
Estimating the refractivity bias of FORMOSAT-7/COSMIC-2
Global Navigation Satellite System (GNSS) radio occultation
in the deep troposphere
Gia Huan Pham1, Shu-Chih Yang1,2, Chih-Chien Chang1, Shu-Ya Chen2, and Chung-Yung Huang3

1Department of Atmospheric Sciences, National Central University, Taoyuan, Taiwan
2GPS Research and Application Center, National Central University, Taoyuan, Taiwan
3Taiwan Space Agency, Hsinchu, Taiwan

Correspondence: Shu-Chih Yang (shuchih.yang@atm.ncu.edu.tw)

Received: 11 June 2023 – Discussion started: 18 July 2023
Revised: 18 March 2024 – Accepted: 19 March 2024 – Published:

Abstract. FORMOSAT-7/COSMIC-2 radio occultation
(RO) measurements show promise for observing the deep
troposphere and for providing critical information on the
Earth’s planetary boundary layer (PBL). However, refractiv-
ity retrieved in the low troposphere can have severe biases5

under certain thermodynamic conditions. This research ex-
amines the characteristics of the deep tropospheric biases
and presents methods for estimating the region-dependent
refractivity bias using statistical regression models. The re-
sults show that the biases have characteristics that vary over10

land and oceans. With substantial correlation between local
spectral width (LSW) and bias, the LSW-based bias estima-
tion model can explain the general pattern of the refractivity
bias but with deficiencies in measuring the bias in the duct-
ing regions and in certain areas over land. The estimation15

model involving the relationship with temperature and spe-
cific humidity (TQ) can capture the large biases associated
with ducting. Finally, a minimum variance estimation that
combines the LSW and TQ provides the most accurate esti-
mation of the refractivity bias.20

1 Introduction

Global Navigation Satellite System (GNSS) radio occulta-
tion (RO) observations have become a critical data source
in atmospheric applications, particularly numerical weather
prediction (NWP; e.g., Healy, 2008; Rennie, 2010; Cucu-25

rull et al., 2007, 2017; Lien et al., 2021). Low-Earth-orbiting

(LEO) satellites receive radio signals from GNSS transmit-
ters, which bend due to atmospheric density changes. Infor-
mation on the bending angle can be obtained with the GNSS
RO technique, and then the atmospheric refractivity is further 30

derived using Abel inversion. Since the RO technique mea-
sures the signal phase delay, it is not affected by clouds or
rainfall. The RO profile is an all-weather observation with a
high vertical resolution.

The RO observations, bending angle, and refractivity 35

measure vertical gradients in atmospheric density, a func-
tion of temperature, moisture, and pressure (Kuo et al.,
2004). RO observations provide information on temper-
ature (stratosphere and upper troposphere) and moisture
(lower troposphere) with low noise and low systematic er- 40

rors (biases), which make them useful in atmospheric re-
search (Eyre, 2008). Several GNSS RO missions, e.g., the
FORMOSAT-3/Constellation Observing System for Mete-
orology, Ionosphere, and Climate (FS3/C), FORMOSAT-
7/COSMIC-2 (FS7/C2), Meteorological Operational satel- 45

lite (MetOp), Gravity Recovery And Climate Experiment
(GRACE), Satellite de Aplicaciones Cientifico-C (SAC-C),
X-band TerraSAR satellite (TerraSAR-X), and Korea Multi-
Purpose Satellite-5 (KOMPSAT-5) have provided much RO
data for NWP. Many studies have illustrated the positive im- 50

pact of assimilating RO observations, such as the operational
forecast systems at the European Centre for Medium-Range
Weather Forecasts (ECMWF; Healy, 2014), the NCEP/En-
vironmental Modeling Center (EMC; Cucurull et al., 2007),
and the Taiwan Central Weather Administration (CWA; Lien 55
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et al., 2021). Moreover, studies have been initiated recently
to investigate the potential of assimilating the large volume
of commercial RO data from Spire, and the benefits can be
identified in weather forecasting (Bowler, 2020a). In addi-
tion to improving global NWP, studies have also confirmed5

that assimilating RO observations improves severe weather
prediction, particularly for tropical cyclones and heavy rain-
fall (e.g., Chen et al., 2020; 2021a, b, 2022; Chang and Yang,
2022; Yang et al., 2014).

As the successor to FS3/C, the FS7/C2 mission was10

launched in 2019 with support from the Taiwan National
Space Agency (TASA) and the United States National
Oceanic and Atmospheric Administration (NOAA) and Na-
tional Science Foundation. The number of profiles obtained
by FS7/C2 is approximately 3 times greater than that of15

FS3/C since FS7/C2 has dense coverage over the tropics
and subtropics (Chen et al., 2021c). Compared with FS3/C,
FS7/C2 has a higher signal-to-noise ratio (SNR), wider band-
width, and a better open-loop (OL) tracking model. These
advantages enable the retrieval of more data from RO sig-20

nals penetrating the moist troposphere and give the abil-
ity to detect the planetary boundary layer (PBL) and super-
refraction (SR) over the top of the PBL (Schreiner et al.,
2020; Sokolovskiy et al., 2024). Chen et al. (2021c) showed
that the data availability of the FS7/C2 RO profiles under25

1 km is 5 times greater than that of the FS3/C profiles over
a 6-month range. Anthes et al. (2022) noted that the pen-
etration rate of RO profiles is high even under extremely
moist conditions and near tropical cyclones. The ability to
penetrate deep into the atmosphere makes RO measurements30

ideal for studying the PBL. The PBL is directly influenced
by any exchange of energy, momentum, and mass between
the Earth’s surface and the atmosphere, and thus its charac-
teristics are crucial for weather and climate variabilities.

However, the use of GNSS RO in the lower atmosphere35

still produces errors when radio rays pass through areas
with strong vertical or horizontal refractivity gradients. It is
known that negative biases in refractivity exist in the lower
troposphere, especially in the tropics (Rocken et al., 1997).
The implementation of open-loop tracking (Sokolovskiy,40

2001) and the use of the holographic retrieval method largely
reduce the negative refractivity bias (REFB) in lower tro-
posphere in earlier generation RO missions. “Radioholo-
graphic” methods such as the canonical transform (CT)
method (Gorbunov, 2002), Full Spectrum Inversion (FSI)45

(Jensen et al., 2003) and phase matching (PM) (Jensen et
al., 2004) largely solve the multipath issue resulting from
the “strong” refractivity gradient. Still, negative REFB can
arise in the deep troposphere from multiple causes, as sum-
marized by Feng et al. (2020) and Wang et al. (2020). A50

common cause (but not the only one) of negative biases in
the lower troposphere is ducting (Sokolovskiy, 2003; Ao et
al., 2003; Xie et al., 2010). When the vertical gradient of re-
fractivity ∂N/∂z exceeds a critical value of −157N units
per km (Lopez, 2009), ducting occurs and rays are trapped55

inside the ducting layer. In the presence of ducting, the singu-
larity problem in the Abel transforms leads to a non-unique
inversion problem. Thus, the Abel inversion results in a neg-
ative bias refractivity below the ducting layers (Sokolovskiy,
2003). Feng et al. (2020) reported that climatological loca- 60

tions agree well with the areas of high ducting frequency,
mainly over the subtropical eastern oceans. Furthermore,
non-ducting-related biases exist in the RO data. Error associ-
ated with low SNR in the complex, moist lower troposphere
may cause negative biases in bending angles and refractiv- 65

ity. Another potential source is that the propagation of radio
waves in a medium with random refractivity irregularities
can also cause biases (Gorbunov et al., 2015). In regard to
the assimilation of RO data, quality control (QC) is applied
to reject the RO data if the observation or the corresponding 70

background is suspected to be affected by super-refraction.
The rejection rate is high below 2 km due to the negative
bias, which could also discard valuable information for data
assimilation. To increase the value of RO data in the lower
atmosphere, this study aims to examine the characteristics of 75

the REFBs with the FS7/C2 RO data in more detail and pro-
poses methodologies to estimate them.

Previous research has demonstrated that the negative
REFB in the atmospheric boundary layer ABL can be rec-
ognized and estimated using canonical transform approxi- 80

mations (Sokolovskiy, 2003) and can be reconstructed in the
presence of ducting conditions (Xie et al., 2006). Based on
Xie et al. (2006), Wang et al. (2017) developed an optimal
estimation of negative bias using precipitable water (PW) ob-
servations from Advanced Microwave Scanning Radiometer 85

from the EOS (AMSR-E) data. Wang et al. (2020) further
proposed a bias estimation algorithm by generating a candi-
date set of modeled ducting profiles. The one with the verti-
cal gradient of the reflected bending angle closest to the ob-
served profile is taken as the bias-corrected profile. However, 90

there are some limitations to these methods, such that they
only correct for ducting-related bias, and the grazing signal
of the bending measurement is needed. For the RO observa-
tion error, the local spectral width (LSW), which measures
the uncertainty in the RO bending angle, has been used to 95

indicate the quality of the individual RO profiles. The LSW
represents the errors caused by the nonspherical symmetry of
refractivity in the moist troposphere (Gorbunov et al., 2006;
Sokolovskiy et al., 2010). The use of RO observations in data
assimilation is improved by considering the LSW parameter 100

in the QC procedure (Liu et al., 2018) or in dynamic estima-
tion of RO error in the lower troposphere (Zhang et al. 2023).
Liu et al. (2018) showed that both uncertainties and biases
were related to LSW. Sjoberg et al. (2023) recently showed a
strong statistical correlation between lower-tropospheric un- 105

certainties and LSW. They mentioned that they found a cor-
relation between biases and LSW as well but did not pro-
vide details. Furthermore, Bowler (2020b) proposed estimat-
ing RO errors with information on mean temperatures below
20 km. These results suggest that variations in LSW, tem- 110
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perature, and humidity are related to the bias. Thus, we de-
veloped statistical models that adaptively consider the biases
associated within each RO profile using LSW, temperature,
and water vapor.

We first investigate the characteristics of the FS7/C2 RO5

REFB and establish regression-based bias estimation algo-
rithms. Two types of algorithms are examined. One is based
on the physical LSW parameter, and the other is related to
thermodynamic variables (temperature and water vapor). By
comparing the results of the estimated bias, we can identify10

how they link to the characteristics of each participating vari-
able. Finally, a bias correction method for the RO profile in
the lower troposphere is proposed by combining the two bias
estimation algorithms. We expect that this new algorithm can
be used for different aspects, such as improving the products15

of temperature and moisture profiles retrieved from the re-
fractivity in the moist lower troposphere (Chen et al., 2020),
defining the PBL height (Xie, 2014), and estimating precip-
itable water vapor (Lien et al., 2024). Furthermore, for the
data assimilation (DA) systems that assimilate the RO refrac-20

tivity, it is expected that the RO data in the deep troposphere
can be better exploited using the bias estimation as a QC flag
or by assimilating the calibrated refractivity profiles.

The remaining portions of this paper are organized as fol-
lows. Section 2 provides the data information and methods25

for estimating the REFB. Section 3 discusses the general
characteristics of bias and its sensitivities with respect to dif-
ferent variables and land/sea conditions. Section 4 presents
the results of bias estimation algorithms. Finally, the sum-
mary and conclusion are provided in Sect. 5.30

2 Data and methodology

2.1 GNSS RO FS7/C2 and ECMWF data

This study uses the FS7/C2 RO atmospheric profiles (atm-
Prf) and wet products (wetPf2) processed by the Taiwan Data
Processing Center (TDPC). The study period is from 1 De-35

cember 2019 to 29 February 2020, before the FS7/C2 data
were assimilated into the ECMWF analysis. All RO profiles
are distributed between 45° N and 45° S due to the low in-
clination orbits of the FS7/C2 satellites. A total of 244 853
profiles with the flag of “good data” are selected during the40

periods, and only data below the height of 25 km are used to
focus on the bias characteristics in the troposphere. The data
quality of the FS7/C2 constellation is improved compared to
FS3/COSMIC (FS3/C) due to the use of the advanced RO
receiver and post-processing with open-loop tracking. Most45

of the profiles show a deeper penetration with depths below
1 km, and the penetration rate is 40 % higher than that of
FS3/C (Chen et al., 2021c). Figure 1 shows the number of
profiles that penetrate below 1.5 km above mean sea level
(a.m.s.l.) during the selected periods. The FS7/C2 data are50

mostly in tropical areas and have more profiles penetrating
below 1.5 km over oceans than over land.

The ECMWF atmospheric reanalysis (ERA5,
https://www.ecmwf.int/en/forecasts/access-forecasts/
access-archive-datasets, last access: 10 March 2022) is used 55

as the reference RO profile. The hourly ERA5 reanalysis in
the study period has a horizontal resolution of 0.25°× 0.25°
with 37 pressure levels ranging from 1000 to 1 hPa. Vari-
able geopotential, temperature, and specific humidity are
selected. Since the time of the RO data is precise in minutes, 60

we rounded the time of the RO profiles to the nearest hour.
The ERA5 profiles are derived by interpolating the reanal-
ysis horizontally and vertically to the location and vertical
levels of the RO atmPrf. The RO REFB is defined as the
difference between the FS7/C2 and the ERA5 RO reference 65

at each level. This assumes that the ERA5 refractivities are
close to the truth. These biases are referred to as the real
biases in this paper. Nevertheless, it is possible that ERA5
may carry its own biases, which will not be discussed in this
study. 70

To construct the statistical models, the predictors are LSW,
temperature (T ), and specific humidity (Q). The LSW, avail-
able in the atmPrf data, is calculated from the width of the
spectrum during the RO processing (Liu et al., 2018). T
and Q, available in the wetPf2 data, are computed from a 75

one-dimensional variational (1D-Var) retrieval algorithm us-
ing the ECMWF 12 h forecast as a prior factor (Wee et al.,
2022).

2.2 Statistical models for bias estimation

Two polynomial regression models are developed to estimate 80

the REFB using predictors associated with different attribu-
tions of the observational error in GNSS RO data. The first
model uses LSW/2 as the predictor, and the other uses tem-
perature (T ) and specific humidity (Q) as the predictors. Liu
et al. (2018) used a linear function of LSW/2 to illustrate the 85

FS3/C dynamic error variance in the bending angle and re-
fractivity, and the scaling factor 1/2 for LSW approximates
the root mean square of random error in the bending an-
gle (Liu et al. (2018) assuming a Gaussian spectrum (Sir-
mans and Bumgarner, 1975). Following Liu et al. (2018), 90

we use the variable LSW/2 and modify this relationship to
a polynomial regression. The other bias estimation model
is established using the thermodynamic variables to empha-
size the impact of the thermodynamic structure on REFB in
the deep troposphere. The two polynomial regression models 95

are referred to as the LSW and TQ estimators, respectively.
The LSW represents the RO inversion uncertainty, and T
and Q represent the impact of the thermodynamic structure
on REFB within the ABL. Each of these variables is expected
to partly explain the characteristics of the bias. 100

In each estimator, the order of the polynomial is optimized
using theR-squared and mean squared error metrics to assess
the goodness-of-fit performance. The polynomial regression

https://www.ecmwf.int/en/forecasts/access-forecasts/access-archive-datasets
https://www.ecmwf.int/en/forecasts/access-forecasts/access-archive-datasets
https://www.ecmwf.int/en/forecasts/access-forecasts/access-archive-datasets
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Figure 1. Number of FS7/C2 RO profiles below 1.5 km in height during the study period (unit: number of profiles).

is performed with the training data, which is 80 % of the to-
tal data, and the rest (20 %) of the data are used for evaluat-
ing the regression performance. To derive a robust regression
model, independent regression fitting is repeated five times
by replacing the training (testing) data with different 80 %5

(20 %) subsets of the data so that the testing data from the five
experiments eventually cover the whole data set. The regres-
sion model with the best-fitting performance for both train-
ing data and testing data is chosen as the optimal one. Given
that our goal is to construct regional-dependent estimators10

to consider the spatial variation in the REFB, we group the
RO refractivity profiles from 45° N to 45° S into 5° longi-
tude× 3° latitude boxes (Fig. 1), and the regression-based
REFB estimators are built into each box. In total, there are
72× 30 boxes. The boxes are defined by considering that the15

number of available RO profiles below 1.5 km should be at
least 10 profiles in each box to conduct the regression train-
ing and testing. With the 3 months of data used in our study,
choosing testing data lower than 20 % of the total data results
in a very coarse resolution of the boxes. On the other hand,20

choosing any number larger than 20 % would sacrifice the
amount of data that can train a reliable regression model. We
note that all profile data below 1.5 km are used first (80 % for
training and 20 % for testing) to determine the order of the
LSW-based regression model and the optimal combination25

of the multivariable (T and Q) regression model.
For the LSW estimator, a second-order polynomial is cho-

sen based on the R-squared metric. Afterwards, a second-
order polynomial regression is constructed for an individual
box. Equation (1) shows the formula of the LSW estimator30

in the ith box,

ui = αi,1x
2
i +αi,2xi +αi,3, (1)

where ui , the predictand, is the REFB; xi is the LSW/2; and
αi,∗ are the regression coefficients. Although the biases re-
lated to the signal tracking or multipath are much reduced35

after the implementation of open-loop tracking and the radio-
holographic retrieval method, we expect that LSW can par-
tially capture the biases inherited from the bending angle.

A similar procedure is applied to derive a multivariable
polynomial regression model, with T and Q obtained from 40

the 1D-Var analysis of the RO wet products (Wee et al., 2022)
as the predictors. For consistency, the real REFB originally
defined with the atmPrf will be interpolated to the same lev-
els of the wetPf2. No REFB, T or Q are collected if the
wetPf2 profiles terminate above 1.5 km a.m.s.l. Before fit- 45

ting, T and Q are standardized as

χ =
xi −min(xi)

max(xi)−min(xi)
, (2)

where χ represents a normalized quantity ranging between 0
and 1, and xi is the original value of Q or T in the ith box.
Given two variables, there are different combinations of or- 50

der and interaction terms (the multivariable polynomial func-
tion has the form of

∑m=M
m=0

∑l=L
l=0 bm,ly

mzl , where m and l
are the order of variables y and z, respectively, and bm,l
is the regression coefficient). For this application, the mean
squared error (MSE) is used to determine the optimal fitting 55

formula given that R-squared is comparable when higher or-
der terms are included. The optimal multivariable polyno-
mial regression model has the form

ui = βi,1y
2
i +βi,2yi +βi,3yizi, (3)

where ui is REFB, yi is the normalized Q, zi is the normal- 60

ized T , and βi,∗ are the regression coefficients. Considering
the quadratic term of moisture is essential. The R-squared
(MSE) value increases (decreases) from 0.535 (37.044) with
the yi and yizi terms to 0.732 (26.610) with the y2

i term.
We further apply the minimum variance estimation (MVE; 65

Clarizia et al., 2014) to combine the results from the LSW
and TQ estimators. This approach has the advantage of hav-
ing a smaller root mean square error (RMSE) than either the
LSW estimation or the TQ estimation. The MVE is built to
linearly combine the estimations so that the new estimation 70

has the minimum error variance

ui,MVE =m ·u, (4)

where u is the vector of the individual estimated refractiv-
ity bias and m is the vector of the combination coefficients.
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One of the advantages of this combination is that m is de-
rived considering the error covariance matrix of individual
bias estimators.

m=
(∑K

i=1

∑K

j=1
c−1
i,j

)−1
C−11, (5)

where 1 is a vector with all elements equal to one,K is the di-5

mension of m (K = 2 in our application), C−1 is the inverse
of the covariance matrix between the individual estimation
errors, and c−1

i,j are the elements of C−1.
The element of the error covariance matrix C is expressed

as ci,j = 〈(ui−ut )(uj−ut )〉, where ui and uj are the ith and10

j th bias estimations, respectively, and ut is the real bias.

3 Characteristics of the refractivity bias

3.1 General characteristics of REFB

Figure 2a shows the profile of the averaged REFB and its
standard deviation from 0 to 25 km. RO data have signifi-15

cant biases in comparison to the ERA5 reference, especially
in the low troposphere. The bias is evident below 5 km and
is largest at the surface with an amplitude of approximately
−11N units. Given the large variations in moisture and tem-
perature in the low troposphere, the standard deviation be-20

low 2 km increases as the height decreases. Notably, although
the total number of profiles quickly decreases below 5 km
(Fig. 2b), there remain enough data for near-surface statisti-
cal evaluation, with about a 40 % penetration rate at 0.5 km
in reference to the total number of profiles at 10 km (Fig. 2c).25

The mean LSW (red line in Fig. 2a) also increases sharply as
the height decreases, with two peaks (at the surface and near
2 km).

Figure 3a shows the latitudinal cross-section of the REFB.
The largest values of REFB are below 5 km in the subtropics30

and tropics and slightly shifted to the Southern Hemisphere
due to the austral summer. The opposite pattern, which has a
high bias shifted to the Northern Hemisphere, is also seen in
the data from June to August 2020 (not shown). This result
indicates the general dependence of the distribution of REFB35

on the seasonal temperature and water vapor structure. Simi-
lar to the REFB pattern, large LSW occurs mainly in the trop-
ics, tilting toward the Southern Hemisphere with the maxi-
mum near the surface (Fig. 3b). This finding illustrates that
LSW variation can be related to the REFB to some extent.40

Moreover, other high LSW values are located a few kilo-
meters above the surface of the Southern Hemisphere. The
increased LSW above 2 km could be caused by common in-
version layers in the troposphere above oceans (Sokolovskiy
et al., 2014). Another effect that could be considered is the45

influence of convective clouds just above moist oceans (Yang
et al., 2016). The large LSW near the surface in Fig. 3b re-
flects the ability of FS7/C2 to penetrate deep into the moist
troposphere of the tropics. However, this surface maximum

Figure 2. (a) Mean and standard deviation of REFB and mean LSW
as a function of height. (b) The amount of available RO data and
(c) the percentage of profiles as a function of height in reference to
the total number at 10 km. The RO data are from 1 December 2019
to 29 February 2020.
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was not seen in the study of Zhang et al. (2023) using FS3/C
data in August 2008.

3.2 Dependence on geography and thermodynamic
conditions

We further examine the dependence of the REFB on land5

and oceanic thermodynamic conditions. Figure 4 compares
REFB between land and ocean, together with its standard
deviation (SD) and LSW. Both REFB and LSW below 4 km
are somewhat larger over oceans, and the REFB extends to
higher altitudes (Fig. 4c vs. Fig. 4d) with a greater verti-10

cal gradient of REFB below 2 km. The magnitudes of mean
REFB and SD above 2 km are comparable over land and
ocean. The shape of the LSW profile is different over oceans
and land, with the second peak value at 2 km being more pro-
nounced over oceans. Below 1.5 km, the shape of the REFB15

profile exhibits the same characteristics as the LSW profiles,
suggesting the potential of LSW as a predictor for estimating
REFB.

Given the large REFB in the deep troposphere, we focus
on the regional variations in REFB averaged below 1.5 km.20

Figure 5a shows that the averaged value of negative REFB
below 1.5 km is largest over the oceanic regions near the
western coasts of the South American and African conti-
nents. Small negative REFBs appear over the tropical Pa-
cific and over land. There are small positive REFBs over the25

high-mountain regions. The different behavior of the REFB
over ocean and land implies the impact of regional variabil-
ity and the associated thermodynamic structure in the lower
troposphere. As shown in Fig. 5b–d, high LSW occurrence
is mainly located over the warm equatorial regions of the Pa-30

cific, Atlantic, and Indian oceans. However, not all of the re-
gions with high temperature and moisture coexist with the
regions with high LSW. Some exceptional regions can be
seen, such as off the coast of southwest Australia and off-
shore from southwest Africa near the international date line.35

Figure 5 suggests that although LSW, temperature, and spe-
cific humidity have certain cross-relationships, the character-
istics of thermodynamic conditions cannot fully explain the
distribution of LSW. Therefore, an REFB estimation model
that is based on only one variable is not enough to explain40

REFB.
To further highlight the characteristics of REFB under dif-

ferent conditions, the REFB profiles are grouped accord-
ing to each profile’s LSW, temperature, and specific humid-
ity averaged below 1.5 km for land and ocean (Fig. 6). As45

Xie (2014) reported, 1.5 km a.m.s.l. is the global mean PBL
height calculated from the FS3/C refractivity data. In gen-
eral, it is evident that the negative REFB increases with in-
creasing LSW below 4 km, as shown in Fig. 3; however, the
characteristics are different for land and ocean. Over land,50

very high LSW does not guarantee the occurrence of a large
REFB in the lower troposphere. Moisture and temperature
likewise exhibit the same linear relationship with negative

REFB in the lower troposphere. However, negative REFBs
also tend to occur under conditions of low moisture over the 55

ocean. Figure 6 reveals that the relationship between REFB
and LSW and T andQ under 1.5 km is predominantly linear;
however, the REFB variations can be further explained by a
quadratic relationship with Q. It is noted that REFB at about
10 km increases with increasing LSW, T , and Q over both 60

land and oceans and even becomes weakly positive at high
values of LSW, T , and Q averaged below 1.5 km. In particu-
lar, RO profiles over land with large LSW below 1.5 km have
the largest positive REFB, nearly 8N unit, aloft. Taking only
the RO profiles penetrating 0.5 km will modify the charac- 65

teristics of Fig. 6 in two ways. First, the REFB below 10 km
becomes positive for LSW/2 larger than 28 %. Second, the
REFB for cold temperature is negative at 15 kmTS1 . The for-
mer feature is related to the early cutoff height in the tropi-
cal occultation over central Africa (Sokolovskiy et al., 2010). 70

TS2The latter feature is attributed to the inversion associated
with the large-scale subsidence near the tropopause near the
midlatitudes. Sensitivity tests to address sampling issues will
be discussed in Sect. 4.2.

4 Results of bias estimation 75

4.1 General performance

In this section, we present the estimation for REFB using
the methods introduced in Sect. 2. As mentioned, LSW/2,
which represents the retrieval uncertainties in the bending
angle and, hence, refractivity uncertainties, is the predictor 80

for the first bias estimation model. T and Q retrieved from
FS7/C2 RO data are the predictors for the second estimator.
Although the T and Q products retrieved from RO profiles
using 1D-Var retrievals may have errors, they still provide
valuable information for REFB estimation through the train- 85

ing process, as described in Sect. 2.
Figure 7 shows the relationship between the REFB and

LSW/2 averaged below 1.5 km for the Southern Hemisphere
(SH) and Northern Hemisphere (NH). REFB is grouped ev-
ery 2 % of LSW/2, from 0 % to 36 %. The solid and dashed 90

lines show the LSW-based REFB estimates for ocean and
land, respectively. Under 1.5 km, the magnitude of the nega-
tive REFB as a function of LSW is larger over oceans than
over land. Generally, as LSW/2 increases, the REFB be-
comes more negative below 1.5 km for both land and ocean. 95

Although the relationship is dominated by a linear trend,
the quadratic term further improves the regression fitting. As
shown in Table 1, the correlations over ocean and land are
robust (larger than or close to 0.9) and similar to the training
and testing data in SH and NH. Compared to the REFB under 100

the warm and moist conditions of the austral summer in SH,
the REFB over NH is weaker, but the relationship between
LSW/2 and REFB is still strong over ocean and land, except
that the one over land has a somewhat stronger quadratic fea-
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Figure 3. The cross-sections of (a) zonal mean REFB and (b) mean LSW/2 from 1 December 2019 to 29 February 2020.

ture. Given this strong relationship, we expect that the rela-
tionship during the boreal summer season will hold as well.
However, the relationship between REFB and LSW/2 is not
present above 1.5 km, and there is little difference in REFB
between land and ocean.5

Figure 8 shows the result of the second bias estimator,
which relates the REFB to the normalized Q (y) and the
product of the normalized T and Q (yz) under 1.5 km. The
TQ estimation over ocean and land captures the feature
where the REFB becomes more negative under moist condi-10

tions. Similar to the LSW estimator, the TQ estimator shows
a stronger dependence over the ocean. The multivariable re-
gression has correlation coefficients equal to 0.79 and 0.72
for ocean and land in SH, respectively, and 0.75 and 0.69,
respectively, in NH. In general, the REFB shows a robust15

bilinear relationship with y and yz, and the quadratic term
(y2) provides further adjustment. With a fixed specific hu-
midity, lower temperature results in larger negative REFB.
In Fig. 8a, this result reflects the conditions over the cool
sea surface temperature (SST) (Fig. 5a and d) west of the20

coast of South America and southern Africa. The relation-
ship becomes more linear in NH (Fig. 8a vs. Fig. 8c), i.e., less
dependent on the quadratic term of specific humidity. For
dryer conditions, the TQ estimator tends to give neutral to
positive REFB, especially over land (Fig. 8b and d) where25

a large amount of data are in the areas with dry conditions
and part of them are over the midlatitude continent (Fig. 5c).
Given the fixed TQ value (yz= 0.5) in Fig. 8, Fig. 9 shows
the strong relationship between REFB and Q. Large nega-
tive REFB corresponds to moist conditions, but the negative30

amplitude is larger over the SH ocean with larger variation.
The relationship is more quadratic over ocean than over land
and is most linear over the NH land. In Fig. 8, a slightly posi-

tive REFB is estimated for very cold and dry conditions over
ocean. In Feng et al. (2020), positive REFB is identified in 35

the Bering Sea at high latitudes. While Fig. 8 qualitatively
suggests the potential to capture such positive REFB over
high latitudes, whether the regional-dependent TQ estima-
tor can be adequately applied to estimate REFB in the polar
or high-latitude regions is still an open question since the 40

FS7/C2 data and RO data used in this study are mostly dis-
tributed in the tropical to subtropical regions.

Figures 7 and 8 confirm that models with LSW/2 or TQ
as predictors can estimate the REFB under 1.5 km, but there
are different sensitivities for ocean and land. In the next step, 45

we further apply these regression methods using the data in
5° longitude× 3° latitude boxes from 45° N to 45° S to con-
struct the region-dependent bias estimation model.

Figure 10 shows the horizontal distribution of the mean
real and estimated REFBs with the training and testing data. 50

Notably, there are some differences between the training and
testing data (Fig. 10a vs. Fig. 10b), such as the large REFB
off the western coast of South America and off the coast
of Australia. In comparison to the real REFB distribution
(Fig. 10a), the LSW-based REFB (Fig. 10c) captures the gen- 55

eral pattern with larger biases over ocean and lower biases
over land in both the training data and testing data. However,
the LSW-based REFB is less capable of capturing the large
bias over the subtropical oceans off the west coasts of South
America, southern Africa, and Australia. Those are expected 60

to be the oceans that have a cold SST, where ducting com-
monly occurs due to the frequent occurrence of inversion lay-
ers on top of the cool sea surface. Although the LSW-based
REFB can also represent a portion of the negative REFB in
these regions in general, it is obvious that the values are un- 65

derestimated there. The LSW-based estimation exhibits good
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Figure 4. Panels (a) and (b) are vertical profiles of the mean and standard deviation of REFB and mean LSW with altitudes up to 25 km over
ocean and land, respectively. Panels (c) and (d) are the same as (a) and (b) except are zoomed-in versions below 5 km.

Table 1. Correlation coefficients between the mean real and estimated REFBs below 1.5 km over ocean and land in Southern Hemisphere
(SH) and Northern Hemisphere (NH).

Correlation coefficients LSW-based TQ-based

Ocean (SH/NH) Land (SH/NH) Ocean (SH/NH) Land (SH/NH)

Training data set 0.94/0.96 0.9/0.92 0.79/0.75 0.72/0.69
Testing data set 0.93/0.96 0.89/0.87 0.71/0.68 0.70/0.63

performance in estimating the negative REFB in the Indian
Ocean, where the pattern and magnitude of the estimated
REFB are close to those of the real REFB. In contrast to the
LSW-based REFB, the TQ-based REFB represents the large
negative REFB in the high-ducting-occurrence regions well.5

Although the magnitude of the N -REFB off the coasts of
South America and southern Africa is still underestimated,
the pattern and amplitude of the negative REFB are much

better represented in comparison with the LSW-based esti-
mation. 10

The TQ-based estimation (Fig. 10e and f) captures the low
bias pattern well, such as the tropical western Pacific, west-
ern South America, and Africa, while the LSW-based esti-
mation overestimates the negative bias. The similar pattern
between the real and TQ-based estimated REFBs can be ex- 15

plained by the following two reasons. The first reason is the
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Figure 5. Horizontal distribution of (a) REFB (N units), (c) LSW (%), (e) specific humidity (gkg−1), and (g) temperature (°C) during the
study period. The values of REFB, LSW, specific humidity, and temperature are averages over the lowest 1.5 km a.m.s.l. of the atmosphere.
Panels (b), (d), (f), and (h) are the same as (a), (c), (e), and (g), but they are calculated with the criterion that at least 30 profiles penetrate
below 0.5 km in each box.

ability to capture SST characteristics. For example, cold SST
regions can result in a cool, low-moisture near-surface atmo-
sphere (Fig. 5c and d) and can impact the boundary layer.
Second, the bias in the RO refractivity profiles will be trans-
lated to the 1D-Var T and Q retrievals.5

The final method, the MVE, combines the LSW and TQ
estimations. As described in Sect. 2, the MVE derives the
optimal combination by considering the error correlation
between the individual estimations. Notably, the MVE ap-
proach requires knowledge of the error covariance matrix be-10

tween two components (matrix C in Eq. 5). The error correla-
tion of the two REFB estimators is 0.294. A high error corre-
lation indicates a dependency between the two components,
and thus there is less benefit from using the MVE method.
Although LSW is known to have a relationship to tempera-15

ture and water vapor, our results indicate that the error cor-
relation between the two estimates is low enough that it is
expected that the MVE can extract useful information from
both estimations. Compared to the LSW and TQ REFB esti-
mation, the results of the MVE show a pattern closer to the20

real REFB with both the training data set and the testing data
set.

We next show the root mean square error (RMSE) be-
tween the real and estimated REFB in each box. Figure 11
shows the contribution of each estimation in estimating bias 25

for land and oceans and reflects the representativeness of
the mean REFB shown in Fig. 10. The LSW-based estima-
tion exhibits high RMSE in the cold SST regions and sev-
eral ocean regions such as the southeastern Atlantic Ocean
and southeastern and northwestern Pacific Ocean, while the 30

TQ estimation successfully mitigates this issue. On the other
hand, the LSW-based estimation performs better in the trop-
ical Atlantic and Indian oceans. With training and testing
data, the large RMSEs in the LSW or TQ estimation over
the oceans are largely removed by the MVE method; how- 35

ever, slight degradation is observed over South America and
central Africa. With the testing data (Fig. 11b, d, and f), the
RMSEs are larger in individual estimations, as expected. In
general, the MVE method retains its advantage in the optimal
estimation over ocean, with an RMSE smaller than that of ei- 40

ther estimation. Table 2 shows the global mean RMSE. The
TQ method has a smaller RMSE compared to the LSW esti-
mation. The MVE method further improves the TQ method
by 32 % and 23.6 % with the training and testing data, re-
spectively. 45
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Figure 6. Refractivity bias as a function of height and average values over the lowest 1.5 km a.m.s.l. of (a) LSW/2, (c) specific humidity (Q),
and (e) temperature (T over land). Panels (b), (d), and (f) are the same as (a), (c), and (e) except over the ocean. The color shading shows the
result using the RO profiles penetrating below 1.5 km, while the contour uses the RO profiles penetrating below 0.5 km.
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Figure 7. The relationship between LSW/2 and REFB. The solid
and dashed lines represent the REFB computed from the statis-
tical model for the ocean and land, respectively, as a function of
LSW/2 for the Southern Hemisphere (a) and Northern Hemisphere
(b). LSW/2 and REFB are averaged below 1.5 km.

Table 2. Global mean RMSE of each REFB estimation in compari-
son to the real REFB below 1.5 km.

Global mean RMSE LSW-based TQ-based MVE

Training data set 2.033 1.614 1.088
Testing data set 2.815 2.266 1.731

However, we also observed that the TQ-based REFB has
larger RMSE in the ducting region in the southeast Pacific
and Atlantic (Fig. 11e vs. Fig. 11f). This is attributed to an
overestimated negative REFB (Fig. 10e vs. Fig. 10f) by the
TQ estimator, with much moister near-surface conditions in5

the testing data than that in the training data. The overesti-
mation of the testing data in the ducting regions suggests that

more data are required to train a statistical model applicable
to a broader range of temperature and moisture requirements.

4.2 Sensitivity experiments 10

This subsection discusses the sensitivity of the REFB estima-
tion to the penetration rate of the RO profiles and investigates
the impact of sampling error on constructing the LSW-based
and TQ-based estimators. Two sets of sensitivities are de-
signed. For the first sensitivity set, it is required that at least 15

30 RO profiles penetrate a certain level in each box. For the
second sensitivity set, the REFB estimators are obtained for
RO data from different levels.

Figure 12 shows the REFB estimation with the testing data
using different criteria of the penetration rate. The estimators 20

are obtained when there are at least 30 profiles whose mini-
mum level is smaller than 1.5 or 0.5 km. The criteria are re-
ferred to as CT1 and CT2 in Fig. 12. As the criterion becomes
more stringent, more samples in the tropics are rejected and
insufficient samples are available in the core of the ducting 25

regions and in areas with latitudes higher than 30°. For boxes
with sufficient samples with the CT2 criterion, the patterns of
REFB, LSW, T , and Q (Fig. 5b, d, f, and h) are very similar
to the ones with an eased standard criterion, but their am-
plitudes are generally higher. Nevertheless, the real REFB 30

in Fig. 12a and b is very similar to that in Fig. 10b using
an eased criterion for the sample number. This similarity is
due to fact that the amount of data between 0.5 and 1.5 km
is much more than that below 0.5 km (Fig. 2b). However,
the real REFB with CT2 is larger in the southern Pacific and 35

Atlantic. This reflects that the REFB quickly increases near
the surface (Fig. 3a), which can be emphasized after the RO
profiles with early termination are removed. The LSW-based
REFB with strict criteria also captures the general pattern of
real REFB, while the TQ-based REFB captures the large neg- 40

ative REFB in the ducting regions well. The REFB estima-
tion using the CT2 criterion still shows good ability in the re-
gions where the real REFBs show some differences between
the CT2 and standard criteria, such as the central and north-
western Pacific. This good performance is attributed to the 45

fact that the region-dependent regression models can adapt
to the changes in the training data in boxes.

Based on the results in Fig. 12, we separate the REFB es-
timation into different vertical levels: below 0.5 and between
0.5 and 1.5 km (Fig. 13). Comparing Fig. 13a with Fig. 13b, 50

the real REFB below 0.5 km is generally larger than that be-
tween 0.5 and 1.5 km, except for the western Pacific and the
ducting regions west of South America and southern Africa.
Below 0.5 km, the penetration rate declines quickly, reducing
the sample size. Nevertheless, it is shown that both REFB es- 55

timators perform well in estimating the REFB as well and in
particular that the TQ estimator is good at capturing the large
REFB. Both estimators can even capture the large negative
REFB in the central southern Pacific and southern India, and
the MVE REFB improves the TQ-based REFB in the cen- 60
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Figure 8. The relationships between REFB, normalized specific humidity, the product of normalized temperature, and normalized specific
humidity of (a) oceans and (b) land in the Southern Hemisphere. The scatters are the averaged values of each profile below the lowest
1.5 km a.m.s.l. The surfaces show the model computed from a statistical model (Eq. 3) as the function of normalized specific humidity and
product of normalized temperature and humidity. Panels (c) and (d) are the same as (a) and (b) but for the Northern Hemisphere (NH).

Figure 9. The relationship between REFB and normalized Q given
a condition of normalized TQ= 0.5.

tral Pacific (150° W to 150° E). However, the TQ estimator
provides positive REFB estimation in the cold and dry con-
ditions north of Africa, while a weak negative value is ex-
hibited in the real REFB. While the TQ estimator is very
sensitive to the amplitude of temperature and moisture, we 5

emphasize that the regression model may not be reliable with
a limited sampling size in midlatitude regions. Results of the
REFB estimation between 0.5 and 1.5 km are very similar to
Fig. 10. This again confirms that the REFB shown in Fig. 10
is dominated by the data between 0.5 and 1.5 km. Neverthe- 10

less, it is important that both REFB estimators can reflect
not only the general characteristics but also the differences at
different vertical levels.

4.3 Estimating vertical profiles of refractivity bias

This section examines the performance of the REFB estima- 15

tion methods and whether they can be used for estimating
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Figure 10. Horizontal distribution of refractivity bias and different estimated refractivity biases. The boxes denoted A and B in (b) are the
example boxes used in Figs. 12 and 13, respectively. All variables used to construct this figure are averaged below 1.5 km. Area A is in the
region of 0–10° N, 55–75° E; area B is in the region of 20–30° S, 85–105° W; and area C is in the region of 35–45° S, 120–135° W.

Figure 11. Horizontal distribution of RMSE between the real REFB and estimated REFB by different methods with training (a, c, and e)
and testing (b, d, and f) data.
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Figure 12. The same as Fig. 10, but the calculation was done for RO data with different criteria (CT1 and CT2) for sample selection. CT1
requires that at least 30 RO profiles penetrate below 1.5 km in each box, and CT2 is the same as CT1 except that the profiles penetrate below
0.5 km. Panels (i) and (j) are the horizontal distribution of the profile count with criteria CT1 and CT2, respectively.

the vertical profiles of REFB. The following three areas (in-
dicated in Fig. 10b) with different REFB characteristics are
selected as examples: area A is in the region of 0–10° N, 55–
75° E; area B is in the region of 20–30° S, 85–105° W; and
area C is in the region of 35–45° S, 120–135° W. For each5

area, the estimated REFB at different levels is derived using
the estimation methods defined in the previous section. Fig-
ure 14a–c shows the mean of the real and estimated REFB
profiles in three areas with the testing data. We note that
the results of the training and testing data are very similar.10

In area A, the mean negative REFB is large at the surface
but gradually reverses to a positive bias at 3 to 5 km. In this
case, the air below 2 km is very warm and moist over the In-
dian Ocean (Fig. 14d). The highly humid conditions give a
large LSW (Fig. 5b and c), and thus, the LSW method is able15

to estimate bias in this circumstance, while the TQ method
overestimates the negative REFB. In contrast, area B shows

different patterns (Fig. 14b): the real negative REFB is even
larger (−17N units) at the surface, and the negative bias at
2 km is still large compared to that in area A. As shown in 20

Fig. 14d, this characteristic is associated with typical condi-
tions for ducting, such as the existence of an inversion layer
at 2 km over the cold SST region accompanied with a large
vertical moisture gradient. While the LSW-based estimation
underestimates the negative REFB, with the existence of the 25

inversion layers this can be captured by the TQ-based estima-
tion. Nevertheless, the MVE method is always much closer
to the real REFB. In Fig. 14b, area B shows improvement in
the MVE compared to the TQ-based estimation, while a large
RMSE remained in area B with the MVE method in Fig. 11f. 30

It should be noted that Fig. 11 is calculated based on the dif-
ference between the real REFB and estimated REFB of each
profile “averaged” below 1.5 km, where Fig. 14 groups the
profiles with an interval of 500 m. Therefore, the overestima-
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Figure 13. The same as Fig. 10, but the calculation was done for RO data from different levels. The left column uses the data below 0.5 km
and the right column uses the data between 0.5 and 1.5 km. Panels (i) and (j) are the horizontal distribution of the profile count below 0.5 km
and between 0.5 and 1.5 km, respectively.

tion in the REFB below 1 km with the TQ-based estimator is
alleviated with the average data used to construct Fig. 11.

For the box located off the coast of North America with
midlatitude cold and dry conditions (Fig. 14c), both estima-
tors capture the general pattern of the vertical distribution5

of REFB, but the amplitude below 1 km is smaller than the
real REFB. Nevertheless, the TQ-based REFB is much bet-
ter represented compared to the one from the LSW estimator.
Figure 14 suggests that both estimators can be applied to es-
timate the vertical variations in REFB in different regions.10

However, sample issues may be encountered in midlatitude
regions as discussed in Sect. 4.2.

5 Conclusions

This study investigates the characteristics of the refractiv-
ity bias (REFB) of FS7/C2 and its sensitivities to RO mea-15

surement uncertainty (LSW) and thermodynamic conditions

(temperature and moisture). Two bias estimation models are
constructed based on polynomial regression with the LSW,
and temperature and specific humidity are used as predic-
tors in each estimation. The study period is December 2019– 20

February 2020, with the ERA5 reanalysis data taken as the
reference.

Similar to previous studies, the low-level FS7/C2 RO re-
fractivity data of the study period contain significant biases
when compared with ERA5 data. In general, the REFB be- 25

low 1.5 km is negatively proportional to LSW and exhibits a
stronger dependency over ocean than over land. Addition-
ally, REFB in the PBL has a strong dependence on low-
level temperature and moisture. While the majority of the
Pacific and Indian oceans with warm SSTs has significant 30

negative REFBs, the largest negative REFB regions are near
the cold SST regions off the western coasts of South Amer-
ica and southern Africa. Small and even positive REFBs are
observed over South America and southern Africa.
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Figure 14. Profiles of refractivity bias (real and estimates) for three different areas selected in Fig. 10b. Boxes A, B, and C are in 0–10° N, 55–
75° E; 20–30° S, 85–105° W; and 35–45° S, 120–135° W. (d) Profiles of temperature (red lines) and specific humidity (blue lines) averaged
for areas A (solid lines), B (long-dashed lines), and C (short-dashed lines) shown in Fig. 10b.

Two REFB estimation models based on the polynomial re-
gression approach are first applied to construct the region-
dependent mean REFB below 1.5 km. One estimation model
uses a quadratic function of LSW. The other uses the mul-
tivariable polynomial regression with temperature and spe-5

cific humidity (TQ) as predictors, and the moisture vari-
able becomes emphasized after optimization. The estima-
tion models are then applied to 72× 30 boxes from 45° N to

45° S. The minimum error variance (MVE) method is used
to combine two REFB estimations. The results show that the 10

bias estimation models with either LSW or TQ have their
own advantages in estimating REFB. The LSW-based model
shows the ability to capture the general pattern of the nega-
tive REFB, but the amplitude is significantly underestimated
in the ducting areas. The TQ-based model has great perfor- 15

mance in representing the pattern and amplitude of REFB,
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particularly the large negative REFB in the ducting areas and
small REFB over most land regions. While the relationship
between REFB and LSW below 1.5 km is very strong in a
global sense, the TQ-based REFB shows its advantage in
capturing the regional characteristics. The MVE estimation5

successfully adopts the advantages from both the LSW esti-
mation and the TQ estimation and has the smallest RMSE,
particularly over ocean.

Results of sensitivity tests show that the estimators at mid-
latitude could be affected by the sampling issue since requir-10

ing profiles to penetrate 0.5 km means that we cannot obtain
sufficient samples to construct the regression models. With
the 3 months of data, the REFB estimation in tropical to sub-
tropical regions remains similar to the RO profiles penetrat-
ing below 1.5 or below 0.5 km given that the amount of RO15

data between 0.5 and 1.5 km dominates. Nevertheless, both
the LSW and TQ estimations can capture the characteristics
of REFB when the RO data are separated to below 0.5 and be-
tween 0.5 and 1.5 km. Such an ability allows the three REFB
estimation models to be applied to reconstruct the REFB ver-20

tical profiles for regions with distinct thermodynamic condi-
tions in the deep troposphere. Both the LSW and TQ estima-
tions can represent the vertical gradient of the mean REFB
well, and the MVE estimation gives an estimated REFB pro-
file closest to the real REFB with a probability distribution25

similar to the distribution of the real REFB.
We should note some of the limitations of these REFB

models. The temperature and moisture from the ERA5 re-
analysis may have a bias. In addition, REFB may have more
characteristics regarding smaller scales spatiotemporally. We30

should also emphasize that the FS7/C2 RO data are mainly
located in the tropical to subtropical regions. Therefore, we
need more data to justify whether the regression-based bias
estimation is applicable in high-latitude regions. Finally, pre-
dictors used in the statistical models may not be enough to35

capture all attributions of REFB. For future work, bias esti-
mation models will be constructed at higher resolutions with
more RO profiles collected from the current FS7/C2 or other
operational and commercial GNSS RO satellites.

Code and data availability. The code for the bias es-40
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