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Abstract. Ammonia (NH3) is a key precursor to fine particulate matter (PM2.5) and a primary form of reactive nitrogen. The 

limited number observations of NH3 observations hinders further understanding of its impacts on air quality, climate, and 

biodiversity. Currently, NH3 ground monitoring networks are limited in numberfew and sparse across most of the globe, and 

even in the most established networks, large spatial gaps exist between sites and only a few sites have records that span longer 

than a decade. Satellite NH3 observations can be used to discern trends and fill spatial gaps in networks, but many factors 20 

influence the syntheses of the vastly different spatiotemporal scales between surface network and satellite measurements. To 

this end, we intercompared surface NH3 data from the Ammonia Monitoring Network (AMoN) and satellite NH3 total columns 

from the Infrared Atmospheric Sounding Interferometer (IASI) in the contiguous United States (CONUS) and then performed 

trend analyses using both datasets. We explored the sensitivity of correlations between the two datasets to factors such as 

satellite data availability and distribution over the surface measurement period as well as agreement within selected spatial and 25 

temporal windows. Given the short lifetime of atmospheric ammonia and consequently sharp gradients, smaller spatial 

windows show better agreement than larger ones except in areas of relatively uniform, low concentrations where large windows 

and more satellite measurements improve the signal-to-noise ratio. A critical factor in the comparison is having satellite 

measurements across most of the measurement period of the monitoring site. When IASI data are available for at least 80% 

days of AMoN’s 2-week sampling period within a 25 km spatial window of a given site, IASI NH3 column concentrations and 30 

the AMoN NH3 surface concentrations have a correlation of 0.74, demonstrating the feasibility of using satellite NH3 columns 

to bridge the spatial gaps existing in the surface network NH3 concentrations. Both IASI and AMoN show increasing NH3 

concentrations across CONUS (median: 6.8%·yr-1 vs. 6.7%·yr-1) in the last decade (2008 - 2018), stressing the risingsuggesting 
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the importance of NH3 will become a greater contributor toin terms of nitrogen deposition. NH3 trends at AMoN sites are 

correlated with IASI NH3 trends (r = 0.66), and show similar spatial patterns, with the highest increases in the Midwest and 35 

eastern U.S.NH3 trends for AMoN sites correlates with IASI NH3 trend IASI and AMoN NH3 trend (r = 0.66) and show a 

similar spatial pattern, with the highest increases in the Midwest and eastern U.S., and NH3 trend for AMoN sites correlates 

with IASI NH3 trend (r = 0.66). In spring and summer, increases of NH3 were larger than 10%·yr-1 in the eastern U.S. and 

Midwest (cropland dominated) and the western U.S. (pastureland dominated), respectively. In terms of trend in NH3 hotpots 

(defined as regions where the IASI NH3 column is larger than the 95th percentile of 11-year CONUS map, 6.7 × 1015 40 

molec/cm2), these largest emissions sources are also experiencing increasing concentrations over time, with athe median of 

NH3 trend ofis 4.7% · yr-1. IASI data show large NH3 increases in urban areas (8.1%·yr-1), including 8 of the top 10 most 

populous regions in the CONUS, where AMoN sites are sparse. A comparison between IASI NH3 concentration trends and 

state-level NH3 emission trends is then performed to reveal that positive correlations exist in states with strong agricultural 

NH3 emissions while negative correlations in states with low NH3 emissions and large NOx emissions, suggesting the different 45 

roles of emission and partitioning in NH3 increases. The increasesing in NH3 could have detrimental effects on nearby eco-

sensitive regions through nitrogen deposition and on aerosol chemistry in the densely populated urban areas, and therefore 

should be carefully monitored and studied.hence needs immediate attention.  

1 Introduction 

Gas phase ammonia (NH3) is the most abundant alkaline gas in the atmosphere, mainly emitted from agricultural activities 50 

such as nitrogen fertilizer applications and livestock waste volatilization (Bouwman et al., 1997; Paulot et al., 2014). As a 

major precursor to fine particulate matter (PM2.5), NH3 critically affects aerosol heterogeneous chemistry, air quality, visibility, 

human health, and climate (Hauglustaine et al., 2014; Hill et al., 2019; Lawal et al., 2018; Malm et al., 2004). Ammonia 

neutralizes sulfuric acid (H2SO4) and nitric acid (HNO3) in the atmosphere to form ammoniated aerosols, ammonium sulfate 

((NH4)2SO4) and ammonium nitrate (NH4NO3), which in total can contribute to more than 50 % of total PM2.5 mass (Feng et 55 

al., 2020). NH4NO3 is critical during wintertime haze periods because the cold and humid condition favor its formation (Shah 

et al., 2018; Zhai et al., 2021). Besides, NH3 plays an important role in the nitrogen cycle. Wet deposition of NH4
+ dominates 

the wet inorganic nitrogen deposition at nearly 70% of monitoring sites in the United States (Li et al., 2016). Total NHx 

(NH3(g) + NH4
+ (aq)) deposition is expected to become even more dominant in the future because NOx emissions are 

decreasinge under new pollution controls while NH3 emissions are predicted to continue to increase with the rising global food 60 

demands (Erisman et al., 2008; Goldberg et al., 2021; Pinder et al., 2008). Excessive NH3 deposition in the non-agricultural 

ecosystems can reduce biodiversity, result in soil acidification, and increase eutrophication, especially in the sensitive 

ecosystems (Ellis et al., 2013; Phoenix et al., 2006).  
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Although NH3’s importance has been well recognized, routine NH3 observations are lacking even in countries with 65 

comprehensive monitoring networks, partly due to the difficulty of measuring gas phase NH3 (von Bobrutzki et al., 2010; 

Fehsenfeld et al., 2002). The Ammonia Monitoring Network (AMoN) (Puchalski et al., 2015) is the only routine set of NH3 

measurements in the United States, with 110 active AMoN sites in the contiguous United States (CONUS) in 2021, providing 

high-quality surface observations of NH3. AMoN data have been used widely for model evaluation and long-term trend 

analysis (Butler et al., 2016; Nair et al., 2019; Yao and Zhang, 2016, 2019). AMoN only provides bi-weekly NH3 observations, 70 

in contrast to monitoring networks for two other important gas phase precursors of PM2.5, SO2 and NO2, which provide hourly 

or daily scale observations. PM2.5, SO2, and NO2 are directly regulated as criteria pollutants, however contributions from NH3 

emissions sources must be considered in State Implementation Plan (SIP) demonstrations for areas out of attainment for PM2.5, 

which can be a challenge for areas lacking NH3 measurements (EPA 2023).  

 75 

Population weighted PM2.5 concentrations are widely used to estimate the health effects of PM2.5, however, the sparse number 

of NH3 sites with only biweekly or monthly resolution makes it difficult to derive population weighted PM2.5 precursor datasets. 

Gas phase NH3 is critical to determine the partitioning of the total NHx (Hennigan et al., 2015), and the lack of gas phase NH3 

observations hampers the evaluation of chemistry models. The ISORROPIA-II thermodynamic model has been extensively 

adopted to compute the equilibrium composition for the inorganic aerosol systems (Fountoukis and Nenes, 2007) and requires 80 

both gas and aerosol phase data as input to provide accurate and robust results (Hennigan et al., 2015). However, the limited 

number of NH3 ground monitoring sites currently prevents synthesizing the AMoN NH3 data with other ground monitoring 

networks, e.g., the Interagency Monitoring of Protected Visual Environments (IMPROVE)IMPROVE, as input for 

ISORROPIAII (Pan et al., 2020). GEOS-Chem implemented with ISORROPIA-II was found to significantly underestimate 

gas phase NH3 and overestimate NH4
+ in winter (Holt et al., 2015; Nair et al., 2019; Walker et al., 2012), with the normalized 85 

NH4
+ mean biases as high as 86% in January at sites for IMPROVE the Interagency Monitoring of Protected Visual 

Environments (IMPROVE) (Holt et al., 2015). The lifetime of NH3 ranges from hours to days, hence large spatiotemporal 

variability exists (Golston et al., 2020; Miller et al., 2015; Wang et al.; 2021), and large spatial gaps exist in the current AMoN. 

Currently there are no AMoN sites in some states, e.g., North Dakota and South Dakota, and only 12 sites are within the 

characteristic length scale (12 km) of NH3 hotspots regions (Wang et al., 2021). Ten national parks in the U.S. are within 100 90 

km of an NH3 hotspot, and more observations are needed to quantify the impacts of these hotspots on dry NH3 deposition in 

these regions (Pan et al., 2021). A lack of long-term AMoN data also hinders the possibility of investigating NH3 trends in the 

CONUS. Increasing NH3 concentrations are observed using AMoN data, yet all of the previous trend analyses are limited to 

fewer than 20 AMoN sites that may not be representative of NH3 trends in the CONUS (Butler et al., 2016; Yao and Zhang, 

2016, 2019).  95 

 

Satellite NH3 observations are on a global and daily basis, providing long-term trends and ubiquitous coverage. Instruments 

that measures NH3 include the Infrared Atmospheric Sounding Interferometer (IASI) on the MetOp satellites, Cross-track 
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Infrared Sounder (CrIS) on NOAA and NASA Suomi National Polar-orbiting Partnership (S-NPP) and on Joint Polar Satellite 

System-1 and -2 (JPSS-1 and -2), Tropospheric Emission Spectrometer (TES) on NASA Aura satellite, Atmospheric Infrared 100 

Sounder (AIRS) on NASA EOS Aqua satellite, and Thermal and Near Infrared Sensor for Carbon Observations – Fourier 

Transform Spectrometer (TANSO-FTS) on the Greenhouse Gases Observing SATellite (GOSAT) (Clarisse et al., 2009; 

Shephard et al., 2011; Shephard & Cady-Pereira, 2015; Someya et al., 2020; Warner et al., 2016). Satellite NH3 data have been 

widely used to constrain NH3 emissions, estimate NH3 deposition, and analyze NH3 trends (Cao et al., 2020; Chen et al., 2020; 

Kharol et al., 2018; Van Damme et al., 2021). Van Damme et al. (2021) utilized 11-year IASI NH3 observations a and found 105 

a worldwide NH3 increase (12.8 ± 1.3 %) from 2008 to 2018 with especially large increases in east Asia (75.7 ± 6.3 %) and 

North America (26.8 ± 4.5 %). Warner et al. (2017) used 14-year AIRS NH3 measurements and found statistically significant 

NH3 increase (2.61%·yr-1) in the U.S. from 2002 to 2016. 

 

The global daily coverage and long-term data record make it possible for satellite observations to fill the spatial and temporal 110 

gaps of the current ground monitoring networks. Although limited in numbers, the validations of satellite NH3 observations 

with in-situ measurements provide confidence in integrating the two datasets (Guo et al., 2021; Sun et al., 2015). Sun et al. 

(2015) performed the first daily and pixel scale satellite NH3 validations using TES NH3 columns and airborne NH3 

observations in the San Joaquin Valley of California, USA, showing that the differences between the total NH3 column and 

the in-situ total column were within 6 %. However, the validation included only 9 TES pixels, and TES is no longer in operation 115 

now. Guo et al. (2021) showed that IASI NH3 columns and NH3 columns derived from airborne and ground-based NH3 

observations were indistinguishable from one another on daily and pixel bases in Colorado, USA, in summer. All of these 

validation works were performed carried out in certain specific seasons and were limited to source regions with high NH3 

concentrations (Guo et al., 2021; Sun et al., 2015; Warner et al., 2016). Ground-based FTIR NH3 observations provided a 

better temporal coverage for evaluating IASI and CrIS NH3 retrievals, however, low concentration sites were excluded from 120 

the evaluation and only ~ 10 sites were included across the globe (Dammers et al., 2016; Dammers et al., 2017). Furthermore, 

FTIR-based measurements also have not been directly validated against in-situ measurements of NH3 vertical profile 

themselves. 

 

To capitalize on the benefits of both surface and satellite observations and synthesize these datasets, a detailed understanding 125 

of the comparison between IASI NH3 column concentrations and AMoN NH3 surface concentrations is necessary. Here we 

focus on IASI NH3 measurements because it offers the longest data record (2008 - present) among the satellite NH3-measuring 

instruments. The comparison between AMoN and IASI is complex because AMoN is a ground-based, point measurement 

integrated over fourteen days, whereas IASI is a space-borne volumetric measurement averaged over the pixel footprint at the 

instantaneous overpass time. There are several factors that need to be taken into consideration: 130 

 



5 

 

(1) The extent to which the IASI NH3 column represents the surface AMoN NH3 concentration: Knowledge of NH3 vertical 

profiles in the atmosphere are is limited due to the lack of observational data, and model simulated NH3 vertical profiles are 

often biased compared with the airborne measurements (Schiferl et al., 2016). Ammonia is mostly concentrated in the planetary 

boundary layer (PBL) because of its short lifetime (~hours to days) and surface emission sources (Dentener & Crutzen, 1994; 135 

Guo et al., 2021; Sun et al., 2015; Seinfeld & Pandis, 2016). Sun et al. (2015) showed that NH3 was almost well mixed in the 

lower PBL, and the TES NH3 columns were strongly correlated (R2 = 0.82) with the median NH3 mixing ratios measured at 

the surface, demonstrating that satellite NH3 columns could represent the ground NH3 concentrations. Van Damme et al. (2015) 

converted IASI NH3 columns to surface NH3 concentrations using fixed NH3 profiles generated by GEOS-Chem, then 

performed monthly comparisons with ground monitoring networks. IASI derived surface NH3 observations are in fair 140 

agreement with ground observations in Europe, China, and Africa, but are limited to a small number of sites in each region for 

a short time range, e.g., 27 sites in Europe in 2011 (Van Damme et al., 2015). Furthermore, the latest IASI NH3 products have 

switched to a new algorithm and no longer use a fixed NH3 profile (Whitburn et al., 2016; Van Damme et al., 2017). 

 

(2) Optimal spatial window for comparing and integrating satellite pixels and AMoN sites: Previous comparisons of satellite 145 

NH3 retrievals with observations from ground monitoring networks simply averaged the data from the monitoring site within 

a coarse model grid (~ 100 km) with the averaged modeling/satellite NH3 concentration of the whole grid (Kharol et al., 2018; 

Nair et al., 2019; Van Damme et al., 2015). If NH3 concentrations are uniformly distributed within the spatial window, 

increasing the spatial window will increase the number of IASI pixels and decrease the signal-to-noise ratio. However, the 

spatial heterogeneity of NH3 is quite large near hotspots due to its short lifetime (Golston et al., 2020; Miller et al., 2015; Wang 150 

et al., 2021; Warner et al., 2016). The relationship between spatial window size and satellite/surface measurements agreement 

needs to be examined in more details. 

 

(3) Temporal distribution of satellite measurements across the two-week AMoN sampling period: Previous comparisons of 

model or satellite products against surface observations did not consider the distribution of IASI measurements during the two-155 

week sampling period (Kharol et al., 2018; Nair et al., 2019; Van Damme et al., 2015). AMoN measures continuously, whereas 

a series of cloudy days would preclude any valid satellite measurements. Therefore, any AMoN/satellite comparison is 

intrinsically biased towards clear sky days on the satellite side but includes all conditions for the AMoN site. 

 

(4) Number of available IASI pixels in the comparison: Guo et al. (2021) has shown that, even at low column amounts, IASI 160 

NH3 has no known biases. AMoN is an extremely sensitive measurement of NH3, far more precise than any satellite NH3 

product (NADP, 2023; Van Damme et al., 2017). Therefore, increasing the number of satellite measurements within a certain 

spatiotemporal window is expected to improve the signal-to-noise ratio in the satellite measurements and may lead to improved 

agreements with AMoN under clean conditions.  

 165 
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(5) Regional and seasonal variabilities: Different regional and seasonal patterns are expected to influence the comparison. The 

performances of thermal infrared sounders are highly affected by the thermal contrast between the surface air temperature and 

skin temperature (Clarisse et al., 2010). In winter, low thermal contrast results in low sensitivity, which explains the low 

number of IASI pixels in winter compared to summer (Clarisse et al., 2010; Guo et al., 2021). Kharol et al. (2018) showed that 

CrIS surface NH3 concentrations had an overall mean CrIS–AMoN difference of ∼+15%, however, they only averaged CrIS 170 

data over the warm season in 2013.  

 

In this study, to demonstrate the capabilities of using IASI NH3 observations to augment the ground monitoring network, we 

performed a comprehensive comparison between IASI and AMoN on bi-weekly/seasonal scales. We directly compare the 

correlation between IASI NH3 columns with AMoN surface NH3. We avoided direct comparisons when converting column 175 

NH3 into surface concentrations because of possible biases introduced by assuming vertical profiles, boundary layer heights at 

local sites, and gas phase - aerosol partitioning. The impacts of the different factors on the comparison are examined in the 

context of points raised above. After identifying the most optimal method for comparison, we examined NH3 trends over 

AMoN sites and the larger applicability of using satellite retrievals to discern NH3 trends over regions and seasons lacking 

AMoN data.  180 

 

2 Data and methods 

2.1 Satellite NH3 observations 

IASI is an infrared sounder launcheddeployed on board of the MetOp‐A, MetOp-B, and MetOp-C platforms in sun‐

synchronous orbits since October 2006, September 2012, and November 2018, respectively. IASI has a swath of 2200 km and 185 

provides global coverage twice per day at around 09:30 and 21:30 mean local solar time. At nadir, the IASI footprint has a 12-

km diameter. The first IASI NH3 product was developed by Clarisse et al. (2009) by converting the brightness temperature 

differences into total NH3 columns. Later on, a flexible and robust retrieval algorithm based on an artificial neural network for 

IASI (ANNI) (Whitburn et al., 2016) was developed. The latest version consists ofis a reanalyzed dataset provided withthat 

uses the European Centre for Medium‐Range Weather Forecasts Re‐Analysis v5 (ERA5) as its meteorological input (Van 190 

Damme et al., 2017; Van Damme et al., 2021). Because these meteorological input data for reanalysis data isare coherent in 

time, the reanalysis dataset it is the mostre appropriate dataset to be used to study trends. For the present analyses, we used 

IASI version 3.1 reanalysis (v3.1r) retrieval product data from the MetOp/A (2008-2018) and MetOp/B (2013-2018) satellites 

(limited to cloud fraction ≤ 25 %). Only the morning orbits were analyzed because of higher sensitivity than the evening 

overpasses (Clarisse et al., 2010).  195 
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2.2 Ground-based observations  

AMoN is the only network providing a consistent, long-term record of NH3 gas concentrations across the United States. AMoN 

was established by the National Atmospheric Deposition Program (NADP) in October 2007 and expanded to 19 sites in 2010 

and 105 sites in 2018. AMoN deploys Radiello® passive samplers that rely upon diffusion theory, where gas phase NH3 is 200 

adsorbed onto a cylindrical interior filter and extracted as NH4
+ to be analyzed by Flow Injection Analysis (FIA). AMoN 

provides biweekly surface NH3 concentrations, and the network detection limit is 0.083 mg NH4
+ L-1 (~0.078 µg NH3 m-3) for 

the 2-week samples in 2020 (NADP, 2023). The Radiello passive samplers were found to be biased low by 37% against 

denuders used as reference method (Puchalski et al., 2011). In this study, we are comparing the relative variations instead of 

absolute concentrations of IASI and AMoN, therefore the low bias of AMoN measurements is not as relevant to the outcome. 205 

 

We incorporated data from all AMoN sites with one notable exception. Using satellite imagery, we identified determined that 

the AMoN site in Logan, Utah (UT01), is located only ~ 100 m away from a livestock farm. Ammonia concentrations 

downwind of a beef/dairy feedlot at this distance are far above background levels and unrepresentative of those at the local-

regional scales (1-10 km) (Golston et al., 2020; Miller et al., 2015; Sun et al., 2018). Concentrations at UT01 are expected to 210 

be strongly dependent upon the extent to which local winds blow directly from that farm to the AMoN site throughout the two-

week integration period. Not surprisingly, the UT01 site has the highest annual mean concentration (16.2 μg/m3) in the entire 

AMoN network (three times higher than the next one). Furthermore, this AMoN site may be particularly susceptible to trends 

in animal operations or management practices at the farm. While it is possible the measurements of UT01 are representative 

of the local region, it is beyond the scope of this work to make such an assessment of its representativeness. For trend analyses, 215 

we only include AMoN sites with full year coverage during 2008 - 2018 (N=13). 

 

 

2.3 Trend analyses 

2.3.1 Oversampled NH3 maps for trend analysis 220 

From 2008 to 2018, a 0.02° × 0.02° (∼2 km) annual mean NH3 map in the CONUS was created each year based on a physical 

oversampling algorithm that represents the satellite spatial response functions as generalized 2-D super Gaussian functions 

(Sun et al., 2018). This algorithm weighs IASI measurements by their uncertainties, which include varying sensitivities to 

thermal contrast as described in Sun et al. (2018) and Wang et al. (2021). To evaluate the seasonal trends, Ffor each year, 

seasonally averaged oversampling maps were also generated for spring (March, April, and May, MAM), summer (June, July, 225 

and August, JJA), fall (September, October, and November, SON), and winter (December, January, and February, DJF). For 

each season, we were able to achieve sufficiently overlapped IASI pixels through calculating the sum of the unnormalized 

spatial response function (SRF) of the oversampling results. A large sum of unnormalized SRF means the Level 3 grid is 



8 

 

covered by more Level 2 pixels. (Sun et al., 2018 and; Wang et al., 2021 have a detailed description of SRF.). The oversampling 

products are only used for the trend analyses in Section 4 to achieve a high spatial resolution. For IASI and AMoN comparison 230 

results in Section 3, the oversampling products are not used since it sacrifices the temporal resolution. 

 

2.3.2 Mann-Kendall test and Theil-Sen’s slope estimator for trend analysis 

We use the Mann-Kendall (MK) test and Theil-Sen’s slope estimator for NH3 trend analyses. The non-parametric Mann-

Kendall test and Theil-Sen’s slope estimator are widely used in detecting trends of variables in meteorology and hydrology 235 

fields (Ahn and Merwade, 2014; Kendall, 1975; Yue and Wang, 2004). The Kendall rank correlation coefficient, commonly 

referred to as Kendall's τ coefficient, is a statistic used to measure the rank correlation. An MK test is a non-parametric 

hypothesis test for statistical dependence based on the Kendall’s τ coefficient. The Theil–Sen’s slope estimator is commonly 

used to fit a line to data points by calculating the median of the slopes of all lines through pairs of points.  

 240 

Different fromUnlike simple linear regression, the Mann-Kendall test and Theil-Sen’s slope estimator do not require the data 

to follow normal distribution and therefore are more robust to any outliers (Yue and Wang, 2004). This method is 

computationally efficient and is insensitive to outliers. For skewed and heteroskedastic data, the Theil-Sen estimator can be 

significantly more accurate than linear least squares regression. For normally distributed data, the Theil-Sen estimator 

competes well against the least squares in terms of statistical power (Yue and Wang, 2004).  245 

 

In this study, Theil-Sen’s slope was used to estimate 2008 – 2018 NH3 trends, and the MK test was used to derive the 

significance level of trends. 

 

3 IASI & AMoN comparison 250 

3.1 Sensitivity to spatial windows 

For the initial analysis, we first usedshow the simplest way ofmethod for comparing the satellite measurements with ground 

observations. In other words, for we center on each AMoN site, we average all IASI observations within a given radius of 

the AMoN site for during the sampling time frame (2 weeks) for comparison, and refer to that radius as a spatial window. 

We define each AMoN sample with co-located IASI pixels as an AMoN-IASI pair. If the distribution of NH3 pixels is 255 

spatially uniform, increasing the spatial window may improve the correlation between the two datasets because of a larger 

number of IASI pixels. Larger spatial windows include more IASI pixels than smaller spatial windows but at the expense of 

potentially not being representative of the AMoN site. In addition, a larger region is likely to encompass NH3 spatial 

gradients. In contrast, small spatial windows may only include a limited number of IASI pixels, encompassing more inherent 
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noise in the satellite measurements, especially if close to the detection limit. Each integrated 2-week AMoN measurement 260 

for each site was correlated with any relevant satellite data within the spatial window (total of 104 AMoN sites with 16,093 

measurements). Correlations between IASI and AMoN for different spatial windows (15 km, 25 km, 50 km, and 100 km) are 

summarized in Table 1. The minimum spatial window radius of 15 km is based upon an approximate scale for NH3 hotspots 

(Wang et al. 2021). 

 265 

As the spatial window becomes larger, mean temporal coverage (defined as the percentage of days with available IASI data 

of the 2-week AMoN sampling period) and the number of IASI pixels both have significant increases, but the Pearson’s r 

coefficient only increases slightly from 0.35 at a 15 km spatial window to 0.44 at a 100 km spatial window. Indeed, doubling 

the spatial window from 50 km to 100 km yields an almost tripled mean number of IASI pixels, yet maintains the almost the 

same correlation with r = 0.45 and r = 0. 44, respectively. This indicates that including IASI pixels at longer distances from 270 

the AMoN site may not be representative of the AMoN site, especially near sources or in regions with complex topography. 

The slightly increased r value over spatial window range may result from a tradeoff between averaging spatial gradients 

versus integrating a larger number of IASI pixels to improve the signal-to-noise ratio of the satellite measurements. To 

balance these competing effects, we select 25 km as the nominal spatial window for the further comparisons. 

 275 

Table 1. AMoN & IASI comparison results for different spatial windows 

Spatial window 15 km 25 km 50 km 100 km 

Pearson’s r  0.35  0.41 0.45 0.44 

Mean temporal coverage per pair (%)  31  44 57 71 

Mean # IASI pixels per AMoN-IASI pair  7  17  69 278 

# AMoN- & IASI pairs  14734 15543 15933 16022  

 

3.2 Sensitivities to temporal coverage and the number of IASI pixels  

NH3 is a short-lived species with a complicated diurnal profile (Nair and Yu, 2020) and the potential for large day-to-day 

concentration changes because of the variability in emissions, wind speed, temperature, PBL height, and aerosol partitioning 280 

(Golston et al., 2020; Miller et al., 2015). Thus, the temporal distribution of satellite measurements within the AMoN 

measurement period may impact the comparison. Fig. 1 illustrates four examples where the number of IASI pixels, and their 

relative distribution throughout the 2-week AMoN integration period (using a 25 km spatial window), could affect may impact 
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the resultscomparison (25 km spatial window). An ideal comparison case would have a uniform number of IASI measurements 

on each day during the approximate 14-day AMoN measurement period, similar to the case shown in Fig. 1a. In this case, 285 

there is no specific day having more weight than the other when calculating the biweekly mean. More common, however, are 

cases where some days have no satellite measurements due to clouds or low thermal contrast. For example, Fig. 1b has one 

missing day (N=23 satellite measurements) but with an otherwise even distribution throughout the remainder of the period, 

while Fig. 1c (N=24) has nearly the same number of satellite measurements as Fig. 1b but clustered on only 8 of the 15 days. 

Finally, there are also many cases where selected day(s) have few or no IASI measurements at all (Fig. 1d). When neither 290 

temporal coverage nor the number of IASI pixels are high, one can still calculate the matched IASI NH3 column for this AMoN 

sample, but the result is unlikely to be more as representative than as a more temporally distributed comparison. 

 

 

 295 

Figure 1. Examples of IASI data temporal coverage over the biweekly AMoN sampling period for an AMoN site in Yosemite National 

Park, California (CA 44): (a) several IASI measurements every day during the 2-week sampling period; (b) a few IASI measurements for 

most time days of the 2-week sampling period; (c) many IASI measurements but only in several days during the 2-week sampling period; 

(d) sparse IASI measurements for only several days during the 2-week sampling period. 

 300 

To this end, we explore the dependence of the correlation between IASI and AMoN with on IASI data’s temporal coverage of 

the 2-week sampling period and total number of IASI pixels within the 2-week AMoN sampling period, using the 25 km spatial 

window. For example, the temporal coverages for Fig. 1 are 100%, 92%, 53%, and 14%, respectively, and the number of IASI 

pixels are 52, 23, 24, and 5, respectively. The impact of different temporal averaging and the number of IASI pixels 
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requirements are summarized in Table 2 and Table 3, respectively. Increasing temporal coverage and number of IASI pixels 305 

both yield higher r values than any of the simple spatial windows alone. Table 2 shows that the correlation improves to r = 

0.74 when the temporal coverage is ≥ 80%, suggesting a significant impact of temporal coverage of the IASI data. The IASI 

and AMoN correlations also increase over a simple spatial window with increasing numbers of IASI pixels, yet the impact is 

not as strong (r = 0.63 for N ≥ 40) as the sensitivity to temporal coverage. 

 310 

 

Table 2. The impact of IASI data’s temporal coverage for the 2-week AMoN sampling period (25 km spatial window) 

IASI temporal coverage per AMoN-IASI pair (%) [0, 20) [20, 50) [50, 80)  [80, ∞) 

r 0.17 0.29 0.47 0.74 

Mean # IASI pixels per AMoN-IASI pair 3 13 26 38 

# AMoN- & IASI pairs 1766 7641 5137 999 

 

  

Table 3. The impact of # IASI pixels (25 km spatial window) 315 

# IASI pixels per AMoN-IASI pair [0, 10) [10, 20)  [20, 40) [40, ∞) 

r 0.16 0.37 0.50 0.63 

Mean temporal coverage per AMoN-IASI pair (%) 22 42 61 80 

# AMoN & -IASI pairs 4533 5025 5309 676 

 

 

 

Because the temporal coverage and number of IASI pixels are not independent variables, additional analyses are conducted to 

study the sensitivity of these two effects using Monte-Carol method. First, the available dataset is filtered to cases when at 320 

least one of the fourteen days have multiple IASI measurements per AMoN measurement, at least 7 days of the 14-day 

sampling period had at least one IASI measurement, and the total number of IASI pixels is at least 20. The number of days 

with available IASI measurement is denoted by T. Two opposite approaches are explored for 104 qualified AMoN sites:  
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(1) Maximized temporal coverage (TC_max): only one IASI pixel is randomly selected to represent that day, and the total 325 

number of IASI pixels equals T (T≤14). In this case, the temporal coverage is maximized. 

 

(2) Minimized temporal coverage (TC_min): only days with the largest number of IASI pixels are selected until the total 

number of IASI pixels equals T (T≤14). In this case, the temporal coverage is minimized, and the total number of selected 

IASI pixels is same with TC_max. 330 

 

For each AMoN site, we performed repeated the two different sampling strategies for 100 times, then calculated the median r 

value to represent each site using the maximum and minimum coverage approaches. Fig. 2a shows the histogram and 

normalized fit of change in r (∆r = TC_max-TC_min) for each site between the two scenarios with the number of bins 

determined by Sturge’s rule. The increased correlation of ∆r = 0.45 ± 0.28 shows the large impact of temporal coverage. The 335 

total number of IASI pixels used for the two strategies were identical.  

 

To further investigate the impact of including more IASI pixels after maximizing temporal coverage, we also test the process 

described in (1) and then randomly added (20-T) more IASI pixels from the remaining IASI pixels and referred to it as 

TC_max_add. Fig. 2b shows that the changes ∆r between TC_max and TC_max_add are small (-0.00 ± 0.05). For the TC_max 340 

strategy, the initial number of IASI pixels was between 7 and 14, which means using TC_max_add strategy result in a 43 ~ 

186 % increase in the number of IASI pixels compared to TC_max alone. Adding more IASI pixels does not have a significant 

impact on the r values, indicating that maximized temporal coverage alone is the most important factor when comparing IASI 

to AMoN stations.  

 345 

After applying a temporal coverage requirement (temporal coverage ≥ 80 %) to filter the overall dataset, we revisit the 

sensitivity of the agreement between spatial windows. The smaller spatial window now yields better agreement than the larger 

spatial windows (Table 4). Compared with Table 1 which has no filter for temporal coverage, the r values in Table 4 increase 

for all spatial windows. The correlations are clearly better for smaller spatial windows (r = 0.74 for 25 km versus r = 0.48 for 

100 km). In this way, the use of a larger spatial window is indeed a tradeoff between the increasing temporal coverage versus 350 

incorporating a larger spatial gradient. The results further demonstrate that the IASI pixels far from the AMoN sites may not 

be representative to the AMoN site.  
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 355 

Figure 2. The change in r values for individual AMoN sites using different sampling strategies: (a) maximized temporal coverage 

(TC_max); minimized temporal coverage (TC_min) and (b) maximized temporal coverage & randomly adding more pixels 

(TC_max_add). 

 

 360 

Table 4. AMoN & IASI comparison results for different spatial windows (temporal coverage ≥ 80 %) 

Spatial window 15 km 25 km 50 km 100 km 

Pearson’s r  0.76  0.74 0.58 0.48 

Mean # IASI pixels per AMoN-IASI pair  19  38  119 392 

# AMoN- & IASI pairs  105 999 3138 6899  
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3.3 Sensitivity to seasons and temporal averaging 

AMoN has similar numbers of measurements in spring (March, April, May), summer (June, July, August), autumn (September, 365 

October, November), and winter (December, January, February), while the mean number of IASI pixels (# IASI pixels) per 

pair in winter is only around half of other seasons (Fig. 3). In winter, low thermal contrasts result in low sensitivity of thermal 

infrared sounder, which explains the low number of IASI pixels in winter (Clarisse et al., 2010; Guo et al., 2021). The lower 

sensitivity of the infrared thermal sounder measurements in winter results in higher uncertainties, and thus comparisons 

between IASI and AMoN are especially important. When temporal coverage is at least 80%, IASI wintertime data still have 370 

good agreement with AMoN (r = 0.61) although the comparison areis limited to only a few AMoN & IASI pairs (N = 33). The 

r values for spring, summer, and autumn when temporal coverage ≥ 80% are 0.60 (N = 181), 0.76 (N = 502), and 0.70 (N = 

283), respectively. IASI in general only provides a small number of pixels in winter, however, it indeed has the capability of 

reflecting surface NH3 variations even in winter.  

 375 



15 

 

 

 

Figure 3. Boxplot of number of IASI pixels per AMoN-IASI pair for spring, summer, autumn, and winter. The boxes denote 

the 25th and 75th percentiles, the whiskers denote the 1st and 99th percentiles, and the red dot denotes the mean.  

 380 
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The results in 3.1 and 3.2 have already shown the importance of spatial window and temporal coverage. The temporal 

averaging and regridding approaches, such as the tessellation oversampling and physical oversampling, is are a common 

methods to achieve a higher spatial resolution map by sacrificing the temporal resolution (Sun et al., 2018; Van Damme et al., 

2018; Wang et al., 2021). Here we neglect the interannual variability of NH3 seasonality and calculate the multi-year averaged 

IASI and AMoN NH3 seasonality during 2008 - 2018concentrations using the 25 km spatial window. By averaging the multi-385 

year IASI data, the impacts of temporal coverage are alleviated because both temporal coverages and numbers of IASI pixels 

increase. Among the 101 AMoN sites with at least one full year data and available IASI v3.1r NH3 data, 49 sites show strong 

agreement with IASI with r > 0.8, 29 sites have moderate agreement of 0.5 < r ≤ 0.8, while 23 sites do not have statistically 

significant agreements (Fig. 4a). If taking all data into consideration, the overall r value for the CONUS is 0.69. The AMoN 

sites with higher NH3 concentrations tend to show better agreements between AMoN and IASI (Fig. 4b). The median AMoN 390 

NH3 annual mean concentrations for all sites is 0.86 μg/m3. Most sites with no statistically significant agreements have a low 

NH3 concentration (median: 0.48 μg/m3). Currently, most AMoN sites are located in low or moderate NH3 concentration 

regions with a lack of sites in the NH3 hotspots (Wang et al., 2021) and urban areas, complicating the comparison between 

AMoN and IASI.  

 395 

The above agreement demonstrates that IASI NH3 column reflects the variation of the surface NH3 concentration at seasonal 

resolution. For regions without any available ground measurements, IASI NH3 observations can be used to help better 

understand the NH3 variations. However, large differences exist among the relationships between IASI and AMoN NH3 

concentrations over different AMoN sites (an example of linear regression plot in Fig. 5b). Even for AMoN sites with excellent 

correlation (r > 0.8), the slopes vary a lot, ranging from 0.08 – 1.4 × 1016 molec/cm2 per μg/m3. For instance, two AMoN sites 400 

in California, Joshua Tree National Park (CA 67) and Sequoia & Kings Canyon National Park (CA 83), both exhibit great 

seasonality agreements with IASI (r = 0.97 and r = 0.99, respectively) but the slope for CA 83 (Fig. 4d) is 44 % higher than 

CA 67 (Fig. 4c). The difference between the slopes suggests that although IASI is able to capture the general seasonality, the 

relationship between NH3 column and surface NH3 is distinctly different due to complicated topography, meteorology, and 

other factors at different AMoN sites.  405 
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Figure 4. (a) Multi-year averaged NH3 seasonality comparison results between AMoN sites and the IASI observations within 25 km of 410 

the AMoN sites at monthly resolution. Circles without filled color denote the AMoN sites with no statistically significant correlation with 

IASI (α = 0.05). The circle sizes denote the length of AMoN data record;. (b) The relationship between mean AMoN NH3 concentrations 

and the correlation between AMoN and IASI seasonality; The regression between IASI and AMoN observed NH3 seasonality for (c) the 

AMoN site in Joshua Tree National Park, California (CA67), (d) the AMoN site in Sequoia National Park, California, and (e) the AMoN 

site in Indianapolis, Indiana (IN99). 415 

4 Trend analysis 

4.1 Trend in the CONUS 

Strong evidence of increasing NH3 concentrations in the U.S. comes from both ground-based observations and satellite 

measurements (Van Damme et al., 2021; Warner et al., 2017; Yao and Zhang, 2016; Yao and Zhang, 2019; Yu et al., 2018). 

The methodology and comparison results in section 3 demonstrate that IASI NH3 can be used to estimate verify and augment 420 

regional NH3 trends over the last decade. In this regard,Here we will compare satellite IASI NH3 observations trends withwill 

be used to augment the AMoN observed NH3 trends in the CONUS over the last decade. We include AMoN trend analysis 



19 

 

only for sites with full year coverage during 2008 - 2018 (N=13). Strong evidence of increasing NH3 concentrations in the 

U.S. comes from both ground-based observations and satellite measurements (Van Damme et al., 2021; Warner et al., 2017; 

Yao and Zhang, 2016; Yao and Zhang, 2019; Yu et al., 2018). Fig. 5a shows monthly averaged IASI and AMoN timeseries in 425 

from Indianapolis, Indiana, USA (IN 99). The strong correlation (r = 0.96) between the two measurements is shown in Fig. 

5b. Although the NH3 seasonality remain consistent from 2008 to 2018 - namely spring maxima and secondary maxima in fall 

with lowest values in winter - both AMoN and IASI also show increasing trends of NH3 concentrations over the entire 

timeseries. AMoN shows a trend of 6.5%·yr-1 while IASI shows a trend of 7.0%·yr-1. 

 430 

 

Figure 5. (a) 2008 – 2018 trends in monthly averaged NH3 trends for AMoN site in Indianapolis, Indiana, U.S. (IN 99) and IASI NH3 

observations within 25 km of IN 99; (b) seasonality correlation between AMoN and IASI NH3 for IN 99.  
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Here we will compare IASI NH3 trends with the AMoN observed NH3 trends in the CONUS over the last decade. We include 435 

AMoN trend analysis only for sites with full year coverage during 2008 - 2018 (N=13). To achieve a higher spatial resolution, 

in the following study, we used the oversampled IASI NH3 maps to calculate NH3 trend for each 2 km grid box. A long-term 

trend analysis was then performed using AMoN and IASI oversampled data (Sun et al., 2018; Wang et al., 2021) by Theil-

Sen’s slope estimator and MK test  to examine the agreement between the datasets and explore any regional differences. IASI 

NH3 columns smaller than the 5th percentile (0.5 × 1015 molec/cm2) of the 11-year NH3 average in the CONUS region were 440 

excluded to avoid spurious trend results caused by the higher noise in these measurements. To perform the interannual trend 

analysis, we require each region or site to have at least one valid measurement in each season to alleviate the possible bias due 

to seasonal variations. Fig. 6 shows the annual percentage change for both IASI and AMoN. Most regions in the CONUS have 

increasing NH3 concentrations based on the 11-year IASI observations (median: 6.8% · yr-1), including eastern U.S., Midwest, 

and parts of the western U.S. 10 out of 13 AMoN sites have statistically significant NH3 increases. AMoN data in general 445 

suggest similar increases (median: 6.7% · yr-1). When plotting the trends of AMoN sites against the median of IASI trends 

within a 25 km spatial window (Fig. 7), a moderate correlation (r = 0.66) was found between IASI and AMoN NH3 trends. 

IASI in general suggested a higher NH3 increase compared to AMoN (slope: 1.26 ± 0.51) with the ratio larger than one for 

most sites. The absolute NH3 change also is in correspondence with the previous study, with significant NH3 increases across 

the CONUS regions, especially in the Midwest (Van Damme et al., 2021). 450 

 

The spatial consistency across the datasets differs significantly. Both AMoN and IASI suggest ~ 5% · yr-1 NH3 increases in the 

Great Lake Region, while IASI suggests a higher NH3 increase in the eastern US compared with AMoN. The IASI trend 

analysis results suggest a significant NH3 increase in the northern Great Plains, e.g., North Dakota, South Dakota, and Montana, 

yet there are no AMoN sites in this region. Furthermore, the trends are consistent with the NH3 emissions increases caused by 455 

increased N fertilizer usage in the northern Great Plains (Cao et al., 2020b). McHale et al. (2021) showed that wet-precipitation 

NH4
+ concentrations based on NADP observations suggested the highest increases in the Great Plains, the Rocky Mountain 

Region, and the Great Lake Region from 2000 to 2017, which is geographically consistent with the NH3 trends observed by 

both AMoN and IASI. Here we note that the spatial resolution could affect the results of trend analyses. The trend 6.8% · yr-1 

was derived as the median of trends for each 2 km grid box. If considering the CONUS as a whole and calculating the annual 460 

mean NH3 for the whole CONUS during 2008 – 2018 to derive the overall trend in CONUS, the IASI NH3 change for 2008 – 

2018 is (3.9 ± 2.2) % · yr-1 and (1.3 ± 0.8) × 1014 molec/cm2·yr-1, similar with the trend in the previous study (3.4 ± 0.6) % · yr-

1 and (1.1 ± 0.4) × 1014 molec/cm2·yr-1) (Van Damme et al., 2021).  

 

 465 

We use Hoshen–Kopelman algorithm to cluster adjacent grid points above the 95th percentile threshold of the 11-year CONUS 

oversampling map (6.7 × 1015 molec/cm2) as a NH3 hotspot (Hoshen & Kopelman, 1976; Wang et al., 2021), and the median 

area of identified hotspots is ~ 150 km2 (Wang et al., 2021).In termsAnalyzing of trend in NH3 hotpots, which are here defined 
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as regions where the IASI NH3 column is larger than the 95th percentile of 11-year CONUS map (6.7 × 1015 molec/cm2), the 

median of NH3 trend is 4.7% · yr-1, indicating that the regions of the largest emissions sources are also realizing seeing 470 

increasing concentrations over time. Although the percent changes in the regions with the highest concentrations are smaller 

compared withthan the trend in the CONUS median (8.06.8% · yr-1), in terms of the absolute changes, the median trend of 

NH3 columns over these NH3 hotspots are higher compared withthan the trend in the CONUS median (3.7 × 1014 molec/cm2·yr-

1 vs. 2.8 × 1014 molec/cm2·yr-1). The top 10 NH3 hotspots in CONUS regarding column-areal weighting (NH3 column times 

the area) all exhibit increasing NH3 concentrations from 2008 to 2018 (Table 5). Within these hotspots, the central Great Plains 475 

experience the largest NH3 increase (median: 5.0% · yr-1, 4.0 × 1014 molec/cm2·yr-1) while the San Joaquin Valley (median: 

2.0% · yr-1, 1.6 × 1014 molec/cm2·yr-1) and Imperial County, California (median: 2.1% · yr-1, 1.9 × 1014 molec/cm2·yr-1) have 

see thea smaller smallest changes.  

 

 480 

 

Figure 6. Trend analysis for IASI NH3 (2008 - 2018) and AMoN NH3 measurements in the contiguous U.S. The gray color indicates no 

statistically significant change (α=0.05). The circle size denotes the length of AMoN data record.  
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 485 

Figure 7. Comparison between 2008 - 2018 AMoN and IASI NH3 trends (25 km spatial window) for AMoN sites with available nearby 

IASI trend data 

 

Table 5. 2008 – 2018 IASI observed NH3 trend in the top 10 NH3 hotspots (column-areal weighting) in CONUS  

Hotspots % · yr-1 1014 molec/cm2 · yr-1 

Central Great Plains 5.0 4.0 

The San Joaquin Valley 2.0 1.6 

North Oklahoma 3.9 2.9 

Texas panhandle 3.6 2.8 

Central Iowa 4.4 3.3 

The Snake River Valley 3.8 3.3 

Southeast Iowa 5.2 3.9 
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Beadle County, South Dakota 8.3 6.0 

Weld County, Colorado 3.6 2.9 

Imperial County, California 2.1 1.9 

 490 

To provide a detailed insight of the increasing NH3 over the CONUS, we further perform trend analyses for different seasons 

(Fig. 8). In spring, significant NH3 increases are found in the Midwest and in the Eeastern US. In summer, NH3 increases shift 

to the western US and part of thethe eastern Northeast US. AMoN and IASI seasonality clustering results show that the 

Midwest and eastern United States, dominated by fertilizer NH3 emissions, have a broad, spring maximum of NH3, while the 

western United States, dominated by volatilization of livestock waste NH3 emissions, in contrast, show a narrower midsummer 495 

peak (Wang et al., 2021). The spatial patterns of spring and summer NH3 trends are in agreement with the seasonality clustering 

results, indicating that increasing NH3 emissions caused by agricultural activities may contribute to NH3 concentration 

increase. The increasing wildfire activities in the western U.S. may also contribute to NH3 increases (Lindaas et al., 2021a, b). 

In fall and winter, most regions in the U.S. do not have statistically significant IASI NH3 trends, and a decreasing NH3 trend 

is observed by IASI in the Southwest US in fall. In contrast, AMoN data suggest a notable NH3 increase in Northeast and the 500 

Corn Belt region in winter. Again, IASI data are susceptible to low thermal contrasts in winter, which to some extent explains 

the disagreement between IASI and AMoN in winter as discussed in Section 3.3.  

 

Wintertime NH3 plays an important role in haze episodes through the formation of aerosol phase NH4NO3 (Shah et al., 2018; 

Zhai et al., 2021), and increasing NH3 concentrations in winter may affect aerosol acidity and aerosol chemistry (Lawal et al., 505 

2018; Zheng et al., 2020). In the past decades, NOx and SO2 emissions reductions have resulted in less NHx partitioning into 

particle phase NH4
+ (Shah et al., 2018), however, the partitioning alone is not able to fully explain the significant NH3 

concentration increases (Yao and Zhang, 2019; Yu et al., 2018). The change of meteorological conditions, such as increasing 

air temperatures may also contribute to the increasing NH3 trends (Warner et al., 2017; Yao and Zhang, 2019). No matter the 

reason for increasing NH3 concentrations across the CONUS regions, the fact that both NH3 surface concentrations and NH3 510 

column concentrations are increasing during the past decade will have significant impacts on air quality and nitrogen 

deposition. EPA is reviewing the 2020 PM2.5 National Ambient Air Quality Standard (NAAQS) currently set at 12.0 µg·m-3 

and if the NAAQS is lowered, NH3 controls will become increasingly important for meeting the standard. Additionally, Pan 

et al. (2021) demonstrates that NH3 transported from Colorado significantly increased the dry NH3 deposition the Rocky 

Mountain National Park. Increasing gas phase NH3 may result in longer spatiotemporal scales for dry nitrogen deposition, 515 

leading to adverse impacts on remote regions and sensitive ecosystems (Phoenix, et al., 2006). Reduction of NH3 emissions is 

critical to protect human health and the biodiversity in sensitive ecosystems (Ellis et al., 2013, Hill et al., 2019). 
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Figure 8. 2008 – 2018 NH3 trend for different seasons based on IASI NH3 measurements in the contiguous U.S. (a) spring (March, April, 

May); (b) summer (June, July, August); (c) autumn (September, October, November); (d) winter (December, January, February). The gray 520 

color indicates no statistically significant change (α = 0.05). 

 

4.2 Trend in the urbanized areas 

The short lifetime of NH3 leads to strong spatial variabilities of NH3 concentrations, and most AMoN sites are not located in 

highly populated urban regions (Wang et al., 2021), a gap that IASI data can fill. Fig. 9a shows the cumulative distribution of 525 

the US population as a function of the distance from an AMoN sitepopulation coverage of AMoN in the CONUS region. 

Population data were retrieved from the Gridded Population of the World, Version 4 (GPWv4) (Center for International Earth 

Science Information Network – Columbia University, 2018). More than half of the CONUS population is at least 100 km away 

from an AMoN site. As mentioned in the previous discussion of spatial windows, AMoN may best represent the NH3 variations 

for regions within ~ 10 km radius, and less than 2% of CONUS population are within 10 km of an AMoN site. More urban 530 

AMoN sites are needed to represent the urban areas and better quantify NH3 emissions from mobile sources and, trends in in 

population centersthe urban areas. Satellite observations are the only dataset that can currently be used to investigate source 

contributions and trends in population centers (Cao et al., 2022). 
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We retrieved urban area data from the 2010 US Census, which includes two different types of urban areas: Urbanized Areas 535 

(UAs) of 50,000 or more people and Urban Clusters (UCs) of at least 2,500 and less than 50,000 people (U.S. Census Bureau, 

2012). The urban areas have a similar NH3 trend compared with CONUS (8.1% · yr-1 vs. 8.06.8% · yr-1), suggesting a 

simultaneous NH3 increase in both urban and rural areas. The top ten most populous urbanized areas almost all exhibit 

significant NH3 increases with the exception of Miami, Florida, which has a negative trend and Dallas, Texas, without any 

significant trend (Table 6). These ten areas in total accommodate account for more than seventy million peoplepopulation, 540 

making up more than one fifth of the total population in the CONUS. The urban environment with abundant HNO3 and NH3 

emissions from vehicles favors the formation of NH4NO3. Recent studies suggest that gas phase NH3 hinders the scavenging 

of NH4NO3 by slowing down the deposition process of total inorganic nitrate (Zhai et al., 2021) and promotes new atmospheric 

particle formation by directly nucleate with HNO3 to form NH4NO3 in winter in urban areas and (Wang et al., 2020). However, 

ultimately the sensitivity to PM2.5 from increases in NH3 in any urban areas will be a complex function of trends of NOx and 545 

SO2 as well (Feng et al., 2020). The NH3 increase in these densely populated areas and its impact on the aerosol chemistry 

needneeds to be further addressed. For example, Fig. 9b shows the relationship between NH3 trends versus emissions trends 

(EPA Air Pollutant Emissions Trends Data) on the state level. For agricultural areas with high NH3 (excess NH3 relative to 

NH4NO3 equilibrium), one would expect an increase in emissions to correlate very well with increasing NH3 columns. In 

contrast, in areas with more NOx, increases in emissions may result in NH3 going into NH4NO3 and thereby show little or even 550 

negative correlations. To this end, Fig. 9b shows that at state level, states with strong agricultural emissions show strong 

correlations between emissions and concentrations trends, e.g., Iowa, while northeast states show weak or negative 

correlations, e.g., New Jersey. Ultimately, co-located aerosol phase and gas phase precursor measurements are needed to fully 

deduce what is happening at each urban area and should be a focus of future air quality network integration. 

 555 
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Figure 9. (a) Cumulative distribution of CONUS population as a function of distance fromThe population coverage of the nearest AMoN 

sites; (b) Correlation between EPA NH3 emissions and IASI observed mean NH3 concentrations at state level during 2008 - 2018. The 

gray dots represent states without statistically significant correlations (α = 0.05). 560 
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Table 6. 2008 – 2018 IASI NH3 trend in the top 10 most populous urbanized areas 565 

Urbanized Area Population (million) % · yr-1 1014 molec/cm2 · yr-1 

New York--Newark, NY--NJ--CT 18.0 10.8 2.0 

Los Angeles--Long Beach--Anaheim, CA 12.0 4.3 2.1 

Chicago, IL--IN 8.6 5.2 2.5 

Miami, FL 5.5 -25.2 -1.5 

Philadelphia, PA--NJ--DE--MD 5.4 10.9 2.6 

Dallas--Fort Worth--Arlington, TX 5.1 / / 

Houston, TX 4.9 7.9 2.0 

Washington, DC--VA--MD 4.6 9.0 2.2 

Atlanta, GA 4.5 9.4 2.2 

Boston, MA--NH--RI 4.2 10.5 1.4 

 

 

5 Implications 

Under favorable conditions, IASI NH3 columns correlate with AMoN NH3 surface concentrations even at the 2-week scale 

and for low concentration regions (r = 0.74 when temporal coverage ≥ 80 %). The temporal coverage of IASI measurements’ 570 

data during the 2-week temporal coverage of AMoN’s 2-week sampling period is the controlling factor of the correlation 

between IASI and AMoN measurements,dominates the agreement presumably because of the larger day-to-day variability of 

NH3. The agreement demonstrates the strong potential for using IASI NH3 columns to bridge the spatial gaps of the AMoN 
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network. The global coverage of satellite measurements enables the IASI NH3 product to serve as an alternative dataset in 

countries and regions that do not have any NH3 monitoring networks, particularly in developing countries. For example, India 575 

is the second most populated country in the world with a sixth of the world's population, and recent study has shown that the 

unique role of NH3 in forming massive chloride aerosols (up to 40 μg/m3) in India (Gunthe et al., 2021). However, there are 

currently no long-term NH3 ground monitoring networks in India, impeding the efforts to estimate and control NH3 emissions 

(Beale et al., 2022). IASI's low sensitivity to wintertime NH3 shows the value of the more sensitive AMoN sites. Extra attention 

is needed when using IASI data in such circumstances.  580 

 

The increasing NH3 in the CONUS (median: 6.8%·yr-1, 2.8 × 1014 molec/cm2·yr-1), including the hotspots region (median: 

4.7%·yr-1, 3.7 × 1014 molec/cm2·yr-1), highlights the more important role of NH3 in PM2.5 formation and nitrogen deposition 

in the future. AMoN suggests a similar NH3 increase (6.7%·yr-1) as well as a similar spatial patterns with IASI. Both IASI and 

AMoN show largest NH3 increases in the Midwest and eastern U.S., with a moderate agreement correlation between the IASI 585 

and AMoN trends for the entire CONUSAMoN sites (r = 0.66). More co-located measurements of PM2.5 mass and NH3 

concentrations would help assess the impact increasing trends of NH3 will have on human health. The integrated satellite and 

ground-based measurements are already playing a role in our understanding of under-represented NH3 emissions sources in 

the inventories. NH3 already dominates the reactive nitrogen deposition in the majority areasmost regions in the U.S., with the 

continuing efforts on NOx emission reductions, NH3 is expected to become the key species for nitrogen deposition (Li et al., 590 

2016), which will have and poses adverse impacts on the nearby ecosystem regions, e.g., the National Parks (Benedict et al., 

2013; Pan et al., 2021). The changing partitioning of NHx between NH3 and NH4
+ is likely to impact the lifetime of NHx due 

to differences between the removal velocity of gas phase NH3 via dry deposition and particle phase NH4
+ wet deposition. The 

trends vary in different seasons, with NH3 increases mainly in spring in the Midwest and eastern U.S. (cropland dominated) 

whileand in summer in the western U.S. (feedlot dominated), suggesting the impacts from agricultural activities and the 595 

necessity of developing regionally-specific emission control strategies. 

 

Because of the scarcity of the ground monitoring sites in the urban areas, satellite NH3 measurements are extremely valuable 

forto  characterizinge NH3 magnitude, seasonality, and trend in densely populated areas. Satellite observations suggests NH3 

increases across the U.S. urban areas (median: 8.1%). New York—Newark, NY--NJ—CT alone has more than eighteen million 600 

population, experiencing an 10.8 % · yr-1 NH3 increase. Measurements from satellites will help inform where ground based 

NH3 samplers could be located to better understand local air quality in overburdened communities with limitedthat lack 

resources for continuous monitors. In addition, NH3 sources in the urban areas and the related atmospheric chemistry are both 

poorly understood (Gu et al., 2022; Sun et al., 2017) and could be constrained by satellite NH3 observations (Cao et al., 2022). 

However, satellite observations alone are not able to answer all questions under the complex urban atmospheric conditions. 605 

For instance, gas phase NH3 and HNO3 can nucleate directly to form NH4NO3 particles in cold atmospheric conditions and is 

likely to result in rapid growth of new atmospheric particles in winter in urban areas (Wang et al., 2020). The comparison 
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between NH3 emission trends and IASI observed NH3 concentration trends suggests that strong correlations exist in states with 

large NH3 emissions from agricultural activities, e.g., Iowa, while weak or negative correlations in northeast states, e.g., New 

Jersey, indicating the different contribution from emission and partitioning. To provide accurate and fine spatial scale NH3 610 

observations in the urban areas, more routine ground monitoring sites are needed both in urban areas and high NH3 emission 

source regions. 
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(NADP/NTN): https://nadp.slh.wisc.edu/networks/ammonia-monitoring-network/. The authors acknowledge the AERIS data 

infrastructure (https://www.aeris-data.fr) for providing access to the IASI Level 2 NH3 data used in this study. Population data 

were retrieved from Center for International Earth Science Information Network, Columbia University: 

https://sedac.ciesin.columbia.edu/data/collection/gpw-v4/. The urban areas data are downloaded from the U.S. Census Bureau: 

https://www.census.gov/geographies/mapping-files.html. The emission trend data are downloaded form the US Environmental 620 

Protection Agency, Air Pollutant Emissions Trends Data: https://www.epa.gov/air-emissions-inventories/air-pollutant-

emissions-trends-data. 

Author contributions 

MAZ and RW designed the research; RW led the analysis; KS, DP, and XG contributed to data analysis; LC, MV, LP, and 

CC helped with the usage of IASI data; MP helped with the usage of AMoN data; and RW wrote the paper with contributions 625 

from all co-authors. 

Competing interests 

Competing interests. The contact author has declared that none of the authors has any competing interests.  

Disclaimer 

Publisher’s note: Copernicus Publications remains neutral with regard to jurisdictional claims in published maps and 630 

institutional affiliations. 

https://nadp.slh.wisc.edu/networks/ammonia-monitoring-network/
https://www.aeris-data.fr/
https://sedac.ciesin.columbia.edu/data/collection/gpw-v4/
https://www.census.gov/geographies/mapping-files.html


30 

 

Acknowledgements 

Xuehui Guo gratefully acknowledges the NASA Earth and Space Science Fellowship (Grant number: 80NSSC17K0377) for 

funding the work. We also gratefully acknowledge support for the analyses of the IASI and in situ data products from the 

NASA Health and Air Quality Applied Sciences (HAQAST) team, NASA NNX16AQ90G. Mark A. Zondlo acknowledges 635 

support as a visiting scientist at ULB from the EUMETSAT Satellite Application Facility on Atmospheric Chemistry 

Monitoring (AC SAF). Kang Sun acknowledges the support from NASA Atmospheric Composition: Modeling and Analysis 

Program (ACMAP, Grant number: 80NSSC19K0988). The research was funded by the Belgian State Federal Office for 

Scientific, Technical and Cultural Affairs (Prodex HIRS) and the Air Liquide Foundation (TAPIR project). This work is also 

partly supported by the FED-tWIN project ARENBERG (“Assessing the Reactive Nitrogen Budget and Emissions at Regional 640 

and Global Scales”) funded via the Belgian Science Policy Office (BELSPO). L. Clarisse is Research Associate supported by 

the Belgian F.R.S.-FNRS. C. Clerbaux is grateful to CNES for scientific collaboration and financial support. The research 

presented was not performed or funded by EPA and was not subject to EPA’s quality system requirements. The views 

expressed in this article are those of the author(s) and do not necessarily represent the views or the policies of the U.S. 

Environmental Protection Agency.  645 

References 

Ahn, K. H. and Merwade, V.: Quantifying the relative impact of climate and human activities on streamflow, J. Hydrol., 515, 

257–266, https://doi.org/10.1016/j.jhydrol.2014.04.062, 2014. 

Beale, C. A., Paulot, F., Randles, C. A., Wang, R., Guo, X., Clarisse, L., Van Damme, M., Coheur, P.-F., Clerbaux, C., 

Shephard, M. W., Dammers, E., Cady-Pereira, K., and Zondlo, M.: Large sub-regional differences of ammonia 650 

seasonal patterns over India reveal inventory discrepancies, Environ. Res. Lett., https://doi.org/10.1088/1748-

9326/AC881F, 2022. 

Benedict, K. B., Day, D., Schwandner, F. M., Kreidenweis, S. M., Schichtel, B., Malm, W. C., and Collett, J. L.: Observations 

of atmospheric reactive nitrogen species in Rocky Mountain National Park and across northern Colorado, Atmos. 

Environ., 64, 66–76, https://doi.org/10.1016/j.atmosenv.2012.08.066, 2013. 655 

von Bobrutzki, K., Braban, C. F., Famulari, D., Jones, S. K., Blackall, T., Smith, T. E. L., Blom, M., Coe, H., Gallagher, M., 

Ghalaieny, M., McGillen, M. R., Percival, C. J., Whitehead, J. D., Ellis, R., Murphy, J., Mohacsi, A., Pogany, A., 

Junninen, H., Rantanen, S., Sutton, M. A., and Nemitz, E.: Field inter-comparison of eleven atmospheric ammonia 

measurement techniques, Atmos. Meas. Tech., https://doi.org/10.5194/amt-3-91-2010, 2010. 

Bouwman, A. F., Lee, D. S., Asman, W. A. H., Dentener, F. J., van der Hoek, K. W., and Olivier, J. G. J.: A global high-660 

resolution emission inventory for ammonia, Global Biogeochem Cycles, 11, 561–587, 

https://doi.org/10.1029/97GB02266, 1997. 



31 

 

Butler, T., Vermeylen, F., Lehmann, C. M., Likens, G. E., and Puchalski, M.: Increasing ammonia concentration trends in 

large regions of the USA derived from the NADP/AMoN network, Atmos. Environ., 146, 132–140, 

https://doi.org/10.1016/j.atmosenv.2016.06.033, 2016. 665 

Cao, H., Henze, D. K., Shephard, M. W., Dammers, E., Cady-Pereira, K., Alvarado, M., Lonsdale, C., Luo, G., Yu, F., Zhu, 

L., Danielson, C. G., and Edgerton, E. S.: Inverse modeling of NH3 sources using CrIS remote sensing measurements, 

Environ. Res. Lett., 15, https://doi.org/10.1088/1748-9326/abb5cc, 2020a. 

Cao, H., Henze, D. K., Cady-Pereira, K., Mcdonald, B. C., Harkins, C., Sun, K., Bowman, K. W., Fu, T. M., and Nawaz, M. 

O.: COVID-19 Lockdowns Afford the First Satellite-Based Confirmation That Vehicles Are an Under-recognized 670 

Source of Urban NH3Pollution in Los Angeles, Environ. Sci. Technol. Lett., 9, 3–9, 

https://doi.org/10.1021/ACS.ESTLETT.1C00730/ASSET/IMAGES/MEDIUM/EZ1C00730_M004.GIF, 2022. 

Cao, P., Lu, C., Zhang, J., and Khadilkar, A.: Northwestward cropland expansion and growing urea-based fertilizer use 

enhanced NH3 emission loss in the contiguous United States, Atmos. Chem. Phys., 20, 11907–11922, 

https://doi.org/10.5194/acp-20-11907-2020, 2020b. 675 

Chen, Y., Shen, H., Kaiser, J., Hu, Y., Capps, S., Zhao, S., Hakami, A., Shih, J.-S., Pavur, G., Turner, M., Henze, D., Resler, 

J., Nenes, A., Napelenok, S., Bash, J., Fahey, K., Carmichael, G., Chai, T., Clarisse, L., Coheur, P.-F., van Damme, 

M., and Russell, A.: High-resolution Hybrid Inversion of IASI Ammonia Columns to Constrain U.S. Ammonia 

Emissions Using the CMAQ Adjoint Model, Atmos. Chem. Phys., 1–25, https://doi.org/10.5194/acp-2020-523, 2020. 

Clarisse, L., Clerbaux, C., Dentener, F., Hurtmans, D., and Coheur, P.-F.: Global ammonia distribution derived from infrared 680 

satellite observations, Nat. Geosci., 2, 479–483, https://doi.org/10.1038/ngeo551, 2009. 

Clarisse, L., Shephard, M. W., Dentener, F., Hurtmans, D., Cady-Pereira, K., Karagulian, F., van Damme, M., Clerbaux, C., 

and Coheur, P. F.: Satellite monitoring of ammonia: A case study of the San Joaquin Valley, J. Geophys. Res. Atmos., 

115, 1–15, https://doi.org/10.1029/2009JD013291, 2010. 

Dammers, E., Palm, M., Damme, M. van, Vigouroux, C., Smale, D., Conway, S., Toon, G. C., Jones, N., Nussbaumer, E., 685 

Warneke, T., Petri, C., Clarisse, L., Clerbaux, C., Hermans, C., Lutsch, E., Strong, K., Hannigan, J. W., Nakajima, 

H., Morino, I., Herrera, B., Stremme, W., Grutter, M., Schaap, M., Kruit, R. J. W., Notholt, J., Coheur, P.-F., and 

Erisman, J. W.: An evaluation of IASI-NH 3 with ground-based Fourier transform infrared spectroscopy 

measurements, Atmos. Chem. Phys, 16, 10351–10368, https://doi.org/10.5194/acp-16-10351-2016, 2016. 

Dammers, E., Shephard, M. W., Palm, M., Cady-Pereira, K., Capps, S., Lutsch, E., Strong, K., Hannigan, J. W., Ortega, I., 690 

Toon, G. C., Stremme, W., Grutter, M., Jones, N., Smale, D., Siemons, J., Hrpcek, K., Tremblay, D., Schaap, M., 

Notholt, J., and Willem Erisman, J.: Validation of the CrIS fast physical NH3 retrieval with ground-based FTIR, 

Atmos. Meas. Tech., 10, 2645–2667, https://doi.org/10.5194/amt-10-2645-2017, 2017. 

EPA, United States Environmental Protection Agency, Air Quality Implementation Plans, https://www.epa.gov/air-quality-

implementation-plans, last access: Janauray 2023. 695 



32 

 

EPA, United States Environmental Protection Agency, Air Pollutant Emissions Trends Data, https://www.epa.gov/air-

emissions-inventories/air-pollutant-emissions-trends-data, last access: August 2023. 

Ellis, R. A., Jacob, D. J., Sulprizio, M. P., Zhang, L., Holmes, C. D., Schichtel, B. A., Blett, T., Porter, E., Pardo, L. H., and 

Lynch, J. A. Present and future nitrogen deposition to national parks in the united states: Critical load exceedances. 

Atmos. Chem. Phys., 13, 9083–9095. https://doi.org/10.5194/ACP-13-9083-2013, 2013 700 

Erisman, J. W., Sutton, M. A., Galloway, J., Klimont, Z., and Winiwarter, W.: How a century of ammonia synthesis changed 

the world, Nat. Geosci., 1, 636–639, https://doi.org/10.1038/ngeo325, 2008. 

Fehsenfeld, F. C., Huey, L. G., Leibrock, E., Dissly, R., Williams, E., Ryerson, T. B., Norton, R., Sueper, D. T., and Hartsell, 

B.: Results from an informal intercomparison of ammonia measurement techniques, J. Geophys. Res. Atmos., 107, 

https://doi.org/10.1029/2001JD001327, 2002. 705 

Feng, J., Chan, E., and Vet, R.: Air quality in the eastern United States and Eastern Canada for 1990–2015: 25 years of change 

in response to emission reductions of SO2 and NOx in the region, Atmos. Chem. Phys., 20, 3107–3134, 

https://doi.org/10.5194/ACP-20-3107-2020, 2020. 

Fountoukis, C. and Nenes, A.: ISORROPIAII: A computationally efficient thermodynamic equilibrium model for K+-Ca2+-

Mg2+-NH4
+-Na+-SO4

2--NO3
--Cl--H2O aerosols, Atmos. Chem. Phys., 7, 4639–4659, https://doi.org/10.5194/acp-7-710 

4639-2007, 2007. 

Goldberg, D. L., Anenberg, S. C., Lu, Z., Streets, D. G., Lamsal, L. N., E McDuffie, E., and Smith, S. J.: Urban NOx emissions 

around the world declined faster than anticipated between 2005 and 2019, Environ. Res. Lett., 16, 115004, 

https://doi.org/10.1088/1748-9326/AC2C34, 2021. 

Golston, L. M., Pan, D., Sun, K., Tao, L., Zondlo, M. A., Eilerman, S. J., Peischl, J., Neuman, J. A., and Floerchinger, C.: 715 

Variability of Ammonia and Methane Emissions from Animal Feeding Operations in Northeastern Colorado, 

Environ. Sci. Technol., 54, 11015–11024, https://doi.org/10.1021/acs.est.0c00301, 2020. 

Gu, M., Pan, Y., Sun, Q., Walters, W. W., Song, L., and Fang, Y.: Is fertilization the dominant source of ammonia in the urban 

atmosphere, Sci. Total Environ., 838, 155890, https://doi.org/10.1016/J.SCITOTENV.2022.155890, 2022. 

Gunthe, S. S., Liu, P., Panda, U., Raj, S. S., Sharma, A., Darbyshire, E., Reyes-Villegas, E., Allan, J., Chen, Y., Wang, X., 720 

Song, S., Pöhlker, M. L., Shi, L., Wang, Y., Kommula, S. M., Liu, T., Ravikrishna, R., McFiggans, G., Mickley, L. 

J., Martin, S. T., Pöschl, U., Andreae, M. O., and Coe, H.: Enhanced aerosol particle growth sustained by high 

continental chlorine emission in India, Nat. Geosci., 14, 77–84, https://doi.org/10.1038/s41561-020-00677-x, 2021. 

Guo, X., Wang, R., Pan, D., Zondlo, M. A., Clarisse, L., van Damme, M., Whitburn, S., Coheur, P. F., Clerbaux, C., Franco, 

B., Golston, L. M., Wendt, L., Sun, K., Tao, L., Miller, D., Mikoviny, T., Müller, M., Wisthaler, A., Tevlin, A. G., 725 

Murphy, J. G., Nowak, J. B., Roscioli, J. R., Volkamer, R., Kille, N., Neuman, J. A., Eilerman, S. J., Crawford, J. H., 

Yacovitch, T. I., Barrick, J. D., and Scarino, A. J.: Validation of IASI Satellite Ammonia Observations at the Pixel 

Scale Using In Situ Vertical Profiles, J. Geophys. Res. Atmos., 126, https://doi.org/10.1029/2020JD033475, 2021. 

https://www.epa.gov/air-emissions-inventories/air-pollutant-emissions-trends-data
https://www.epa.gov/air-emissions-inventories/air-pollutant-emissions-trends-data


33 

 

Hauglustaine, D. A., Balkanski, Y., and Schulz, M.: A global model simulation of present and future nitrate aerosols and their 

direct radiative forcing of climate, Atmos. Chem. Phys., 14, 11031–11063, https://doi.org/10.5194/acp-14-11031-730 

2014, 2014. 

Hennigan, C. J., Izumi, J., Sullivan, A. P., Weber, R. J., and Nenes, A.: A critical evaluation of proxy methods used to estimate 

the acidity of atmospheric particles, Atmos. Chem. Phys., 15, 2775–2790, https://doi.org/10.5194/acp-15-2775-2015, 

2015. 

Hill, J., Goodkind, A., Tessum, C., Thakrar, S., Tilman, D., Polasky, S., Smith, T., Hunt, N., Mullins, K., Clark, M., and 735 

Marshall, J.: Air-quality-related health damages of maize, Nat. Sustain., 2, 397–403, https://doi.org/10.1038/s41893-

019-0261-y, 2019. 

Holt, J., Selin, N. E., and Solomon, S.: Changes in inorganic fine particulate matter sensitivities to precursors due to large-

scale us emissions reductions, Environ Sci Technol, 49, 4834–4841, https://doi.org/10.1021/acs.est.5b00008, 2015. 

Kendall, M.: Rank correlation methods (4th edn.) charles griffin. San Francisco, CA, 1975. 740 

Kharol, S. K., Shephard, M. W., McLinden, C. A., Zhang, L., Sioris, C. E., O’Brien, J. M., Vet, R., Cady-Pereira, K. E., Hare, 

E., Siemons, J., and Krotkov, N. A.: Dry Deposition of Reactive Nitrogen From Satellite Observations of Ammonia 

and Nitrogen Dioxide Over North America, Geophys. Res. Lett., 45, 1157–1166, 

https://doi.org/10.1002/2017GL075832, 2018. 

Lawal, A. S., Guan, X., Liu, C., Henneman, L. R. F., Vasilakos, P., Bhogineni, V., Weber, R. J., Nenes, A., and Russell, A. 745 

G.: Linked Response of Aerosol Acidity and Ammonia to SO2 and NOx Emissions Reductions in the United States, 

Environ. Sci. Technol., https://doi.org/10.1021/acs.est.8b00711, 2018. 

Li, Y., Schichtel, B. A., Walker, J. T., Schwede, D. B., Chen, X., Lehmann, C. M. B., Puchalski, M. A., Gay, D. A., and Collett, 

J. L.: Increasing importance of deposition of reduced nitrogen in the United States, Proc. Natl. Acad. Sci. U.S.A., 

113, 5874–5879, https://doi.org/10.1073/pnas.1525736113, 2016. 750 

Lindaas, J., Pollack, I. B., Garofalo, L. A., Pothier, M. A., Farmer, D. K., Kreidenweis, S. M., Campos, T. L., Flocke, F., 

Weinheimer, A. J., Montzka, D. D., Tyndall, G. S., Palm, B. B., Peng, Q., Thornton, J. A., Permar, W., Wielgasz, C., 

Hu, L., Ottmar, R. D., Restaino, J. C., Hudak, A. T., Ku, I. T., Zhou, Y., Sive, B. C., Sullivan, A., Collett, J. L., and 

Fischer, E. v.: Emissions of Reactive Nitrogen From Western U.S. Wildfires During Summer 2018, Journal of 

Geophysical Research: Atmospheres, 126, https://doi.org/10.1029/2020JD032657, 2021a. 755 

Lindaas, J., Pollack, I. B., Calahorrano, J. J., O’Dell, K., Garofalo, L. A., Pothier, M. A., Farmer, D. K., Kreidenweis, S. M., 

Campos, T., Flocke, F., Weinheimer, A. J., Montzka, D. D., Tyndall, G. S., Apel, E. C., Hills, A. J., Hornbrook, R. 

S., Palm, B. B., Peng, Q., Thornton, J. A., Permar, W., Wielgasz, C., Hu, L., Pierce, J. R., Collett, J. L., Sullivan, A. 

P., and Fischer, E. v.: Empirical Insights Into the Fate of Ammonia in Western U.S. Wildfire Smoke Plumes, Journal 

of Geophysical Research: Atmospheres, 126, https://doi.org/10.1029/2020JD033730, 2021b. 760 



34 

 

Malm, W. C., Schichtel, B. A., Pitchford, M. L., Ashbaugh, L. L., and Eldred, R. A.: Spatial and monthly trends in speciated 

fine particle concentration in the United States, J. Geophys. Res. Atmos., 109, n/a-n/a, 

https://doi.org/10.1029/2003JD003739, 2004. 

Miller, D. J., Sun, K., Tao, L., Pan, D., Zondlo, M. A., Nowak, J. B., Liu, Z., Diskin, G., Sachse, G., Beyersdorf, A., Ferrare, 

R., and Scarino, A. J.: Ammonia and methane dairy emission plumes in the San Joaquin valley of California from 765 

individual feedlot to regional scales, J. Geophys. Res. Atmos., 120, 9718–9738, 

https://doi.org/10.1002/2015JD023241, 2015. 

McHale, M. R., Ludtke, A. S., Wetherbee, G. A., Burns, D. A., Nilles, M. A., and Finkelstein, J. S.: Trends in precipitation 

chemistry across the U.S. 1985–2017: Quantifying the benefits from 30 years of Clean Air Act amendment regulation, 

Atmos. Environ., 247, https://doi.org/10.1016/J.ATMOSENV.2021.118219, 2021. 770 

NADP, National Atmospheric Deposition Program, the Ammonia Monitoring Network, 

https://nadp.slh.wisc.edu/networks/ammonia-monitoring-network/, last accessed: January 2023. 

Nair, A. A. and Yu, F.: Quantification of atmospheric ammonia concentrations: A review of its measurement and modeling, 

https://doi.org/10.3390/atmos11101092, 1 October 2020. 

Nair, A. A., Yu, F., and Luo, G.: Spatioseasonal Variations of Atmospheric Ammonia Concentrations Over the United States: 775 

Comprehensive Model-Observation Comparison, J. Geophys. Res. Atmos., 124, 6571–6582, 

https://doi.org/10.1029/2018JD030057, 2019. 

Pan, D., Mauzerall, D. L., Benedict, K. B., Wang, R., Golston, L., Collett, J. L., Jr., Tao, L., Sun, K., Guo, X., Schichtel, B. 

A., Ham, J. M., Prenni, A. J., Puchalski, M., Mikoviny, T., Müller, M., Wisthaler, A., and Zondlo, M. A.: A Paradigm 

Shift in Sulfate-Nitrate-Ammonium Aerosol Formation in the United States and its Implications for Reactive Nitrogen 780 

Deposition, American Geophysical Union Fall Meeting 2020, Online, 1-17 Dec. 2020, A074-06,  

https://agu.confex.com/agu/fm20/meetingapp.cgi/Paper/679051, 2020. 

Pan, D., Benedict, K. B., Golston, L. M., Wang, R., Collett, J. L., Tao, L., Sun, K., Guo, X., Ham, J., Prenni, A. J., Schichtel, 
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