Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js
Preprints
https://doi.org/10.5194/egusphere-2023-1246
https://doi.org/10.5194/egusphere-2023-1246
18 Jul 2023
 | 18 Jul 2023

Estimating the refractivity bias of Formosat-7/COSMIC-II GNSS Radio Occultation in the planetary boundary layer

Gia Huan Pham, Shu-Chih Yang, Chih-Chien Chang, Shu-Ya Chen, and Cheng-Yung Huang

Abstract. FORMOSAT-7/COSMIC-2 radio occultation (RO) measurements are promising for observing the deep troposphere and providing critical information on the Earth's planetary boundary layer (PBL). However, refractivity retrieved in the low troposphere can have severe bias under certain thermodynamic conditions. This research examines the characteristics of bias in the low troposphere and presents methods for estimating the region-dependent bias using regression models. The results show that the bias has characteristics that vary with land and oceans. With substantial correlation between local spectral width (LSW) and bias, the LSW-based bias estimation model can explain the general pattern of the refractivity bias but with deficiencies in measuring the bias in the ducting regions and certain areas over land. The estimation model involving the relationship with temperature and specific humidity can capture the bias of large amplitude associated with ducting. Finally, a minimum variance estimation that combines the benefits of the individual estimation provides the most accurate estimation of the refractivity bias.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

13 Jun 2024
Estimating the refractivity bias of FORMOSAT-7/COSMIC-2 Global Navigation Satellite System (GNSS) radio occultation in the deep troposphere
Gia Huan Pham, Shu-Chih Yang, Chih-Chien Chang, Shu-Ya Chen, and Cheng Yung Huang
Atmos. Meas. Tech., 17, 3605–3623, https://doi.org/10.5194/amt-17-3605-2024,https://doi.org/10.5194/amt-17-3605-2024, 2024
Short summary
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
This research examines the characteristics of low-level GNSS radio occultation (RO) refractivity...
Share