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Abstract 10 

FORMOSAT-7/COSMIC-2 radio occultation (RO) measurements show promise for observing the deep 11 

troposphere and providing critical information on the Earth's planetary boundary layer (PBL). However, 12 

refractivity retrieved in the low troposphere can have severe biases under certain thermodynamic conditions. This 13 

research examines the characteristics of the deep tropospheric biases and presents methods for estimating the 14 

region-dependent refractivity bias using statistical regression models. The results show that the biases have 15 

characteristics that vary with land and oceans. With substantial correlation between local spectral width (LSW) 16 

and bias, the LSW-based bias estimation model can explain the general pattern of the refractivity bias, but with 17 

deficiencies in measuring the bias in the ducting regions and certain areas over land. The estimation model 18 

involving the relationship with temperature and specific humidity can capture the large biases associated with 19 

ducting. Finally, a minimum variance estimation that combines the LSW and temperature/water vapor models 20 

provides the most accurate estimation of the refractivity bias. 21 

1 Introduction 22 

Global Navigation Satellite System (GNSS) radio occultation (RO) observations have become a critical 23 

data source in atmospheric applications, particularly numerical weather prediction (NWP) (e.g., Healy, 2008; 24 

Rennie, 2010; Cucurull et al., 2007, 2017; Lien et al., 2021). Low-Earth-orbiting (LEO) satellites receive radio 25 

signals from GNSS transmitters, which bend due to atmospheric density changes. Information on the bending 26 

angle can be obtained with the GNSS RO technique, and then the atmospheric refractivity is further derived by 27 

Abel inversion. Since the RO technique measures the signal phase delay, it is not affected by clouds and rainfall. 28 

The RO profile is an all-weather observation with a high vertical resolution. 29 

The RO observations, bending angle and refractivity, measure vertical gradients in atmospheric density, a 30 

function of temperature, moisture and pressure (Kuo et al., 2004). RO observations provide information on 31 

temperature (stratosphere and upper troposphere) and moisture (lower troposphere) with low noise and low 32 

systematic errors (biases), which makes them useful in atmospheric research (Eyre, 2008). Several GNSS RO 33 

missions, e.g., the FORMOSAT-3/Constellation Observing System for Meteorology, Ionosphere, and Climate 34 

(FS3/C), FORMOSAT-7/COSMIC-2 (FS7/C2), Meteorological Operational satellite (MetOp), Gravity Recovery 35 

And Climate Experiment (GRACE), Satellite de Aplicaciones Cientifico-C (SAC-C), X-band TerraSAR satellite 36 

(TerraSAR-X), Korea Multi-Purpose Satellite-5 (KOMPSAT-5), etc., have provided much RO data for NWP. 37 
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Many studies have illustrated the positive impact of assimilating RO observations, such as the operational forecast 38 

systems at the European Centre for Medium-Range Weather Forecasts (ECMWF) (Healy, 2014), the 39 

NCEP/Environmental Modeling Center (EMC) (Cucurull, 2007) and the Taiwan Central Weather Administration 40 

(CWA) (Lien et al., 2021). Moreover, studies have been initiated recently to investigate the potential of 41 

assimilating the large volume of commercial RO data from Spire, and the benefits can be identified in weather 42 

forecasting (Bowler, 2020a). In addition to improving global NWP, studies have also confirmed that assimilating 43 

RO observations improves severe weather prediction, particularly for tropical cyclones and heavy rainfall (e.g., 44 

Chen et al. 2020; 2021a,b, 2022; Chang and Yang, 2022; Yang et al., 2014). 45 

As the successor of FS3/C, the FS7/C2 mission was launched in 2019 with support from the Taiwan 46 

National Space Agency (TASA) and the United States National Oceanic and Atmospheric Administration (NOAA) 47 

and National Science Foundation. The number of profiles obtained by FS7/C2 is approximately three times greater 48 

than that of FS3/C since FS7/C has dense coverage over the tropics and subtropics (Chen et al., 2021c). Compared 49 

with FS3/C, FS7/C2 has a higher signal-to-noise ratio (SNR), wider bandwidth, and a better open-loop (OL) 50 

tracking model. These advantages enable the retrieval of more data from RO signals penetrating the moist 51 

troposphere and having the ability to detect the planetary boundary layer (PBL) and superrefraction (SR) over the 52 

top of the PBL (Schreiner et al., 2020; Sokolovskiy et al., 2024). Chen et al. (2021c) showed that the data 53 

availability of the FS7/C2 RO profiles under 1km is five times greater than that of the FS3/C profiles over a six-54 

month range. Anthes et al. (2022) noted that the penetration rate of RO profiles is high even under extremely 55 

moist conditions and near tropical cyclones. The ability to penetrate deep into the atmosphere makes RO 56 

measurements ideal for studying the PBL. The PBL is directly influenced by any exchange of energy, momentum 57 

and mass between Earth’s surface and the atmosphere, and thus its characteristics are crucial for weather and 58 

climate variabilities. 59 

However, the use of GNSS RO in the lower atmosphere still has errors when radio rays pass through areas 60 

with strong vertical or horizontal refractivity gradients. It is known since 1997 that negative biases in refractivity 61 

exist in the lower troposphere, especially in the tropics (Rocken et al. 1997). The implementation of open-loop 62 

tracking (Sokolovskiy, 2001) and the use of the holographic retrieval method largely reduce the negative 63 

refractivity bias (REFB) in lower troposphere in earlier generation RO missions. The “radioholographic” methods 64 

such as the canonical transform (CT) method (Gorbunov, 2001, 2002), Full Spectrum Inversion (FSI) (Jensen et 65 

al, 2002) and Phase matching (PM) (Jensen et al, 2004) largely solve the multipath issue resulting from the “strong” 66 

refractivity gradient. Still, negative REFB can arise in deep troposphere from multiple causes, as summarized 67 

by Feng et al. (2020) and Wang (2020). A common cause (but not the only one) of negative biases in the lower 68 

troposphere is ducting (Sokolovskiy 2003; Ao et al. 2003; Xie et al. 2010). When the vertical gradient of 69 

refractivity ∂N/∂z exceeds a critical value of -157 N units per km (Lopez 2009), ducting occurs and rays are 70 

trapped inside the ducting layer. In the presence of ducting, the singularity problem in the Abel transforms leads 71 

to a non-unique inversion problem. Thus, the Abel inversion results in a negatively bias refractivity below the 72 

ducting layers (Sokolovskiy, 2003). Feng et al. (2020) reported that climatological locations agree well with the 73 

areas of high ducting frequency, mainly over the subtropical eastern oceans. Furthermore, there are non-ducting 74 

related biases exist in the RO data. Error associated with low SNR in the complex moist lower troposphere may 75 

cause negative biases in bending angles and refractivity. Another potential source is the propagation of radio 76 
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waves in a medium with random refractivity irregularities can also cause biases (Gorbunov et al. 2015). In regard 77 

to the assimilation of RO data, quality control (QC) is applied to reject the RO data if the observation or the 78 

corresponding backgrounds are suspected to be affected by superrefraction. The rejection rate is high below 2 km 79 

due to the negative bias, which could also discard valuable information for data assimilation. To increase the value 80 

of RO data in the lower atmosphere, this study aims to examine the characteristics of the REFBs with the FS7/C2 81 

RO data in more detail and proposes methodologies to estimate them. 82 

Previous research has demonstrated that the negative REFB in the ABL can be recognized and estimated 83 

using canonical transform approximations (Sokolovskiy, 2003) and can be reconstructed in the presence of ducting 84 

conditions (Xie et al., 2006). Based on Xie et al. (2006), Wang et al. (2017) developed an optimal estimation of 85 

negative bias using precipitable water (PW) observations from Advanced Microwave Scanning Radiometer from 86 

the EOS (AMSR-E) microwave radiometer satellite data. Wang et al. (2020) further proposed a bias estimation 87 

algorithm by generating a candidate set of modeled ducting profiles. The one with the vertical gradient of the 88 

reflected bending angle closest to the observed profile is taken as the bias-corrected profile. However, there are 89 

some limitations with these methods, such that they only correct for ducting-related bias and the grazing signal of 90 

the bending measurement is needed. For the RO observation error, the local spectral width (LSW), which measures 91 

the uncertainty of the RO bending angle, has been used to indicate the quality of the individual RO profiles. The 92 

LSW represents the errors caused by the nonspherical symmetry of refractivity in the moist troposphere 93 

(Gorbunov, 2006; Sokolovskiy 2010). The LSW parameter has improved the use of RO observations in data 94 

assimilation, including in the QC procedure (Liu et al., 2018) and dynamic estimation of RO error in the lower 95 

troposphere (Zhang et al. 2023). Liu et al. (2018) showed that both uncertainties and biases were related to LSW. 96 

Sjoberg et al. (2023) recently showed a strong statistical correlation between lower tropospheric uncertainties and 97 

LSW. They also mentioned that they found a correlation between biases and LSW as well, but did not provide 98 

details. Furthermore, Bowler (2020b) proposed estimating RO errors with information on mean temperatures 99 

below 20 km. These results suggest that variations in LSW, temperature and humidity are related to the bias. Thus, 100 

we developed statistical models that adaptively consider the biases associated within each RO profile using LSW 101 

and temperature and water vapor. 102 

We first investigate the characteristics of the FS7/C2 RO REFB and establish regression-based bias 103 

estimation algorithms. Two types of algorithms are examined. One is based on the physical LSW parameter, and 104 

the other is related to thermodynamic variables (temperature and water vapor). By comparing the results of the 105 

estimated bias, we can identify how they link to the characteristics of each participating variable. Finally, a bias 106 

correction method for the RO profile in the lower troposphere is proposed by combining the two error estimation 107 

algorithms. We expect that this new algorithm can be used in different aspects such as improving the products of 108 

temperature and moisture profiles retrieved from the refractivity in the moist lower troposphere (Chen et al. 2020), 109 

definition of the PBL height (Xie, 2014), and the estimation of precipitable water vapor (Yeh et al. 2024). 110 

Furthermore, for the DA systems that assimilate the RO refractivity, it is expected that the RO data in the deep 111 

troposphere can be better exploited by using the bias estimation as a QC flag or assimilating the calibrated 112 

refractivity profiles. 113 

The remaining portions of this paper are organized as follows. Section 2 provides the data information and 114 

methods for estimating the refractivity bias. Section 3 discusses the general characteristics of bias and its 115 
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sensitivities with respect to different variables and land/sea conditions. Section 4 presents the results of bias 116 

estimation algorithms. Finally, the summary and conclusion are provided in Section 5. 117 

2. Data and methodology 118 

2.1 GNSS RO FS7/C2 and ECMWF data 119 

This study uses the FS7/C2 RO atmospheric profiles (atmPrf) and wet products (wetPf2) processed by 120 

the Taiwan Data Processing Center (TDPC). The study period is from 1st December 2019 to 29th February 2020, 121 

before the FS7/C2 data were assimilated in the ECMWF analysis. All RO profiles are distributed between 45S 122 

and 45N due to the low inclination orbits of the FS7/C2 satellites. A total of 244,853 profiles are selected with 123 

the flag of “good data” during the periods, and only data below the height of 25 km are used to focus on the bias 124 

characteristics in the troposphere. The data quality of the FS7/C2 constellation is improved compared to 125 

FS3/COSMIC (FS3/C) due to the use of the advanced RO receiver and postprocessing with open-loop tracking. 126 

Most of the profiles show a deeper penetration with depths below 1 km, and the penetration rate is 40% higher 127 

than those of FS3/C (Chen et al., 2021c). Figure 1 shows the number of profiles that penetrate below 1.5 km above 128 

the mean sea level (MSL) during the selected periods. The FS7/C2 data are mostly in tropical areas and have more 129 

profiles penetrating below 1.5 km over oceans than over land. 130 

The ECMWF atmospheric reanalysis (ERA5, https://www.ecmwf.int/en/forecasts/access-forecasts/access-131 

archive-datasets) is used as the reference RO profiles. The hourly ERA5 reanalysis in the study period has a 132 

horizontal resolution of 0.25 x 0.25 deg with 37 pressure levels, ranging from 1000 to 1hPa. The variable 133 

geopotential, temperature and specific humidity are selected. Since the time of the RO data is precise in minutes, 134 

we rounded the time of the RO profiles to the nearest hour. The ERA5 profiles are derived by interpolating the 135 

reanalysis horizontally and vertically to the location and vertical levels of the RO atmPrf. The RO REFB is defined 136 

as the difference between the FS7/C2 and the ERA5 RO observations at each level. This assumes that the ERA5 137 

refractivities are close to truth. These biases are referred to as the real biases in this paper. Nevertheless, it is 138 

possible that ERA5 may carry its own biases, which will not be discussed in this study. 139 

For constructing the statistical models, the predictors are LSW, temperature (T), and specific humidity (Q). 140 

The LSW, available in the atmPrf data, are calculated from the width of the spectrum during the RO processing 141 

(Liu et al. 2018). The T and Q, available in the wetPf2 data, are computed from a one-dimensional variational 142 

(1D-Var) retrieval algorithm using ECMWF 12-h forecast as the a priori (Wee at al. 2022). 143 

 144 

2.2 Statistical models for bias estimation 145 

Two polynomial regression models are developed to estimate the REFB using predictors associated with 146 

different attributions of the observational error in GNSS RO data. The first model uses LSW/2 as the predictor, 147 

and the other uses temperature (T) and specific humidity (Q) as the predictors. Liu et al. (2018) used a linear 148 

function of LSW/2 to illustrate the FS3/C dynamic error variance in the bending angle and refractivity, and the 149 

scaling factor 1/2 for LSW approximates the root mean square of random error of the bending angle (Liu et al. 150 

(2018), assuming a Gaussian spectrum (Sirmans and Bumgarner 1975). Following Liu et al. (2018), we use the 151 

variable LSW/2 and modify this relationship to a polynomial regression. The other bias estimation model is 152 

established using the thermodynamic variables to emphasize the impact of the thermodynamic structure on REFB 153 
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in deep troposphere. The two polynomial regression models are referred to as the LSW and TQ estimators, 154 

respectively. The LSW represents the RO inversion uncertainty, and T and Q represent the impact of the 155 

thermodynamic structure on REFB within the ABL. Each of these variables is expected to partly explain the 156 

characteristics of the bias.  157 

In each estimator, the order of the polynomial is optimized by using the metrics of R-squared and mean 158 

square error to assess the goodness of the fitting performance. The polynomial regression is performed with the 159 

training data, which is 80% of the total data, and the rest (20%) of the data is used for evaluating the regression 160 

performance. To derive a robust regression model, independent regression fitting is repeated five times by 161 

replacing the training/testing data with a different 80%/20% subsets of the data so that the testing data from five 162 

experiments eventually covers the whole data set. The regression model with the best fitting performance for both 163 

training and testing data is chosen as the optimal one. Given that our goal is to construct regional-dependent 164 

estimators to consider the spatial variation in the REFB, we group the RO refractivity profiles from 45°S to 45°N 165 

into 5°longitude x 3° latitude boxes (Figure 1), and the regression-based REFB estimators are built in each box. 166 

In total, there are 72 x 30 boxes. The boxes are defined by considering the number of available RO profiles below 167 

1.5km should be at least 10 profiles in each box for conducting the regression training and testing. With the 3 168 

months of data used in our study, choosing testing data lower than 20% of the total data results in a very coarse 169 

resolution of the boxes. On the other hand, choosing any number larger than 20% would sacrifice the amount of 170 

data that can train a reliable regression model. We note that all profile data below 1.5 km are used first (80% for 171 

training and 20% for testing) to determine the order of the LSW-based regression model and the optimal 172 

combination of the multi-variable (T and Q) regression model. 173 

For the LSW estimator, a second-order polynomial is chosen based on the R-squared metric. Afterwards, a 174 

second-order polynomial regression is constructed for an individual box.  Eq. (5) shows the formula of the LSW 175 

estimator in the ith box 176 

 𝑢𝑖 =  𝛼𝑖,1𝑥𝑖
2  +  𝛼𝑖,2𝑥𝑖  +  𝛼𝑖,3                                          (1) 177 

where 𝑢𝑖, the predictand, is the REFB, 𝑥𝑖 is the LSW/2, and 𝛼𝑖,∗ are the regression coefficients. Although the 178 

biases related to the signal tracking or multipath is much reduced after with the implementation of open-loop 179 

tracking and radio-holographic retrieval method, we expect that LSW can partially capture the biases inherited 180 

from bending angle.  181 

A similar procedure is applied to derive a multivariable polynomial regression model with T and Q obtained from 182 

the 1D-Var analysis of the RO wet products (Wee et al. 2022) as the predictors. For consistency, the real REFB 183 

originally defined with the atmPrf, will be interpolated to the same levels of the wetPf2. No REFB, T and Q are 184 

collected if the T, Q profiles terminate above 1.5 km MSL. Before fitting, T and Q are standardized as 185 

𝜒 =  
𝑥𝑖−min (𝑥𝑖)

max(𝑥𝑖)−min (𝑥𝑖)
                                                                 (2) 186 

where 𝜒 represents a normalized quantity ranging between 0 and 1 and 𝑥𝑖 is the original value of Q or T in the ith 187 

box. Given two variables, there are different combinations of order and interaction terms (multivariable 188 

polynomial function has the form of ∑ ∑ 𝑏𝑚,𝑙𝑦
𝑚𝑧𝑙𝑙=𝐿

𝑙=0
𝑚=𝑀
𝑚=0 , where m and l are the order of variable y and z, 189 

respectively, and 𝑏𝑚,𝑙  is the regression coefficient). For this application, the mean squared error is used to 190 
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determine the optimal fitting formula given that R-squared are comparable when higher order terms are included. 191 

The optimal multivariable polynomial regression model has the form: 192 

𝑢𝑖  =  𝛽𝑖,1𝑦𝑖
2 +  𝛽𝑖,2𝑦𝑖  +  𝛽𝑖,3𝑦𝑖𝑧𝑖                                                        (3) 193 

where 𝑢𝑖  is REFB, 𝑦𝑖  is the normalized Q, 𝑧𝑖  is the normalized T and 𝛽𝑖,∗  are the regression coefficients. 194 

Considering the quadratic term of moisture is essential. The R-squared (MSE) value increases (decreases) from 195 

0.535 (37.044) with the 𝑦𝑖 and 𝑦𝑖𝑧𝑖 terms to 0.732 (26.610) with the 𝑦𝑖
2 term. 196 

 We further apply the minimum variance estimation (MVE, Clarizia et al., 2014) to combine the results 197 

from the LSW and TQ estimators. This approach has the advantage of having a smaller RMS error than either the 198 

LSW or TQ estimation. The MVE is built to linearly combine the estimations so that the new estimation has the 199 

minimum error variance: 200 

 𝑢𝑖,𝑀𝑉𝐸 = 𝐦 ∙ 𝐮                                                          (4) 201 

where u is the vector of individual estimated refractivity bias and m is the vector of combination coefficients. One 202 

of the advantages of this combination is that 𝐦 is derived considering the error covariance matrix of individual 203 

bias estimators. 204 

 𝒎 = (∑ ∑ 𝑐𝑖,𝑗
−1𝐾

𝑗=1
𝐾
𝑖=1 )

−1
𝐂−1𝟏                                         (5) 205 

where 𝟏 is a vector with all elements equal to one, K is the dimension of 𝒎 (𝐾 = 2 in our application), 𝐂−1 is the 206 

inverse of the covariance matrix between the individual estimation errors and 𝑐𝑖,𝑗
−1 are the elements of 𝐂−1. 207 

The element of the error covariance matrix C is expressed as 𝒄𝒊,𝒋 = 〈(𝒖𝒊 − 𝒖𝒕)(𝒖𝒋 − 𝒖𝒕)〉, where 𝑢𝑖 and 𝑢𝑗 is the 208 

ith and jth bias estimation, respectively, and 𝑢𝑡 is the real bias. 209 

3 Characteristics of the refractivity bias 210 

3.1 General characteristics of REFB 211 

Figure 2a shows the profile of the averaged REFB and its standard deviation from 0-25 km. RO data have 212 

significant biases in comparison to the ERA5 reference, especially in the low troposphere. The bias is evident 213 

below 5 km and is largest at the surface with an amplitude of approximately -11 N-units. Given the large variations 214 

in moisture and temperature in the low troposphere, the standard deviation below the 2 km height increases as the 215 

height decreases. Notably, although the total number of profiles quickly decreases below 5 km (Fig. 2b), there 216 

remain enough data for near-surface statistical evaluation, with about a 40% penetration rate at 0.5 km in reference 217 

to the total number of profiles at 10 km (Fig. 2c). The mean LSW (red line in Fig. 2a) also increases sharply as 218 

the height decreases, with two peaks, at the surface and near 2 km. 219 

Figure 3a shows the latitudinal cross-section of the REFB. The largest values of REFB are below 5 km in the 220 

subtropics and tropics and slightly shifted to the Southern Hemisphere due to the austral summer. The opposite 221 

pattern, which has a high bias shifted to the Northern Hemisphere, is also seen with the data from June to August 222 

2020 (not shown). This result indicates the general dependence of the distribution of REFB on the seasonal 223 



 7 

temperature and water vapor structure. Similar to the REFB pattern, large LSW occurs mainly in the tropics, tilting 224 

toward the Southern Hemisphere with the maximum near the surface (Fig. 3b). This finding illustrates that LSW 225 

variation can be related to the REFB to some extent. Moreover, other high LSW values are located a few 226 

kilometers above the surface of the Southern Hemisphere. The increased LSW above 2 km could be caused by 227 

common inversion layers in the troposphere of some oceans (Sokolovskiy et al. 2014). Another effect that could 228 

be considered is the influence of convective clouds just above moist oceans (Yang et al., 2016). The large LSW 229 

near the surface in Fig. 3b reflects the ability of FS7/C2 to penetrate deep into the moist troposphere of the tropics. 230 

However, this surface maximum was not seen in the study of Zhang et al. (2023) using FS3/C data in August 231 

2008. 232 

3.2 Dependence on geography and thermodynamic conditions 233 

We further examine the dependence of the REFB on land and oceanic thermodynamic conditions. Figure 4 234 

compares REFB between land and ocean, together with its standard deviation (stdv) and LSW. Both REFB and 235 

LSW below 4 km are somewhat larger over oceans, and the REFB extends to higher altitudes (Fig. 4c vs. 4d) with 236 

a greater vertical gradient of REFB below 2 km. The magnitudes of mean REFB and stdv above 2 km are 237 

comparable over land and ocean. The shape of the LSW profiles is different over oceans and land, with the second 238 

peak value at 2 km more pronounced over oceans. Below 1.5 km, the shape of the REFB profile exhibits 239 

characteristics as the LSW profiles, suggesting the potential of LSW as a predictor for estimating REFB.  240 

Given the large REFB in deep troposphere, we focus on the regional variations in REFB averaged below 1.5 241 

km. Figure 5a shows that the averaged value of negative REFB below 1.5 km is largest over the oceanic regions 242 

near the western coasts of the South American and African continents. Small negative REFBs appear over the 243 

tropical Pacific and land. There are small positive REFBs over the high mountain regions. The different behavior 244 

of the REFB over ocean and land implies the impact of regional variability and the associated thermodynamic 245 

structure in the lower troposphere. As shown in Fig. 5b-5d, high LSW occurrence is mainly located over the warm 246 

equatorial regions of the Pacific, Atlantic and Indian Oceans. However, not all of the regions with high temperature 247 

and moisture coexist with the regions with high LSW. Some exceptional regions can be seen, such as offshore to 248 

the coast of Southwest Australia and offshore of Southwest Africa near the international data line.  Fig. 5 suggests 249 

that although LSW, temperature and specific humidity have certain cross-relationships, the characteristics of 250 

thermodynamic conditions cannot fully explain the distribution of LSW. Therefore, an REFB estimation model, 251 

which is based on only one variable, is not enough to explain REFB. 252 

To further highlight the characteristics of REFB under different conditions, the REFB profiles are grouped 253 

according to each profile’s LSW, temperature and specific humidity averaged below 1.5 km for land and ocean 254 

(Figure 6). As Xie (2014) reported, the 1.5 km MSL is the global mean PBL height calculated from the FS3/C 255 

refractivity data. In general, it is evident that the negative REFB increases with increasing LSW below 4 km, as 256 

shown in Fig. 3; however, the characteristics are different for land and ocean. Over land, the very high LSW does 257 

not guarantee the occurrence of a large REFB in lower troposphere. Moisture and temperature likewise exhibit 258 

the same linear relationship with negative REFB in the lower troposphere. However, negative REFBs also tend to 259 

occur under conditions of low moisture over the ocean. Figure 6 reveals that the relationship between REFB and 260 

LSW, T and Q under 1.5 km is dominantly linear; however, the REFB variations can be further explained by a 261 
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quadratic relationship with Q. It is noted that REFB at about 10 km increase with increasing LSW, T and Q over 262 

both land and oceans, and even become weakly positive at high values of LSW, T and Q averaged below 1.5km. 263 

In particular, RO profiles over land with large LSW below 1.5km has the largest positive REFB, nearly 8 N-unit, 264 

aloft. Taking only the RO profiles penetrating 0.5 km will modify the characteristics of Figure 6 in two aspects. 265 

First, the REFB below 10 km becomes positive for LSW/2 larger than 28%. Second, the REFB for cold 266 

temperature shows negative at 15 km. The former feature is related to the early cutoff height in the tropical 267 

occultation over central Africa (Sokolovskiy, 2010). The latter feature is attributed to the inversion associated with 268 

the large-scale subsidence near the tropopause near mid-latitude. Sensitivity tests to address sampling issues will 269 

be discussed in subsection 4.2. 270 

4 Results of bias estimation 271 

4.1 General performance 272 

In this section, we present the estimation for REFB using the methods introduced in Section 2. As 273 

mentioned, LSW/2, which represents the retrieval uncertainties of the bending angle and, hence, refractivity 274 

uncertainties, is the predictor for the first bias estimation model. The T and Q retrieved from FS7/C2 RO data are 275 

the predictors for the second estimator. Although the T and Q products retrieved from RO profiles using 1D-Var 276 

retrievals may have errors, they still provide valuable information for REFB estimation through the training 277 

process, as described in Section 2.  278 

Figure 7 shows the relationship between the REFB and LSW/2 averaged below 1.5 km for the Southern 279 

Hemisphere (SH) and Northern Hemisphere (NH). REFB is grouped every 2% of LSW/2, from 0 to 36%. The 280 

solid and dashed lines show the LSW-based REFB estimates for ocean and land, respectively. Under 1.5 km, the 281 

magnitude of the negative REFB as a function of LSW is larger over oceans than for land. Generally, as LSW/2 282 

increases, the REFB becomes more negative below 1.5 km for both land and ocean. Although the relationship is 283 

dominated by a linear trend, the quadratic term further improves the regression fitting. As shown in Table 1, the 284 

correlations over ocean and land are robust (larger or close to 0.9) and similar with the training and testing data 285 

in SH and NH. Compared to the REFB under the warm and moist condition of the austral summer in SH, the 286 

REFB over NH is weaker but the relationship between LSW/2 and REFB is still strong over ocean and land, 287 

except that the one over land has a somewhat stronger quadratic feature. Given this strong relationship, we expect 288 

that the relationship during the boral summer season will hold as well. However, the relationship between REFB 289 

and LSW/2 is not present above 1.5 km, and there is little difference in REFB between land and ocean.  290 

 Figure 8 shows the result of the second bias estimator, which relates the REFB with normalized Q (y) 291 

and product of normalized T and Q (yz) under 1.5 km. The TQ estimation over ocean and land captures the feature 292 

where the REFB becomes more negative under moist conditions. Similar to the LSW estimator, the TQ estimator 293 

shows a stronger dependence over the ocean. The multivariable regression has correlation coefficients equal to 294 

0.79 and 0.72 for ocean and land in SH, respectively, and 0.75 and 0.69 in NH. In general, the REFB shows a 295 

robust bi-linear relationship with y and yz, and the quadratic term (y2) provides further adjustment. With a fixed 296 

specific humidity, lower temperature results in larger negative REFB. In Fig. 8a, this result reflects the condition 297 

over the cool SST (Fig. 5a and 5d), west of the coast of South America and South Africa. The relationship becomes 298 
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more linear in NH (Fig. 8a vs. 8c), i.e. less dependence to the quadratic term of specific humidity. For dryer 299 

conditions, the TQ estimator tends to give neutral to positive REFB, especially over land (Fig. 8b and 8d) where 300 

more data are in the dry condition and part of them are over the mid-latitude continent (Fig. 5c). Given a fixed TQ 301 

value (yz=0.5) in Fig. 8, Figure 9 shows the strong relationship between REFB and Q. Large negative REFB 302 

corresponds to moist condition, but the negative amplitude is larger over the SH ocean with larger variation. The 303 

relationship is more quadratic over ocean than over land and is most linear over the NH land. In Figure 8, a slightly 304 

positive REFB is estimated for very cold and dry condition over ocean. In Feng et al. (2020), positive REFB is 305 

identified in Bering Ocean at high latitude. While Fig. 8 qualitatively suggests the potential to capture such 306 

positive REFB over high-latitude, whether the regional-dependent TQ estimator can be adequately applied to 307 

estimate REFB in the polar or high-latitude regions is still an open question since the FS7/C2 data RO data used 308 

in this study mostly distributed in the tropic to subtropic regions. 309 

Figures 7 and 8 confirm that models with LSW/2 or TQ as predictors can estimate the REFB under 1.5 km, but 310 

there are different sensitivities for ocean and land. In the next step, we further apply these regression methods 311 

using the data in 5∘longitude × 3∘latitude boxes within 45°N to 45°S to construct the region-dependent bias 312 

estimation model.  313 

Figure 10 shows the horizontal distribution of the mean real and estimated REFBs with the training and 314 

testing data. Notably, there are some differences between the training and testing data (Fig. 10a vs. 10b), such as 315 

the large REFB off the western coast of South American and coast of Australia. In comparison to the real REFB 316 

distribution (Fig. 10a), the LSW-based REFB (Fig. 10c) captures the general pattern with larger biases over ocean 317 

and lower biases over land in both the training and testing data. However, the LSW-based REFB is less capable 318 

of capturing the large bias over the subtropical oceans off the west coast of South America and South Africa and 319 

Australia. Those are expected to be the oceans that have a cold SST, where ducting occurs commonly due to the 320 

frequent occurrence of inversion layers on top of the cool sea surface. Although the LSW-based REFB can also 321 

represent a portion of the negative REFB in these regions in general, it is obvious that the values are 322 

underestimated there. The LSW-based estimation exhibits good performance in estimating the negative REFB in 323 

the Indian Ocean, where the pattern and magnitude of the estimated REFB are close to those of the real REFB. In 324 

contrast to the LSW-based REFB, the TQ-based REFB represents the large negative REFB in the high-ducting-325 

occurrence regions well. Although the magnitude of the N-REFB offshore the coasts of South America and South 326 

Africa is still underestimated, the pattern and amplitude of the negative REFB are much better represented in 327 

comparison with the LSW-based estimation. 328 

 The TQ-based estimation (Fig. 10 e,f) captures the low bias pattern well, such as the tropical western 329 

Pacific, western South America and Africa, while the LSW-based estimation overestimates the negative bias. The 330 

similar pattern between the real and TQ-based estimated REFBs can be explained by the following two reasons. 331 

The first reason is the ability to capture SST characteristics. For example, cold SST regions can result in a cool, 332 

low moisture near-surface atmosphere (Fig. 5c and 5d) and impact the boundary layer. Second, the bias in the RO 333 

refractivity profiles will be translated to the 1D-Var T and Q retrievals.  334 

 The final method, the MVE, combines the LSW and TQ estimations. As described in Section 2, the MVE 335 

derives the optimal combination by considering the error correlation between the individual estimations. Notably, 336 
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the MVE approach requires knowledge of the error covariance matrix between two components (the matrix C in 337 

Eq. 5). The error correlation of the two REFB estimators is 0.294. A high error correlation indicates a dependency 338 

between the two components and thus there is less benefit from using the MVE method. Although LSW is known 339 

to have a relationship with temperature and water vapor, our results indicate that the error correlation between 340 

two estimates is low enough that it is expected that the MVE can extract useful information from both estimations. 341 

Compared to the LSW and TQ REFB estimation, the results of the MVE show a pattern closer to the real REFB 342 

with both the training and testing data sets.  343 

We next show the root-mean-square error (RMSE) between the real and estimated REFB in each box. 344 

Figure 11 shows the contribution of each estimation in estimating bias for land and oceans and reflects the 345 

representativeness of the mean REFB shown in Fig. 10. The LSW-based estimation exhibits high RMSE in the 346 

cold SST regions and several ocean regions, such as the Southeastern Atlantic, Southeastern and North Western 347 

Pacific Oceans, while the TQ estimation successfully mitigates this issue. On the other hand, the LSW-based 348 

estimation performs better in the tropical Atlantic and Indian Oceans. With training and testing data, the large 349 

RMSEs in the LSW or TQ estimation over the oceans are largely removed by the MVE method; however slight 350 

degradation is observed over the continents of south America and middle Africa. With the testing data (the right 351 

column in Fig. 11), the RMSEs are larger in individual estimations, as expected. In general, the MVE method 352 

retains its advantage in the optimal estimation over ocean, with an RMSE smaller than that of either estimation. 353 

Table 2 shows the global mean RMSE. The TQ method has a smaller RMSE compared to the LSW estimation. 354 

The MVE method further improves the TQ method by 32% and 23.6% with the training and testing data, 355 

respectively.  356 

However, we also observed that the TQ-based REFB has larger RMSE in the ducting region in southeast 357 

Pacific and Atlantic (Fig. 11e vs. Fig. 11f). This is attributed to an overestimated negative REFB (Fig. 10e vs. 358 

10f) by the TQ estimator with a much moister near-surface condition in the testing data than those in the training 359 

data. The overestimation of the testing data in the ducting regions suggests that more data is required to train the 360 

statistical model applicable to a broader range of temperature and moisture requires.  361 

4.2 Sensitivity experiments 362 

This subsection discusses the sensitivity of the REFB estimation to the penetration rate of the RO profiles 363 

and investigates the impact of sampling error on constructing the LSW-based and TQ-based estimators. Two sets 364 

of sensitivities are designed. For the first set of sensitivity, it is required that, in each box, at least 30 RO profiles 365 

penetrate a certain level. For the second set of sensitivity, the REFB estimators are obtained for RO data from 366 

different levels. 367 

Figure 12 shows the REFB estimation with the testing data using different criteria of the penetration rate. 368 

The estimators are obtained when there are at least 30 profiles whose minimum level is smaller than 1.5 or 0.5 369 

km, respectively. The criteria are referred to as CT1 and CT2 in Fig. 12. As the criterion becomes more stringent, 370 

more samples in the tropics are rejected and insufficient samples are available in the core of the ducting regions 371 

and areas with latitudes higher than 30 degrees. For boxes with sufficient samples with the CT2 criterion, the 372 

patterns of REFB, LSW, T and Q (the right column in Fig. 5) are very similar to the ones with an eased standard 373 

criterion, but their amplitudes are generally higher. Nevertheless, the real REFB in Fig. 12a and Fig. 12b is very 374 

similar to that in Fig. 10b using an eased criterion on sample number. This similarity is due to fact that the data 375 



 11 

amount between 0.5 and 1.5 km is much more than that below 0.5km (Fig. 2b). However, the real REFB with 376 

CT2 is larger in south Pacific and Atlantic. This reflects that the REFB quicky increases near the surface (Fig. 3a), 377 

which can be emphasized after the RO profiles with early termination are removed. The LSW-based REFB with 378 

strict criteria also captures the general pattern of real REFB, while the TQ-based REFB captures the large negative 379 

REFB in the ducting regions well. The REFB estimation using the C2 criterion still show good ability in the 380 

regions that the real REFBs are somewhat different between the C2 and standard criteria, such as Central and 381 

northwestern Pacific. This good performance is attributed to the fact that the region-dependent regression models 382 

can adapt to the changes in the training data in boxes.  383 

Based on the results in Fig. 12, we separate the REFB estimation to different vertical levels, below 0.5 384 

and between 0.5 and 1.5 km (Figure 13). As shown in Fig. 3b, the real REFB below 0.5 km is generally larger 385 

than that between 0.5 and 1.5km, except for western Pacific and the ducting regions, west of south America and 386 

south Africa. Below 0.5km, the penetration rate declines quickly, reducing the sample size. Nevertheless, it is 387 

shown that both REFB estimators perform well in estimating the REFB as well, in particular that the TQ-estimator 388 

is good at capturing the large REFB. Both estimators can even capture the large negative REFB in central southern 389 

Pacific and south India, and the MVE REFB improves the TQ-based REFB in central Pacific (150°W to 150°E). 390 

However, the TQ-estimator provides positive REFB estimation in the cold and dry condition north of Africa, while 391 

a weak negative value is exhibited in the real REFB. While the TQ-estimator is very sensitive to the amplitude of 392 

temperature and moisture, we emphasize that the regression model may not be reliable with a limited sampling 393 

size in mid-latitude regions. Results of the REFB estimation between 0.5 and 1.5 km are very similar to Fig. 10. 394 

This again confirms that the REFB shown in Fig. 10 is dominated by the data between 0.5 and 1.5 km. 395 

Nevertheless, it is important that both REFB estimators can reflect not only the general characteristics and also 396 

the differences at different vertical levels. 397 

4.3 Estimating vertical profiles of refractivity bias 398 

This section examines the performance of the REFB estimation methods and whether they can be used 399 

for estimating the vertical profiles of REFB. The following three areas (indicated in Fig. 9a) with different REFB 400 

characteristics are selected as examples: Area A is in the region of 0° < Lat < 10°N and 55°E < Lon <75°E, Area 401 

B is in the region of 20°S < Lat < 30°S and 105°W < Lon < 85°W, and Area C is in the region of 35°S < Lat < 402 

45°S and 120°W < Lon < 135°W. For each area, the estimated REFB at different levels are derived using the 403 

estimation methods defined in the previous section. Figure 14a-c shows the mean of the real and estimated REFB 404 

profiles in three areas with the testing data. We note that the results of the training and testing data are very 405 

similar. In Area A, the mean negative REFB is large at the surface but gradually reverses to a positive bias at 3 406 

to 5 km. In this case, the air below 2 km is very warm and moist over the Indian Ocean (Fig. 14d). The highly 407 

humid condition gives a large LSW (Fig. 5b and 5c), and thus, the LSW method can have a good ability to 408 

estimate bias in this circumstance, while the TQ method overestimates the negative REFB. In contrast, Area B 409 

shows different patterns (Fig. 14b): the real negative REFB is even larger (-17 N units) at the surface, and the 410 

negative bias at 2 km is still large compared to that in Area A. As shown in Fig. 14d, this characteristic is 411 

associated with the inversion layer at 2 km over the cold SST region and large vertical moisture gradient, a typical 412 

condition of ducting. While the LSW-based estimation underestimates the negative REFB with the existence of 413 

the inversion layers this can be captured by TQ-based estimation. Nevertheless, the MVE method is always much 414 
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closer to the real REFB. In Fig. 14b Area B shows the improvement in the MVE than the TQ-based estimation, 415 

while large RMSE remained in Area B with the MVE method in Fig. 11f. It should be noted that Fig. 11 is 416 

calculated based on the difference the real REFB and estimated REFB of each profile “averaged” below 1.5 km, 417 

where Fig. 14 groups the profiles with an interval of 500m. Therefore, the overestimation REFB below 1km with 418 

the TQ-based estimator is alleviated with the average data used to construct Fig. 11.  419 

For the box located offshore of north America with the mid-latitude cold and dry condition (Fig. 14c), 420 

both estimators capture the general pattern of the vertical distribution of REFB but the amplitude below 1 km is 421 

smaller than the real REFB. Nevertheless, the TQ-based REFB is much better represented compared to one from 422 

the LSW estimator. Fig. 14 suggest that both estimators can be applied to estimate the vertical variations of REFB 423 

in different regions. However, sample issues may be encountered in mid-latitude regions as discussed in section 424 

4.2. 425 

5. Conclusions 426 

This study investigates the characteristics of refractivity bias (REFB) of FS7/C2 and its sensitivities to RO 427 

measurement uncertainty (LSW) and thermodynamic conditions (temperature and moisture). Two bias estimation 428 

models are constructed based on polynomial regression with the LSW, and temperature and specific humidity are 429 

used as predictors in each estimation. The study period is December 2019-February 2020, with the ERA5 430 

reanalysis data taken as the reference truth. 431 

Similar to previous studies, the low-level FS7/C2 RO refractivity data of during the study period contain 432 

significant biases when compared with ERA5. In general, the REFB below 1.5 km is negatively proportional to 433 

LSW and exhibits a stronger dependency over ocean than over land. Additionally, REFB in the PBL has a strong 434 

dependence on low-level temperature and moisture. While the majority of Pacific and Indian Oceans with warm 435 

SSTs have significant negative REFBs, the largest negative REFB regions are near the cold SST regions off the 436 

western coasts of South America and South Africa. Small and even positive REFBs are observed over South 437 

America and South Africa. 438 

Two REFB estimation models based on the polynomial regression approach are first applied to construct the 439 

region-dependent mean REFB below 1.5 km. One estimation model uses a quadratic function of LSW. The other 440 

uses the multivariable polynomial regression with temperature and specific humidity (TQ) as predictors, and the 441 

moisture variable become emphasized after optimization. The estimation models are then applied to 7230 boxes 442 

from 45S to 45N. The minimum error variance (MVE) method is used to combine two REFB estimations. The 443 

results show that the bias estimation models with either LSW or TQ have their own advantages in estimating 444 

REFB. The LSW-based model shows the ability to capture the general pattern of the negative REFB but the 445 

amplitude is significantly underestimated in the ducting areas. The TQ-based model has great performance in 446 

representing the pattern and amplitude of REFB, particularly the large negative REFB in the ducting areas and 447 

small REFB over most land regions. While the relationship between REFB and LSW below 1.5km is very strong 448 

in a global sense, the TQ-based REFB shows its advantage in capturing the regional characteristics. The MVE 449 

estimation successfully adopts the advantage from either LSW or TQ estimation and has the smallest RMSE, 450 

particular over ocean.  451 



 13 

Results of sensitivity tests show that the estimators at mid-latitude could be affected by the sampling issue 452 

since requiring profiles penetrating 0.5 km cannot obtain sufficient samples to construct the regression models.  453 

With the 3 months of data, the REFB estimation in tropic to subtropic regions remains similar with the RO profiles 454 

penetrating below 1.5 or below 0.5km given that the amount of RO data between 0.5 and 1.5 km dominates. 455 

Nevertheless, both the LSW and TQ estimation can capture the characteristics of REFB when the RO data are 456 

separated to below 0.5 and between 0.5 and 1.5km. Such an ability allows the three REFB estimation models to 457 

be applied to reconstruct the REFB vertical profiles for regions with distinct thermodynamic condition in deep 458 

troposphere. Both the LSW and TQ estimations can well represent the vertical gradient of the mean REFB and 459 

the MVE estimation gives an estimated REFB profile closest to the real REFB with the probability distribution 460 

similar to the distribution of real REFB.  461 

We should note some of the limitations of these REFB models. The temperature and moisture from the 462 

ERA5 reanalysis may have bias. In addition, REFB may have more characteristics regarding smaller scales 463 

spatiotemporally. We should also emphasize that the FS7/C2 RO data are mainly located in the tropic to subtropic 464 

regions. Therefore, we need more data to justify whether the regression-based bias estimation is applicable in the 465 

high-latitude regions. At last, predictors used in the statistical models may not be perfect to capture all attributions 466 

of REFB. For future work, bias estimation models will be constructed at higher resolutions with more RO profiles 467 

collected from the current FS7/C2 or other operational and commercial GNSS-RO satellites.  468 
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 623 

Table 1: Correlation coefficients between the mean real and estimated REFBs below 1.5 km over ocean and 624 

land in Southern Hemisphere (SH) and Northern Hemisphere 625 

Correlation coefficients LSW based TQ based 

 Ocean 

(SH/NH) 

Land 

(SH/NH) 

Ocean 

(SH/NH) 

Land 

(SH/NH) 

Training data set 0.94/0.96 0.9/0.92 0.79/0.75 0.72/0.69 

Testing data set 0.93/0.96 0.89/0.87 0.71/0.68 0.70/0.63 

 626 

 627 

Table 2: Global mean RMSE of each REFB estimation in comparison to the real REFB below 1.5 km 628 

Global mean RMSE LSW-based TQ-based MVE 

Training data set 2.033 1.614 1.088 

Testing data set 2.815 2.266 1.731 

629 
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 630 

 631 

Figure 1: Number of FS7/C2 RO profiles below the 1.5 km height during the study period (unit: number of profiles). 632 

 633 

  634 
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 635 

Figure 2: (a) Mean and standard deviation of REFB and mean LSW as a function of height. (b) The amount of available 636 

RO data, and (c) the percentage of profiles as a function of height in reference to the total number at 10 km. The RO 637 

data are from 1st December 2019 to 29th February 2020. 638 

  639 
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 640 

Figure 3: The cross-sections of (a) zonal mean REFB and (b) mean LSW/2 from 1st December 2019 to 29th February 641 

2020. 642 

  643 
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 644 

 645 

Figure 4: (a) and (b) are vertical profiles of the mean and standard deviation of REFB, and mean LSW with altitudes 646 

up to 25 km over ocean and land, respectively. (c) and (d) are the same as (a) and (b) except zoomed versions below 5 647 

km. 648 

  649 
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 650 

Figure 5: Horizontal distribution of (a) REFB (N units), (c) LSW (%), (e) specific humidity (g kg-1), and (g) temperature 651 

(C) during the study period. The values of REFB, LSW, specific humidity and temperature are averages over the 652 

lowest 1.5 km MSL of the atmosphere. (b), (d), (f) and (h) are the same as (c), (c), (e) and (g), but they are calculated 653 

with the criterion that at least 30 profiles penetrate below 0.5 km in each box. 654 

 655 
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 656 

Figure 6: Refractivity bias as a function of height and average values over the lowest 1.5 km above MSL of (a) LSW/2, 657 

(c) specific humidity and (e) temperature over land. (b), (d) and (f) are the same as (a), (c) and (e), except over the ocean. 658 

The color shading shows the result using the RO profiles penetrating below 1.5 km while the contour uses the RO 659 

profiles penetrating below 0.5 km. 660 

  661 
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 662 

Figure 7: Relationship between LSW/2 and REFB. The solid and dashed lines represent the REFB computed from the 663 

statistical model for the ocean and land, respectively, as a function of LSW/2 (Southern Hemisphere only). LSW/2 and 664 

REFB are averaged below 1.5 km.  665 

 666 

  667 
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 668 

 669 

 670 

Figure 8: The relationship among REFB, normalized specific humidity, product of normalized temperature and 671 

normalized specific humidity of a) oceans and b) land in the Southern Hemisphere. The scatters are the averaged values 672 

of each profile below the lowest 1.5 km MSL. The surfaces show the model computed from statistical model (Eq. 3) as 673 

the function of normalized specific humidity and product of normalized temperature and humidity. (c) and (d) are the 674 

same as (a) and (b), but for the Northern Hemisphere. 675 

676 

(a) 
(b) 

(c) 
(d) 
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 677 

Figure 9: The relationship between REFB and normalized Q given a condition of normalized TQ=0.5. 678 

  679 
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 680 

Figure 10: Horizontal distribution of refractivity bias and different estimated refractivity biases. The boxes denoted A 681 

and B are the example boxes used in Figures 12 and 13, respectively. All variables used to construct this figure are 682 

averaged below 1.5km. Area A is in the region of 0° < Lat < 10°N and 55°E < Lon <75°E, Area B is in the region of 20°S 683 

< Lat < 30°S and 105°W < Lon < 85°W, and Area C is in the region of 35°S < Lat < 45°S and 120°W < Lon < 135°W. 684 

  685 
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 686 

 687 

Figure 11: Horizontal distribution of RMSE between the real REFB and estimated REFB by different methods with 688 
training (left column) and testing (right column) data. 689 

690 
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 691 

Figure 12: The same as Fig. 10, but the calculation is done for RO data with different criteria (CT1 and CT2) of sample 692 
selection. CT1 requires at least 30 RO profiles penetrate below 1.5 km in each box, and CT2 is the same as CT2 except 693 
that the profiles penetrate 0.5 km. (i) and (j) are the horizontal distribution of the profile count with criterion CT1 and 694 
CT2, respectively. 695 
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 696 

Figure 13: The same as Fig. 10, but the calculation is done for RO data from different levels. The left column uses the 697 
data below 0.5 km and the right column use the data between 0.5 and 1.5 km.  (i) and (j) are the horizontal distribution 698 
of the profile count below 0.5km and between 0.5 and 1.5 km, respectively. 699 



 32 

Figure 14: Profiles of refractivity bias (real and estimates) for two different areas selected in Fig. 10a. Boxes A, B and 700 

C are in (0° < Lat < 10°N, 55°E < Lon <75°E) and (20°S < Lat < 30°S, 105°W < Lon < 85°W) and (35°S < Lat < 45°S 701 

and 120°W < Lon < 135°W). (d) Profiles of temperature (red lines) and specific humidity (blue lines) averaged for 702 

Areas A (solid lines), B (long-dashed lines) and C (short-dashed line) shown in Fig. 10b. 703 
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