-
ized NH+4 mean biases as high as 86 % in January at sites for
IMPROVE (Holt et al., 2015). The lifetime of NH3 ranges
from hours to days; hence large spatiotemporal variability
exists (Golston et al., 2020; Miller et al., 2015; Wang et al.; 75

2021), and large spatial gaps exist in the current AMoN. Cur-
rently there are no AMoN sites in some states, e.g., North
Dakota and South Dakota, and only 12 sites are within the
characteristic length scale (12 km) of NH3 hotspot regions
(Wang et al., 2021). A total of 10 national parks in the US are 80

within 100 km of an NH3 hotspot, and more observations are
needed to quantify the impacts of these hotspots on dry NH3
deposition in these regions (Pan et al., 2021). A lack of long-
term AMoN data also hinders the possibility of investigating
NH3 trends in the CONUS. Increasing NH3 concentrations 85
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are observed using AMoN data, yet all of the previous trend
analyses are limited to fewer than 20 AMoN sites that may
not be representative of NH3 trends in the CONUS (Butler
et al., 2016; Yao and Zhang, 2016, 2019).

Satellite NH3 observations are on a global and daily5

basis, providing long-term trends and ubiquitous cov-
erage. Instruments that measure NH3 include the In-
frared Atmospheric Sounding Interferometer (IASI)
on the MetOp satellites, the Cross-track Infrared
Sounder (CrIS) on the NOAA and NASA Suomi Na-10

tional Polar-orbiting Partnership (S-NPP) and on the
Joint Polar Satellite System-1 and System-2 (JPSS-1
and JPSS-2) satellites, the Tropospheric Emission Spectrom-
eter (TES) on the NASA Aura satellite, the Atmospheric
Infrared Sounder (AIRS) on the NASA EOS Aqua satellite,15

and the Thermal and Near Infrared Sensor for Carbon Ob-
servations – Fourier Transform Spectrometer (TANSO-FTS)
on the Greenhouse Gases Observing SATellite (GOSAT)
(Clarisse et al., 2009; Shephard et al., 2011; Shephard and
Cady-Pereira, 2015; Someya et al., 2020; Warner et al.,20

2016). Satellite NH3 data have been widely used to constrain
NH3 emissions, estimate NH3 deposition, and analyze NH3
trends (H. Cao et al., 2020, 2022; Chen et al., 2021 TS1 ;
Kharol et al., 2018; Van Damme et al., 2021). Van Damme
et al. (2021) utilized 11-year IASI NH3 observations and25

found a worldwide NH3 increase (12.8± 1.3 %) from
2008 to 2018 with especially large increases in east Asia
(75.7± 6.3 %) and North America (26.8± 4.5 %). Warner
et al. (2017) used 14-year AIRS NH3 measurements and
found a statistically significant NH3 increase (2.61 %yr−1)30

in the US from 2002 to 2016.
The global daily coverage and long-term data record make

it possible for satellite observations to fill the spatial and
temporal gaps of the current ground monitoring networks.
Although limited in numbers, the validations of satellite35

NH3 observations with in situ measurements provide con-
fidence in integrating the two datasets (Guo et al., 2021; Sun
et al., 2015). Sun et al. (2015) performed the first daily-
and pixel-scale satellite NH3 validations using TES NH3
columns and airborne NH3 observations in the San Joaquin40

Valley of California, USA, showing that the differences be-
tween the total NH3 column and the in situ total column were
within 6 %. However, the validation included only 9 TES pix-
els, and TES is no longer in operation. Guo et al. (2021)
showed that IASI NH3 columns and NH3 columns derived45

from airborne and ground-based NH3 observations were in-
distinguishable from one another on a daily and pixel ba-
sis in Colorado, USA, in summer. All of these validation
works were carried out in specific seasons and were limited
to source regions with high NH3 concentrations (Guo et al.,50

2021; Sun et al., 2015; Warner et al., 2016). Ground-based
FTIR NH3 observations provided a better temporal coverage
for evaluating IASI and CrIS NH3 retrievals; however, low-
concentration sites were excluded from the evaluation, and
only ∼ 10 sites were included across the globe (Dammers55

et al., 2016; Dammers et al., 2017). Furthermore, FTIR-based
measurements also have not been directly validated against
in situ measurements of NH3 vertical profiles.

To capitalize on the benefits of both surface and satel-
lite observations and synthesize these datasets, a detailed 60

understanding of the comparison between IASI NH3 col-
umn concentrations and AMoN NH3 surface concentrations
is necessary. Here we focus on IASI NH3 measurements
because it offers the longest data record (2008–present)
among the satellite NH3-measuring instruments. The com- 65

parison between AMoN and IASI is complex because AMoN
is a ground-based point measurement integrated over 14 d,
whereas IASI is a space-borne volumetric measurement av-
eraged over the pixel footprint at the instantaneous overpass
time. There are several factors that need to be taken into con- 70

sideration.

1. The extent to which the IASI NH3 column represents
the surface AMoN NH3 concentration. Knowledge of
NH3 vertical profiles in the atmosphere is limited due
to the lack of observational data, and model-simulated 75

NH3 vertical profiles are often biased compared with
the airborne measurements (Schiferl et al., 2016). Am-
monia is mostly concentrated in the planetary bound-
ary layer (PBL) because of its short lifetime (∼ hours
to days) and surface emission sources (Dentener and 80

Crutzen, 1994; Guo et al., 2021; Sun et al., 2015; Se-
infeld and Pandis, 2016). Sun et al. (2015) showed that
NH3 was almost well mixed in the lower PBL, and the
TES NH3 columns were strongly correlated (R2

= 0.82)
with the median NH3 mixing ratios measured at the sur- 85

face, demonstrating that satellite NH3 columns could
represent the ground NH3 concentrations. Van Damme
et al. (2015) converted IASI NH3 columns to surface
NH3 concentrations using fixed NH3 profiles generated
by GEOS-Chem and then performed monthly compar- 90

isons with ground monitoring networks. IASI-derived
surface NH3 observations are in fair agreement with
ground observations in Europe, China, and Africa but
are limited to a small number of sites in each region
for a short time range, e.g., 27 sites in Europe in 2011 95

(Van Damme et al., 2015). Furthermore, the latest IASI
NH3 products have switched to a new algorithm and no
longer use a fixed NH3 profile (Whitburn et al., 2016;
Van Damme et al., 2017).

2. Optimal spatial window for comparing and integrat- 100

ing satellite pixels and AMoN sites. Previous com-
parisons of satellite NH3 retrievals with observations
from ground monitoring networks simply averaged the
data from the monitoring site within a coarse model
grid (∼ 100 km) with the averaged modeling/satellite 105

NH3 concentration of the whole grid (Kharol et al.,
2018; Nair et al., 2019; Van Damme et al., 2015). If
NH3 concentrations are uniformly distributed within
the spatial window, increasing the spatial window will
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increase the number of IASI pixels and decrease the
signal-to-noise ratio. However, the spatial heterogene-
ity of NH3 is quite large near hotspots due to its short
lifetime (Golston et al., 2020; Miller et al., 2015; Wang
et al., 2021; Warner et al., 2016). The relationship be-5

tween spatial window size and satellite and surface mea-
surement agreement needs to be examined in more de-
tail.

3. Temporal distribution of satellite measurements across
the 2-week AMoN sampling period. Previous compar-10

isons of model or satellite products against surface ob-
servations did not consider the distribution of IASI mea-
surements during the 2-week sampling period (Kharol
et al., 2018; Nair et al., 2019; Van Damme et al.,
2015). AMoN measures continuously, whereas a series15

of cloudy days would preclude any valid satellite mea-
surements. Therefore, any AMoN and satellite compar-
ison is intrinsically biased towards clear-sky days on the
satellite side but includes all conditions for the AMoN
site.20

4. Number of available IASI pixels in the comparison.
Guo et al. (2021) have shown that, even at low column
amounts, IASI NH3 has no known biases. AMoN is an
extremely sensitive measurement of NH3, far more pre-
cise than any satellite NH3 product (NADP, 2023; Van25

Damme et al., 2017). Therefore, increasing the number
of satellite measurements within a certain spatiotempo-
ral window is expected to improve the signal-to-noise
ratio in the satellite measurements and may lead to im-
proved agreements with AMoN under clean conditions.30

5. Regional and seasonal variabilities. Different regional
and seasonal patterns are expected to influence the com-
parison. The performances of thermal infrared sounders
are highly affected by the thermal contrast between the
surface air temperature and skin temperature (Clarisse35

et al., 2010). In winter, low thermal contrast results in
low sensitivity, which explains the low number of IASI
pixels in winter compared to summer (Clarisse et al.,
2010; Guo et al., 2021). Kharol et al. (2018) showed that
CrIS surface NH3 concentrations had an overall mean40

CrIS–AMoN difference of∼+15 %; however, they only
averaged CrIS data over the warm season in 2013.

In this study, to demonstrate the capabilities of using IASI
NH3 observations to augment the ground monitoring net-
work, we performed a comprehensive comparison between45

IASI and AMoN on biweekly and seasonal scales. We di-
rectly compare the correlation between IASI NH3 columns
with AMoN surface NH3. We avoided converting column
NH3 into surface concentrations because of possible biases
introduced by assuming vertical profiles, boundary layer50

heights at local sites, and gas-phase and aerosol partition-
ing. The impacts of the different factors on the comparison

are examined in the context of the points raised above. Af-
ter identifying the most optimal method for comparison, we
examined NH3 trends over AMoN sites and the larger ap- 55

plicability of using satellite retrievals to discern NH3 trends
over regions and seasons lacking AMoN data.

2 Data and methods

2.1 Satellite NH3 observations

IASI is an infrared sounder deployed on board the MetOp- 60

A, MetOp-B, and MetOp-C platforms in sun-synchronous
orbits since October 2006, September 2012, and November
2018, respectively. IASI has a swath of 2200 km and pro-
vides global coverage twice per day at around 09:30 and
21:30 mean local solar time. At nadir, the IASI footprint has 65

a 12 km diameter. The first IASI NH3 product was devel-
oped by Clarisse et al. (2009) by converting the brightness
temperature differences into total NH3 columns. Later on,
a flexible and robust retrieval algorithm based on an artifi-
cial neural network for IASI (ANNI) (Whitburn et al., 2016) 70

was developed. The latest version is a reanalyzed dataset
that uses the European Centre for Medium-Range Weather
Forecasts Reanalysis v5 (ERA5) as its meteorological input
(Van Damme et al., 2017; Van Damme et al., 2021). Because
these meteorological data are coherent in time, the reanalysis 75

dataset is the most appropriate dataset to study trends. For the
present analyses, we used IASI version 3.1 reanalysis (v3.1r)
retrieval product data from the MetOp-A (2008–2018) and
MetOp-B (2013–2018) satellites (limited to cloud fraction
≤ 25 %). Only the morning orbits were analyzed because of 80

higher sensitivity than the evening overpasses (Clarisse et al.,
2010).

2.2 Ground-based observations

AMoN is the only network providing a consistent, long-term
record of NH3 gas concentrations across the United States. 85

AMoN was established by the National Atmospheric De-
position Program (NADP) in October 2007 and expanded
to 19 sites in 2010 and 105 sites in 2018. AMoN de-
ploys Radiello® passive samplers that rely upon diffusion
theory, where gas-phase NH3 is adsorbed onto a cylindri- 90

cal interior filter and extracted as NH+4 to be analyzed by
flow injection analysis (FIA). AMoN provides biweekly sur-
face NH3 concentrations, and the network detection limit
is 0.083 mgNH+4 L−1 (∼ 0.078 µgNH3 m−3) for the 2-week
samples in 2020 (NADP, 2023). The Radiello® passive sam- 95

plers were found to be biased low by 37 % against denuders
used as the reference method (Puchalski et al., 2011). In this
study, we are comparing the relative variations instead of ab-
solute concentrations of IASI and AMoN; therefore, the low
bias of AMoN measurements is not as relevant to the out- 100

come.
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We incorporated data from all AMoN sites with one no-
table exception. Using satellite imagery, we determined that
the AMoN site in Logan, Utah (UT01), is located only
∼ 100 m away from a livestock farm. Ammonia concentra-
tions downwind of a beef/dairy feedlot at this distance are far5

above background levels and unrepresentative of those at the
local–regional scales (1–10 km) (Golston et al., 2020; Miller
et al., 2015; Sun et al., 2018). Concentrations at UT01 are
expected to be strongly dependent upon the extent to which
local winds blow directly from that farm to the AMoN site10

throughout the 2-week integration period. Not surprisingly,
the UT01 site has the highest annual mean concentration
(16.2 µgm−3) in the entire AMoN network (3 times higher
than the next one). Furthermore, this AMoN site may be par-
ticularly susceptible to trends in animal operations or man-15

agement practices at the farm. While it is possible the mea-
surements of UT01 are representative of the local region, it
is beyond the scope of this work to make such an assess-
ment of its representativeness. For trend analyses, we only
include AMoN sites with full-year coverage during 2008–20

2018 (N = 13).

2.3 Trend analyses

2.3.1 Oversampled NH3 maps for trend analysis

From 2008 to 2018, a 0.02◦× 0.02◦ (∼ 2 km) annual mean
NH3 map of the CONUS was created each year based on25

a physical oversampling algorithm that represents the satel-
lite spatial response functions as generalized 2-D super-
Gaussian functions (Sun et al., 2018). This algorithm weighs
IASI measurements by their uncertainties, which include
varying sensitivities to thermal contrast as described in Sun30

et al. (2018) and Wang et al. (2021). To evaluate the sea-
sonal trends, for each year, seasonally averaged oversam-
pling maps were also generated for spring (March, April,
and May, MAM), summer (June, July, and August, JJA), au-
tumn (September, October, and November, SON), and win-35

ter (December, January, and February, DJF). For each sea-
son, we were able to achieve sufficiently overlapped IASI
pixels through calculating the sum of the unnormalized spa-
tial response function (SRF) of the oversampling results. A
large sum of unnormalized SRF means the level 3 grid is40

covered by more level 2 pixels. Sun et al. (2018) and Wang
et al. (2021) have a detailed description of SRF. The over-
sampling products are only used for the trend analyses in
Sect. 4 to achieve a high spatial resolution. For IASI and
AMoN comparison results in Sect. 3, the oversampling prod-45

ucts are not used, since it sacrifices the temporal resolution.

2.3.2 Mann–Kendall test and Theil–Sen’s slope
estimator for trend analysis

We use the Mann–Kendall (MK) test and Theil–Sen’s
slope estimator for NH3 trend analyses. The non-parametric50

Mann–Kendall test and Theil–Sen’s slope estimator are

widely used in detecting trends of variables in meteorological
and hydrological fields (Ahn and Merwade, 2014; Kendall,
1975; Yue and Wang, 2004). The Kendall rank correlation
coefficient, commonly referred to as Kendall’s τ coefficient, 55

is a statistic used to measure the rank correlation. An MK test
is a non-parametric hypothesis test for statistical dependence
based on Kendall’s τ coefficient. The Theil–Sen’s slope es-
timator is commonly used to fit a line to data points by cal-
culating the median of the slopes of all lines through pairs of 60

points.
Unlike simple linear regression, the Mann–Kendall test

and Theil–Sen’s slope estimator do not require the data to
follow normal distribution and therefore are more robust to
any outliers (Yue and Wang, 2004). This method is computa- 65

tionally efficient and is insensitive to outliers. For skewed and
heteroscedastic data, the Theil–Sen estimator can be signifi-
cantly more accurate than linear least squares regression. For
normally distributed data, the Theil–Sen estimator competes
well against the least squares in terms of statistical power 70

(Yue and Wang, 2004).
In this study, Theil–Sen’s slope was used to estimate

2008–2018 NH3 trends, and the MK test was used to derive
the significance level of trends.

3 IASI and AMoN comparison 75

3.1 Sensitivity to spatial windows

For the initial analysis, we first used the simplest method for
comparing the satellite measurements with ground observa-
tions. In other words, for each AMoN site, we average all
IASI observations within a given radius of the AMoN site 80

during the sampling time frame (2 weeks) for comparison
and refer to that radius as a spatial window. We define each
AMoN sample with co-located IASI pixels as an AMoN–
IASI pair. If the distribution of NH3 pixels is spatially uni-
form, increasing the spatial window may improve the corre- 85

lation between the two datasets because of a larger number of
IASI pixels. Larger spatial windows include more IASI pix-
els than smaller spatial windows but at the expense of poten-
tially not being representative of the AMoN site. In addition,
a larger region is likely to encompass NH3 spatial gradients. 90

In contrast, small spatial windows may only include a limited
number of IASI pixels, encompassing more inherent noise in
the satellite measurements, especially if close to the detection
limit. Each integrated 2-week AMoN measurement for each
site was correlated with any relevant satellite data within the 95

spatial window (total of 104 AMoN sites with 16 093 mea-
surements). Correlations between IASI and AMoN for differ-
ent spatial windows (15, 25, 50, and 100 km) are summarized
in Table 1. The minimum spatial window radius of 15 km is
based upon an approximate scale for NH3 hotspots (Wang 100

et al., 2021).
As the spatial window becomes larger, mean temporal cov-

erage (defined as the percentage of days with available IASI
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Table 1. AMoN and IASI comparison results for different spatial windows.

Spatial window 15 km 25 km 50 km 100 km

Pearson’s r 0.35 0.41 0.45 0.44
Mean temporal coverage per pair (%) 31 44 57 71
Mean no. IASI pixels per AMoN–IASI pair 7 17 69 278
No. AMoN–IASI pairs 14 734 15 543 15 933 16 022

Figure 1. Examples of IASI data temporal coverage over the biweekly AMoN sampling period for an AMoN site in Yosemite National
Park, California (CA 44): (a) several IASI measurements every day during the 2-week sampling period, (b) a few IASI measurements for
most days of the 2-week sampling period, (c) many IASI measurements but only on several days during the 2-week sampling period, and
(d) sparse IASI measurements for only several days during the 2-week sampling period.

data of the 2-week AMoN sampling period) and the number
of IASI pixels both have significant increases, but Pearson’s
r coefficient only increases slightly from 0.35 at a 15 km spa-
tial window to 0.44 at a 100 km spatial window. Indeed, dou-
bling the spatial window from 50 to 100 km yields an almost5

tripled mean number of IASI pixels, yet it maintains almost
the same correlation with r = 0.45 and r = 0.44, respectively.
This indicates that including IASI pixels at longer distances
from the AMoN site may not be representative of the AMoN
site, especially near sources or in regions with complex to-10

pography. The slightly increased r value over spatial window
range may result from a tradeoff between averaging spatial
gradients versus integrating a larger number of IASI pixels
to improve the signal-to-noise ratio of the satellite measure-
ments. To balance these competing effects, we select 25 km15

as the nominal spatial window for the further comparisons.

3.2 Sensitivities to temporal coverage and the number
of IASI pixels

NH3 is a short-lived species with a complicated diurnal pro-
file (Nair and Yu, 2020) and the potential for large day-to- 20

day concentration changes because of the variability in emis-
sions, wind speed, temperature, PBL height, and aerosol par-
titioning (Golston et al., 2020; Miller et al., 2015). Thus,
the temporal distribution of satellite measurements within
the AMoN measurement period may impact the comparison. 25

Figure 1 illustrates four examples where the number of IASI
pixels and their relative distribution throughout the 2-week
AMoN integration period (using a 25 km spatial window)
could affect the results. An ideal comparison case would have
a uniform number of IASI measurements on each day dur- 30

ing the approximate 14 d AMoN measurement period, sim-
ilar to the case shown in Fig. 1a. In this case, there is no
specific day having more weight than the other when cal-
culating the biweekly mean. More common, however, are
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Table 2. The impact of IASI data’s temporal coverage for the 2-week AMoN sampling period (25 km spatial window).

IASI temporal coverage per AMoN–IASI pair (%) [0, 20) [20, 50) [50, 80) [80,∞)

r 0.17 0.29 0.47 0.74
Mean no. IASI pixels per AMoN–IASI pair 3 13 26 38
No. AMoN–IASI pairs 1766 7641 5137 999

Table 3. The impact of the number of IASI pixels (25 km spatial window).

No. IASI pixels per AMoN–IASI pair [0, 10) [10, 20) [20, 40) [40,∞)

r 0.16 0.37 0.50 0.63
Mean temporal coverage per AMoN–IASI pair (%) 22 42 61 80
No. AMoN–IASI pairs 4533 5025 5309 676

cases where some days have no satellite measurements due
to clouds or low thermal contrast. For example, Fig. 1b has
1 missing day (N = 23 satellite measurements) but with an
otherwise even distribution throughout the remainder of the
period, while Fig. 1c (N = 24) has nearly the same number5

of satellite measurements as Fig. 1b but clustered on only 8
of the 15 d. Finally, there are also many cases where selected
day(s) have few or no IASI measurements at all (Fig. 1d).
When neither temporal coverage nor the number of IASI pix-
els is high, one can still calculate the matched IASI NH3 col-10

umn for this AMoN sample, but the result is unlikely to be as
representative as a more temporally distributed comparison.

To this end, we explore the dependence of the correlation
between IASI and AMoN on IASI data’s temporal cover-
age of the 2-week sampling period and total number of IASI15

pixels within the 2-week AMoN sampling period, using the
25 km spatial window. For example, the temporal coverages
for Fig. 1 are 100 %, 92 %, 53 %, and 14 % and the number
of IASI pixels are 52, 23, 24, and 5, respectively. The impact
of different temporal averaging and the number of IASI pixel20

requirements are summarized in Tables 2 and 3, respectively.
Increasing temporal coverage and the number of IASI pixels
both yield higher r values than any of the simple spatial win-
dows alone. Table 2 shows that the correlation improves to
r = 0.74 when the temporal coverage is ≥ 80 %, suggesting25

a significant impact of temporal coverage of the IASI data.
The IASI and AMoN correlations also increase over a sim-
ple spatial window with increasing numbers of IASI pixels,
yet the impact is not as strong (r = 0.63 for N ≥ 40) as the
sensitivity to temporal coverage.30

Because the temporal coverage and number of IASI pixels
are not independent variables, additional analyses are con-
ducted to study the sensitivity of these two effects using the
Monte Carol method. First, the available dataset is filtered to
cases when at least 1 of the 14 d have multiple IASI measure-35

ments per AMoN measurement, at least 7 d of the 14 d sam-
pling period had at least one IASI measurement, and the total
number of IASI pixels is at least 20. The number of days with

available IASI measurements is denoted by T . Two opposite
approaches are explored for 104 qualified AMoN sites: 40

1. For maximized temporal coverage (TC_max), only one
IASI pixel is randomly selected to represent that day,
and the total number of IASI pixels equals T (T ≤ 14).
In this case, the temporal coverage is maximized.

2. For minimized temporal coverage (TC_min), only days 45

with the largest number of IASI pixels are selected un-
til the total number of IASI pixels equals T (T ≤ 14).
In this case, the temporal coverage is minimized, and
the total number of selected IASI pixels is the same as
TC_max. 50

For each AMoN site, we repeated the two different sam-
pling strategies 100 times and then calculated the median
r value to represent each site using the maximum and min-
imum coverage approaches. Figure 2a shows the histogram
and normalized fit of change in r (1r =TC_max-TC_min) 55

for each site between the two scenarios with the number
of bins determined by Sturges’ rule. The increased correla-
tion of 1r = 0.45± 0.28 shows the large impact of temporal
coverage. The total number of IASI pixels used for the two
strategies was identical. 60

To further investigate the impact of including more IASI
pixels after maximizing temporal coverage, we also test
the process described in (1) and then randomly added (20-
T) more IASI pixels from the remaining IASI pixels and
referred to it as TC_max_add. Figure 2b shows that the 65

changes 1r between TC_max and TC_max_add are small
(−0.00± 0.05). For the TC_max strategy, the initial num-
ber of IASI pixels was between 7 and 14, which means that
using the TC_max_add strategy results in a 43∼ 186 % in-
crease in the number of IASI pixels compared to TC_max 70

alone. Adding more IASI pixels does not have a significant
impact on the r values, indicating that maximized temporal
coverage alone is the most important factor when comparing
IASI to AMoN stations.
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Table 4. AMoN and IASI comparison results for different spatial windows (temporal coverage ≥ 80 %).

Spatial window 15 km 25 km 50 km 100 km

Pearson’s r 0.76 0.74 0.58 0.48
Mean no. IASI pixels per AMoN–IASI pair 19 38 119 392
No. AMoN–IASI pairs 105 999 3138 6899

Figure 2. The change in r values for individual AMoN sites us-
ing different sampling strategies: (a) maximized temporal cover-
age (TC_max) and minimized temporal coverage (TC_min) and
(b) maximized temporal coverage and randomly adding more pixels
(TC_max_add).

After applying a temporal coverage requirement (temporal
coverage ≥ 80 %) to filter the overall dataset, we revisit the
sensitivity of the agreement between spatial windows. The
smaller spatial window now yields better agreement than the
larger spatial windows (Table 4). Compared with Table 1,5

which has no filter for temporal coverage, the r values in
Table 4 increase for all spatial windows. The correlations are
clearly better for smaller spatial windows (r = 0.74 for 25 km
versus r = 0.48 for 100 km). In this way, the use of a larger
spatial window is indeed a tradeoff between the increasing10

temporal coverage versus incorporating a larger spatial gra-
dient. The results further demonstrate that the IASI pixels far
from the AMoN sites may not be representative of the AMoN
site.

3.3 Sensitivity to seasons and temporal averaging15

AMoN has similar numbers of measurements in spring
(March, April, May), summer (June, July, August), autumn
(September, October, November), and winter (December,
January, February), while the mean number of IASI pix-
els (no. IASI pixels) per pair in winter is only around half20

Figure 3. Boxplot of number of IASI pixels per AMoN–IASI pair
for spring, summer, autumn, and winter. The boxes denote the
25th and 75th percentiles, the whiskers denote the 1st and 99th per-
centiles, and the red dot denotes the mean.

that of the other seasons (Fig. 3). In winter, low thermal
contrasts result in a low sensitivity of the thermal infrared
sounder, which explains the low number of IASI pixels in
winter (Clarisse et al., 2010; Guo et al., 2021). The lower
sensitivity of the infrared thermal sounder measurements in 25

winter results in higher uncertainties, and thus comparisons
between IASI and AMoN are especially important. When
temporal coverage is at least 80 %, IASI wintertime data
still have good agreement with AMoN (r = 0.61), although
the comparison is limited to only a few AMoN and IASI 30

pairs (N = 33). The r values for spring, summer, and autumn
when temporal coverage is ≥ 80 % are 0.60 (N = 181), 0.76
(N = 502), and 0.70 (N = 283), respectively. IASI in general
only provides a small number of pixels in winter; however, it
indeed has the capability of reflecting surface NH3 variations 35

even in winter.
The results in Sect. 3.1 TS2 and 3.2 have already shown

the importance of spatial window and temporal coverage.
The temporal averaging and regridding approaches, such as
the tessellation oversampling and physical oversampling, are 40

common methods to achieve higher spatial resolution by
sacrificing the temporal resolution (Sun et al., 2018; Van
Damme et al., 2018; Wang et al., 2021). Here we neglect the
interannual variability in NH3 seasonality and calculate av-
eraged IASI and AMoN NH3 seasonality during 2008–2018 45

using the 25 km spatial window. By averaging the multiyear
IASI data, the impacts of temporal coverage are alleviated
because both temporal coverage and number of IASI pixels
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Figure 4. (a) Multiyear-averaged NH3 seasonality comparison results between AMoN sites and the IASI observations within 25 km of the
AMoN sites at monthly resolution. Circles without filled color denote the AMoN sites with no statistically significant correlation with IASI
(α= 0.05). The circle sizes denote the length of AMoN data record. (b) The relationship between mean AMoN NH3 concentrations and the
correlation between AMoN and IASI seasonality. The regression between IASI- and AMoN-observed NH3 seasonality for (c) the AMoN
site in Joshua Tree National Park, California (CA67); (d) the AMoN site in Sequoia National Park, California; and (e) the AMoN site in
Indianapolis, Indiana (IN99).

increase. Among the 101 AMoN sites with at least 1 full year
of data and available IASI v3.1r NH3 data, 49 sites show
strong agreement with IASI with r > 0.8, 29 sites have mod-
erate agreement of 0.5<r ≤ 0.8, and 23 sites do not have
statistically significant agreements (Fig. 4a). If taking all data5

into consideration, the overall r value for the CONUS is 0.69.
The AMoN sites with higher NH3 concentrations tend to
show better agreements between AMoN and IASI (Fig. 4b).
The median AMoN NH3 annual mean concentrations for all
sites is 0.86 µgm−3. Most sites with no statistically signif-10

icant agreements have a low NH3 concentration (median:
0.48 µgm−3). Currently, most AMoN sites are located in re-
gions with low or moderate NH3 concentrations with a lack
of sites in the NH3 hotspots (Wang et al., 2021) and urban ar-
eas, complicating the comparison between AMoN and IASI.15

The above agreement demonstrates that the IASI NH3
column reflects the variation in the surface NH3 concentra-
tion at seasonal resolution. For regions without any available
ground measurements, IASI NH3 observations can be used
to help us better understand the NH3 variations. However, 20

large differences exist among the relationships between IASI
and AMoN NH3 concentrations over different AMoN sites
(an example of linear regression plot in Fig. 5b). Even for
AMoN sites with excellent correlation (r > 0.8), the slopes
vary a lot, ranging from 0.08–1.4× 1016 molec.cm−2 per mi- 25

crogram per cubic meter. For instance, two AMoN sites in
California, Joshua Tree National Park (CA 67) and Sequoia
and Kings Canyon National Park (CA 83), both exhibit great
seasonality agreements with IASI (r = 0.97 and r = 0.99, re-
spectively), but the slope for CA 83 (Fig. 4d) is 44 % higher 30

than CA 67 (Fig. 4c)TS3 . The difference between the slopes
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Figure 5. The 2008–2018 trends in monthly averaged NH3 for the
AMoN site in Indianapolis, Indiana, US (IN 99), and IASI NH3 ob-
servations within 25 km of IN 99.

suggests that although IASI is able to capture the general sea-
sonality, the relationship between NH3 column and surface
NH3 is distinctly different due to complicated topography,
meteorology, and other factors at different AMoN sites.

4 Trend analysis5

4.1 Trend in the CONUS

Strong evidence of increasing NH3 concentrations in the US
comes from both ground-based observations and satellite
measurements (Van Damme et al., 2021; Warner et al., 2017;
Yao and Zhang, 2016; Yao and Zhang, 2019; Yu et al.,10

2018). The methodology and comparison results in Sect. 3
demonstrate that IASI NH3 can be used to verify and aug-
ment regional NH3 trends over the last decade. Figure 5
shows monthly averaged IASI and AMoN time series from
Indianapolis, Indiana, USA (IN 99). The strong correla-15

tion (r = 0.96) between the two measurements is shown in
Fig. 5b. Although the NH3 seasonality remains consistent
from 2008 to 2018 – namely spring maxima and secondary
maxima in autumn with the lowest values in winter – both
AMoN and IASI also show increasing trends of NH3 con-20

centrations over the entire time series. AMoN shows a trend
of 6.5 %yr−1, while IASI shows a trend of 7.0 %yr−1.

Here we will compare IASI NH3 trends with the AMoN-
observed NH3 trends in the CONUS over the last decade. We
include AMoN trend analysis only for sites with full-year25

coverage during 2008–2018 (N = 13). To achieve a higher
spatial resolution, in the following study, we used the over-
sampled IASI NH3 maps to calculate the NH3 trend for each
2 km grid box. A long-term trend analysis was then per-
formed using AMoN and IASI oversampled data (Sun et al.,30

2018; Wang et al., 2021) by Theil–Sen’s slope estimator and
the MK test to examine the agreement between the datasets
and explore any regional differences. IASI NH3 columns
smaller than the 5th percentile (0.5× 1015 molec.cm−2) of
the 11-year NH3 average in the CONUS region were ex-35

cluded to avoid spurious trend results caused by the higher

Figure 6. Trend analysis for IASI NH3 (2008–2018) and AMoN
NH3 measurements in the contiguous US. The gray color indicates
no statistically significant change (α= 0.05).

Figure 7. Comparison between 2008–2018 AMoN and IASI NH3
trends (25 km spatial window) for AMoN sites with available
nearby IASI trend data.

noise in these measurements. To perform the interannual
trend analysis, we require each region or site to have at least
one valid measurement in each season to alleviate the possi-
ble bias due to seasonal variations. Figure 6 shows the annual 40

percentage change for both IASI and AMoN. Most regions
in the CONUS have increasing NH3 concentrations based
on the 11-year IASI observations (median: 6.8 %yr−1), in-
cluding the eastern US, Midwest, and parts of the west-
ern US. A total of 10 out of 13 AMoN sites have statisti- 45

cally significant NH3 increases. AMoN data in general sug-
gest similar increases (median: 6.7 %yr−1). When plotting
the trends of AMoN sites against the median of IASI trends
within a 25 km spatial window (Fig. 7), a moderate corre-
lation (r = 0.66) was found between IASI and AMoN NH3 50

trends. IASI in general suggested a higher NH3 increase
compared to AMoN (slope: 1.26± 0.51), with the ratio larger
than 1 for most sites.
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The spatial consistency across the datasets differs sig-
nificantly. Both AMoN and IASI suggest ∼ 5 %yr−1 NH3
increases in the Great Lakes region, while IASI suggests
a higher NH3 increase in the eastern US compared with
AMoN. The IASI trend analysis results suggest a signifi-5

cant NH3 increase in the northern Great Plains, e.g., North
Dakota, South Dakota, and Montana, yet there are no AMoN
sites in this region. Furthermore, the trends are consistent
with the NH3 emissions increases caused by increased N fer-
tilizer usage in the northern Great Plains (P. Cao et al.,10

2020). McHale et al. (2021) showed that wet-precipitation
NH+4 concentrations based on NADP observations suggested
the highest increases in the Great Plains, the Rocky Moun-
tain region, and the Great Lakes region from 2000 to 2017,
which is geographically consistent with the NH3 trends ob-15

served by both AMoN and IASI. Here we note that the spa-
tial resolution could affect the results of trend analyses. The
trend 6.8 %yr−1 was derived as the median of trends for each
2 km grid box. If considering the CONUS as a whole and
calculating the annual mean NH3 for the whole CONUS dur-20

ing 2008–2018 to derive the overall trend in the CONUS,
the IASI NH3 change for 2008–2018 is (3.9± 2.2) %yr−1

and (1.3± 0.8)× 1014 molec.cm−2 yr−1, similar to the
trend in the previous study of (3.4± 0.6) %yr−1 and
(1.1± 0.4)× 1014 molec.cm−2 yr−1 (Van Damme et al.,25

2021).
We use the Hoshen–Kopelman algorithm to cluster adja-

cent grid points above the 95th percentile threshold of the 11-
year CONUS oversampling map (6.7× 1015 molec.cm−2)
as a NH3 hotspot (Hoshen and Kopelman, 1976; Wang30

et al., 2021), and the median area of identified hotspots is
∼ 150 km2 (Wang et al., 2021). Analyzing NH3 hotspots,
the median of the NH3 trend is 4.7 %yr−1, indicating
that the regions of the largest emissions sources are also
seeing increasing concentrations over time. Although35

the percent changes in the regions with the highest con-
centrations are smaller than the trend in the CONUS
median (6.8 %yr−1), in terms of the absolute changes,
the median trends of NH3 columns over these NH3
hotspots are higher than the trend in the CONUS me-40

dian (3.7× 1014 versus 2.8× 1014 molec.cm−2 yr−1). The
top 10 NH3 hotspots in the CONUS regarding column–
areal weighting (NH3 column times the area) all exhibit
increasing NH3 concentrations from 2008 to 2018 (Ta-
ble 5). Within these hotspots, the central Great Plains45

experience the largest NH3 increase (median: 5.0 %yr−1,
4.0× 1014 molec.cm−2 yr−1), while the San Joaquin Val-
ley (median: 2.0 %yr−1, 1.6× 1014 molec.cm−2 yr−1)
and Imperial County, California (median: 2.1 %yr−1,
1.9× 1014 molec.cm−2 yr−1), see the smallest changes.50

To provide a detailed insight of the increasing NH3 over
the CONUS, we further perform trend analyses for differ-
ent seasons (Fig. 8). In spring, significant NH3 increases are
found in the Midwest and in the eastern US. In summer,
NH3 increases shift to the western US and the northeast US.55

Table 5. The 2008–2018 IASI-observed NH3 trend in the top 10
NH3 hotspots (column–areal weighting) in the CONUS.

Hotspots %yr−1 1014 molec.cm−2 yr−1 TS4

Central Great Plains 5.0 4.0
The San Joaquin Valley 2.0 1.6
North Oklahoma 3.9 2.9
Texas panhandle 3.6 2.8
Central Iowa 4.4 3.3
The Snake River Valley 3.8 3.3
Southeast Iowa 5.2 3.9
Beadle County, South Dakota 8.3 6.0
Weld County, Colorado 3.6 2.9
Imperial County, California 2.1 1.9

AMoN and IASI seasonality clustering results show that the
Midwest and eastern US, dominated by fertilizer NH3 emis-
sions, have a broad spring maximum of NH3, while the west-
ern United States, dominated by volatilization of livestock
waste NH3 emissions, in contrast, shows a narrower midsum- 60

mer peak (Wang et al., 2021). The spatial patterns of spring
and summer NH3 trends are in agreement with the season-
ality clustering results, indicating that increasing NH3 emis-
sions caused by agricultural activities may contribute to an
NH3 concentration increase. The increasing wildfire activi- 65

ties in the western US may also contribute to NH3 increases
(Lindaas et al., 2021a, b). In autumn and winter, most re-
gions in the US do not have statistically significant IASI NH3
trends, and a decreasing NH3 trend is observed by IASI in
the southwest US in autumn. In contrast, AMoN data sug- 70

gest a notable NH3 increase in the northeast and the Corn
Belt region in winter. Again, IASI data are susceptible to low
thermal contrasts in winter, which to some extent explains
the disagreement between IASI and AMoN in winter, as dis-
cussed in Sect. 3.3. 75

Wintertime NH3 plays an important role in haze episodes
through the formation of aerosol-phase NH4NO3 (Shah et al.,
2018; Zhai et al., 2021), and increasing NH3 concentra-
tions in winter may affect aerosol acidity and aerosol chem-
istry (Lawal et al., 2018; Zheng et al., 2020). In the past 80

decades, NOx and SO2 emissions reductions have resulted in
less NHx partitioning into particle-phase NH+4 (Shah et al.,
2018); however, the partitioning alone is not able to fully ex-
plain the significant NH3 concentration increases (Yao and
Zhang, 2019; Yu et al., 2018). The change in meteorologi- 85

cal conditions, such as increasing air temperatures, may also
contribute to the increasing NH3 trends (Warner et al., 2017;
Yao and Zhang, 2019). No matter the reason for increasing
NH3 concentrations across the CONUS regions, the fact that
both NH3 surface concentrations and NH3 column concen- 90

trations have been increasing during the past decade will
have significant impacts on air quality and nitrogen depo-
sition. EPA is reviewing the 2020 PM2.5 National Ambient
Air Quality Standard (NAAQS) currently set at 12.0 µgm−3,
and if the NAAQS is lowered, NH3 controls will become in- 95
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Figure 8. The 2008–2018 NH3 trend for different seasons based on IASI NH3 measurements in the contiguous US. (a) Spring (March,
April, May); (b) summer (June, July, August); (c) autumn (September, October, November); (d) winter (December, January, February). The
gray color indicates no statistically significant change (α= 0.05).

Figure 9. (a) Cumulative distribution of the CONUS population as a function of distance from the nearest AMoN site; (b) correlation
between EPA NH3 emissions and IASI-observed mean NH3 concentrations at state level during 2008–2018. The gray dots represent states
without statistically significant correlations (α= 0.05).

creasingly important for meeting the standard. Additionally,
Pan et al. (2021) demonstrate that NH3 transported from Col-
orado significantly increased the dry NH3 deposition in the
Rocky Mountain National Park. Increasing gas-phase NH3
may result in longer spatiotemporal scales for dry nitrogen5

deposition, leading to adverse impacts on remote regions and
sensitive ecosystems (Phoenix et al., 2006). A reduction in
NH3 emissions is critical to protect human health and the
biodiversity in sensitive ecosystems (Ellis et al., 2013; Hill
et al., 2019).10

4.2 Trend in the urbanized areas

The short lifetime of NH3 leads to strong spatial variabili-
ties in NH3 concentrations, and most AMoN sites are not lo-
cated in highly populated urban regions (Wang et al., 2021),
a gap that IASI data can fill. Figure 9a shows the cumu- 15

lative distribution of the US population as a function of
the distance from an AMoN site. Population data were re-
trieved from the Gridded Population of the World, Version 4
(GPWv4) (Center for International Earth Science Informa-
tion Network – Columbia University, 2018). More than half 20
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Table 6. The 2008–2018 IASI NH3 trend in the top 10 most populous urbanized areas.

Urbanized area Population %yr−1 1014 molec.cm−2 yr−1 TS5

(million)

New York–Newark, NY–NJ–CT 18.0 10.8 2.0
Los Angeles–Long Beach–Anaheim, CA 12.0 4.3 2.1
Chicago, IL–IN 8.6 5.2 2.5
Miami, FL 5.5 −25.2 −1.5
Philadelphia, PA–NJ–DE–MD 5.4 10.9 2.6
Dallas–Fort Worth–Arlington, TX 5.1 – –
Houston, TX 4.9 7.9 2.0
Washington, DC–VA–MD 4.6 9.0 2.2
Atlanta, GA 4.5 9.4 2.2
Boston, MA–NH–RI 4.2 10.5 1.4

of the CONUS population is at least 100 km away from an
AMoN site. As mentioned in the previous discussion of spa-
tial windows, AMoN may best represent the NH3 variations
for regions within a ∼ 10 km radius, and less than 2 % of the
CONUS population is within 10 km of an AMoN site. More5

urban AMoN sites are needed to represent the urban areas
and better quantify NH3 emissions from mobile sources and
trends in population centers. Satellite observations are the
only dataset that can currently be used to investigate source
contributions and trends in population centers (Cao et al.,10

2022).
We retrieved urban area data from the 2010 US Census,

which includes two different types of urban areas: urban-
ized areas (UAs) of 50 000 or more people and urban clus-
ters (UCs) of at least 2500 and less than 50 000 people (US15

Census Bureau, 2012). The urban areas have a similar NH3
trend compared with the CONUS (8.1 versus 6.8 %yr−1),
suggesting a simultaneous NH3 increase in both urban and
rural areas. The top 10 most populous urbanized areas al-
most all exhibit significant NH3 increases with the exception20

of Miami, Florida, which has a negative trend, and Dallas,
Texas, without any significant trend (Table 6). These 10 ar-
eas in total account for more than 70 million people, making
up more than one-fifth of the total population in the CONUS.
The urban environment with abundant HNO3 and NH3 emis-25

sions from vehicles favors the formation of NH4NO3. Recent
studies suggest that gas-phase NH3 hinders the scavenging
of NH4NO3 by slowing down the deposition process of to-
tal inorganic nitrate (Zhai et al., 2021) and promotes new
atmospheric particle formation by directly nucleating with30

HNO3 to form NH4NO3 in winter in urban areas (Wang et al.,
2020). However, ultimately the sensitivity to PM2.5 from in-
creases in NH3 in any urban area will be a complex func-
tion of trends of NOx and SO2 as well (Feng et al., 2020).
The NH3 increase in these densely populated areas and its35

impact on aerosol chemistry need to be further addressed.
For example, Fig. 9b shows the relationship between NH3
trends versus emissions trends (EPA Air Pollutant Emissions
Trends Data, 2023) on the state level. For agricultural areas

with high NH3 (excess NH3 relative to NH4NO3 equilib- 40

rium), one would expect an increase in emissions to correlate
very well with increasing NH3 columns. In contrast, in areas
with more NOx , increases in emissions may result in NH3
going into NH4NO3 and thereby show little or even negative
correlations. To this end, Fig. 9b shows that at state level, 45

states with strong agricultural emissions show strong cor-
relations between emissions and concentration trends, e.g.,
Iowa, while northeast states show weak or negative correla-
tions, e.g., New Jersey. Ultimately, co-located aerosol-phase
and gas-phase precursor measurements are needed to fully 50

deduce what is happening at each urban area and should be a
focus of future air quality network integration.

5 Implications

Under favorable conditions, IASI NH3 columns correlate
with AMoN NH3 surface concentrations even at the 2-week 55

scale and for low-concentration regions (r = 0.74 when tem-
poral coverage ≥ 80 %). The temporal coverage of IASI data
during the 2-week AMoN sampling period is the controlling
factor of the correlation between IASI and AMoN measure-
ments, presumably because of the large day-to-day variabil- 60

ity in NH3. The agreement demonstrates the strong potential
for using IASI NH3 columns to bridge the spatial gaps of
the AMoN network. The global coverage of satellite mea-
surements enables the IASI NH3 product to serve as an alter-
native dataset in countries and regions that do not have any 65

NH3 monitoring networks, particularly in developing coun-
tries. For example, India is the second most populated coun-
try in the world with a sixth of the world’s population, and
a recent study has shown the unique role of NH3 in forming
massive chloride aerosols (up to 40 µgm−3) in India (Gunthe 70

et al., 2021). However, there are currently no long-term NH3
ground monitoring networks in India, impeding the efforts
to estimate and control NH3 emissions (Beale et al., 2022).
IASI’s low sensitivity to wintertime NH3 shows the value
of the more sensitive AMoN sites. Extra attention is needed 75

when using IASI data in such circumstances.
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The increasing NH3 in the CONUS (median: 6.8 %yr−1,
2.8× 1014 molec.cm−2 yr−1), including the hotspot regions
(median: 4.7 %yr−1, 3.7× 1014 molec.cm−2 yr−1), high-
lights the more important role of NH3 in PM2.5 formation
and nitrogen deposition in the future. AMoN suggests a sim-5

ilar NH3 increase (6.7 %yr−1), as well as similar spatial pat-
terns with IASI. Both IASI and AMoN show the largest NH3
increases in the Midwest and eastern US, with a moderate
correlation between the IASI and AMoN trends for the en-
tire CONUS (r = 0.66). More co-located measurements of10

PM2.5 mass and NH3 concentrations would help in assessing
the impact that increasing trends of NH3 will have on hu-
man health. The integrated satellite and ground-based mea-
surements are already playing a role in our understanding of
under-represented NH3 emissions sources in the inventories.15

NH3 already dominates the reactive nitrogen deposition in
most regions in the US; because of the continuing efforts on
NOx emission reductions, NH3 is expected to become the
key species for nitrogen deposition (Li et al., 2016), which
will have adverse impacts on the nearby ecosystem regions,20

e.g., the national parks (Benedict et al., 2013; Pan et al.,
2021). The changing partitioning of NHx between NH3 and
NH+4 is likely to impact the lifetime of NHx due to differ-
ences between the removal velocity of gas-phase NH3 via
dry deposition and particle-phase NH+4 wet deposition. The25

trends vary in different seasons, with NH3 increases mainly
in spring in the Midwest and eastern US (cropland domi-
nated) and in summer in the western US (feedlot dominated),
suggesting the impacts from agricultural activities and the
necessity of developing regionally specific emission control30

strategies.
Because of the scarcity of ground monitoring sites in

the urban areas, satellite NH3 measurements are extremely
valuable for characterizing NH3 magnitude, seasonality, and
trends in densely populated areas. Satellite observations sug-35

gests NH3 increases across the US urban areas (median:
8.1 %). New York–Newark, NY–NJ–CT, alone has a popu-
lation of more than 18 million, experiencing a 10.8 %yr−1

NH3 increase. Measurements from satellites will help inform
where ground-based NH3 samplers could be located to bet-40

ter understand local air quality in overburdened communities
with limited resources for continuous monitors. In addition,
NH3 sources in the urban areas and the related atmospheric
chemistry are both poorly understood (Gu et al., 2022; Sun
et al., 2017) and could be constrained by satellite NH3 ob-45

servations (Cao et al., 2022). However, satellite observations
alone are not able to answer all questions under the complex
urban atmospheric conditions. For instance, gas-phase NH3
and HNO3 can nucleate directly to form NH4NO3 particles in
cold atmospheric conditions and is likely to result in the rapid50

growth of new atmospheric particles in winter in urban areas
(Wang et al., 2020). The comparison between NH3 emission
trends and IASI-observed NH3 concentration trends suggests
that strong correlations exist in states with large NH3 emis-
sions from agricultural activities, e.g., Iowa, while there are55

weak or negative correlations in northeast states, e.g., New
Jersey, indicating the different contribution from emissions
and partitioning. To provide accurate and fine-spatial-scale
NH3 observations in the urban areas, more routine ground
monitoring sites are needed in both urban areas and high- 60

NH3 emission source regions.

Data availability. The AMoN data were downloaded
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(Center for International Earth Science Information
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eas data are downloaded from the US Census Bureau: 75

https://www.census.gov/geographies/mapping-files.html (US Cen-
sus Bureau, 2012). The emission trend data are downloaded from
the US Environmental Protection Agency’s Air Pollutant Emis-
sions Trends Data: https://www.epa.gov/air-emissions-inventories/
air-pollutant-emissions-trends-data (EPA, 2023b). TS6 80
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