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Abstract 10 

FORMOSAT-7/COSMIC-2 radio occultation (RO) measurements are promising for observing the deep 11 
troposphere and providing critical information on the Earth's planetary boundary layer (PBL). However, 12 
refractivity retrieved in the low troposphere can have severe bias under certain thermodynamic conditions. This 13 
research examines the characteristics of bias in the low troposphere and presents methods for estimating the 14 
region-dependent bias using regression models. The results show that the bias has characteristics that vary with 15 
land and oceans. With substantial correlation between local spectral width (LSW) and bias, the LSW-based bias 16 
estimation model can explain the general pattern of the refractivity bias but with deficiencies in measuring the 17 
bias in the ducting regions and certain areas over land. The estimation model involving the relationship with 18 
temperature and specific humidity can capture the bias of large amplitude associated with ducting. Finally, a 19 
minimum variance estimation that combines the benefits of the individual estimation provides the most accurate 20 
estimation of the refractivity bias. 21 

1 Introduction 22 

Global Navigation Satellite System (GNSS) radio occultation (RO) observations have become a critical 23 
data source in atmospheric applications, particularly numerical weather prediction (NWP) (e.g., Healy, 2008; 24 
Rennie, 2010; Cucurull et al., 2007, 2017; Lien et al., 2021). Low-Earth-orbiting (LEO) satellites receive radio 25 
signals, which are emitted from GNSS transmitters and tend to bend due to atmospheric density changes. 26 
Information on the bending angle can be obtained with the GNSS RO technique, and then the atmospheric 27 
refractivity is further derived by Abel inversion. Since the RO technique measures the signal phase delay, it is not 28 
affected by clouds and rainfall. The RO profile is an all-weather observation with a high vertical resolution. 29 

The RO observations, bending angle and reflectivity, reflect the changes in atmospheric density, a function 30 
of temperature, moisture and pressure (Kuo et al., 2004). RO observations were indicated to be advantageous in 31 
providing information on temperature (stratosphere and upper troposphere) and moisture (lower troposphere) with 32 
low noise and low systematic errors, which is very beneficial in atmospheric research (Eyre, 2008). Several GNSS 33 
RO missions, e.g., the FORMOSAT-3/Constellation Observing System for Meteorology, Ionosphere, and Climate 34 
(FS3/C), FORMOSAT-7/COSMIC-2 (FS7/C2), Meteorological Operational satellite (MetOp), Gravity Recovery 35 
And Climate Experiment (GRACE), Satellite de Aplicaciones Cientifico-C (SAC-C), X-band TerraSAR satellite 36 
(TerraSAR-X), Korea Multi-Purpose Satellite-5 (KOMPSAT-5), etc., have provided much RO data for numerical 37 
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weather prediction (NWP). Many works have illustrated the positive impact of assimilating RO observations, such 38 
as the operations systems at the European Centre for Medium-Range Weather Forecasts (ECMWF) (Healy, 2014), 39 
the NCEP/Environmental Modeling Center (EMC) (Cucurull, 2007) and the Taiwan Central Weather Bureau 40 
(CWB) (Lien et al., 2021). Moreover, studies have been initiated recently to investigate the potential of 41 
assimilating the large volume of commercial RO data from Spire, and the benefits can be identified in weather 42 
forecasting (Bowler, 2020a). In addition to improving global NWP, studies have also confirmed that assimilating 43 
RO observations improves severe weather prediction, particularly for tropical cyclones and heavy rainfall (e.g., 44 
Chen et al. 2020; 2021a,b, 2022; Chang and Yang, 2022; Yang et al., 2014). 45 

As the successor of FS3/C, the FS7/C2 mission was launched in 2019 with support from the Taiwan 46 
National Space Agency (TASA) and the United States National Oceanic and Atmospheric Administration 47 
(NOAA). The number of profiles obtained by FS7/C2 is approximately three times greater than that of FS3/C 48 
since FS7/C has dense coverage over the tropics and subtropics (Chen et al., 2021c). Compared with FS3/C, 49 
FS7/C2 has a higher signal-to-noise ratio (SNR), wider bandwidth, and a better open-loop (OL) model. These 50 
advantages enable the retrieval of more data from RO signals penetrating the moist troposphere and having the 51 
ability to detect the atmospheric boundary layer (ABL) and superrefraction (SR) over the top of the planetary 52 
boundary layer (PBL) (Schreiner et al., 2020). Chen et al. (2021c) showed that the data availability of the FS7/C2 53 
RO profiles under 1km is five times greater than that of the FS3/C profiles over a six-month range. Anthes et al. 54 
(2022) noted that the penetration rate of RO profiles is limited to extremely moist conditions and that the rate is 55 
high near tropical cyclones and their environment. It is expected that FS7/C2 will continue to experience the same 56 
success as its predecessor (FS3/C) given the quality and quantity of data collection with advanced improvement 57 
in measuring techniques (Feng et al., 2020). The ability to penetrate deep into the atmosphere makes RO 58 
measurements ideal for studying the PBL. The PBL is directly influenced by any exchange of energy, momentum 59 
and mass between the Earth’s surface and the atmosphere, and thus its characteristics are crucial for weather and 60 
climate variabilities. 61 

However, the use of GNSS RO in the lower atmosphere still has uncertainties when radio rays pass through 62 
areas with strong refractivity gradients. In such conditions, the assumptions and approximations in the retrieval 63 
algorithms can result in large uncertainties in the RO data (Sokolovskiy, 2010). Normally, when the refractivity 64 
gradient is small, the radio rays can converge with a given impact parameter well, and the wave optics 65 
transformation (WO) technique can retrieve complicated RO signals efficiently (Gorbunov, 2002; Jensen et al., 66 
2003, 2004). However, in the presence of a strong vertical refractive gradient, multipath propagation can extend 67 
the spectrum of WO-transformed RO signals, resulting in complex structures in the RO bending angle 68 
(Sokolovskiy et al., 2010), hence causing the complexity of RO uncertainty estimation. In this case, the systematic 69 
error induced by the tropospheric strong refractivity causes a negative refractivity bias (N-REFB) (Rocken et al., 70 
1997). The N-REFBs in the lower troposphere are largely attributed to the existence of the ducting layer (Xie et 71 
al., 2010), which results in significant changes in both the phase and SNR of the RO signals (Sokolovskiy, 2003) 72 
and thus leads to bending angle errors and additional refractivity errors. Ao (2007) demonstrated that the GPS RO 73 
N-REFB has latitudinal and monthly variations below the 2-km height. The climatological locations of the N-74 
REFB agree well with the areas of high ducting frequency, mainly over the subtropical eastern oceans (Feng et 75 
al., 2020). However, in addition to ducting, issues such as tracking error, cycle slips and unbalanced noise spectra 76 
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could also lead to lower-altitude N-REFBs. In regard to the assimilation of RO data, quality control (QC) is applied 77 
to reject the RO data if the observation or the corresponding backgrounds are suspected to be affected by super 78 
refraction. The rejection rate is high below 2 km due to the negative bias, which could also discard valuable 79 
information for data assimilation. To increase the value of RO data in the lower atmosphere, this study aims to 80 
examine the characteristics of the REFBs in more detail and proposes methodologies to estimate them. 81 

Previous works demonstrated that the N-REFB in the PBL could be recognized and estimated using 82 
canonical transform approximations (Sokolovskiy, 2003) and could be reconstructed in the presence of ducting 83 
conditions (Xie et al., 2006). Based on Xie  et al. (2006), Wang et al. (2017) also showed an improved study based 84 
on Xie et al. (2006) with an optimal estimation of negative bias using the provided precipitable water (PW) from 85 
Advanced Microwave Scanning Radiometer for EOS (AMSR-E) microwave radiometer satellite data. Wang et al. 86 
(2020) further proposed a bias estimation algorithm by generating a candidate set of modeled ducting profiles. 87 
The one with the vertical gradient of the reflected bending angle closest to the observed profile is taken as the 88 
bias-corrected profile. However, there are some limitations with these methods, such as that they only correct 89 
ducting-related bias and information on the reflected bending angle is needed. For the RO observation error, the 90 
local spectral width (LSW), which measures the uncertainty of the RO bending angle, has been used to indicate 91 
the quality of the individual RO profiles. The LSW represents the errors caused by the nonspherical symmetry of 92 
refractivity in the moist troposphere (Gorbunov, 2006). The LSW parameter has improved the use of RO 93 
observations in data assimilation, including in the QC procedure (Liu et al., 2018) and dynamic estimation of RO 94 
error in the lower troposphere (Zhang et al. 2022). Furthermore, Bowler (2020b) proposed estimating the RO error 95 
with information on mean temperatures below 20 km, rather than using latitude to show meridional dependence. 96 
In the presence of strong moist convection, nonspherical symmetry may cause rays to have the same impact 97 
heights and increase the spectrum of the spectral components (Sokolovskiy et al., 2010). All these results suggest 98 
that variations in LSW, temperature and humidity are directly related to the bias. Thus, we attempt to develop a 99 
bias estimation algorithm that adaptively considers the uncertainty associated within each RO profile using LSW 100 
and PBL thermodynamic variables such as temperature and water vapor. 101 

In this study, we first investigate the characteristics of the FS7/C2 RO refractivity bias and establish 102 
regression-based bias estimation algorithms. Two types of algorithms are examined. One is based on the physical 103 
LSW parameter, and the other is related to the thermodynamic variables (temperature and water vapor). By 104 
comparing the results of the estimated bias, we can identify the characteristics of each participating variable. 105 
Finally, a bias correction method for the RO profile in the lower troposphere is proposed by combining the two 106 
error estimation algorithms. We expect that this new algorithm can be used to improve the QC step and increase 107 
the value of RO profiles in the lower troposphere. 108 

The remaining paper is organized as follows. Section 2 provides the data information and methods for 109 
estimating the refractivity bias. Section 3 discusses the general characteristics of bias and its sensitivities with 110 
respect to different variables and land/sea conditions. Section 4 presents the results of bias estimation algorithms. 111 
Finally, the summary and conclusion are provided in Section 5. 112 
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2. Data and methodology 113 

2.1 GNSS RO FS7/C2 and ECMWF data 114 

This study uses the FS7/C2 RO atmospheric profiles (atmPrf) processed by the Taiwan Data Processing Center 115 
(TDPC) from Taiwan Data Process Center (TACC). The study period is from 1st December 2019 to 29th February 116 
2020, before the FS7/C2 data were assimilated in the ECMWF analysis. All collected RO profiles are distributed 117 
between 45°S and 45°N due to the inclination of the FS7/C2 satellite. A total of 244,853 profiles are collected 118 
with the flag of “good data” during the periods, and only data below the height of 25 km are used to focus on the 119 
bias characteristics in the troposphere. The data quality of the new FS7/C2 constellation is improved due to the 120 
use of the advanced RO receiver and postprocessing with open-loop tracking. Most of the profiles show a 121 
penetration improvement with depths below 1 km, and the penetration rate is 40% higher than those of FS3/C 122 
(Chen et al., 2021c). Figure 1 shows the number of profiles that are retrieved when the radio ray penetrates below 123 
the 1.5 km-height of sea level during the selected periods. The FS7/C2 data are mostly in tropical areas and have 124 
more profiles penetrating below 1.5 km over oceans than over land. 125 

For comparison, the reference RO profiles are calculated using the ECMWF atmospheric reanalysis (ERA5) 126 
specific humidity and temperature. The RO refractivity bias (REFB) is defined as the mean difference between 127 

the FS7/C2 and the ERA5 RO profiles (Eq. 1). In Eq. (1), 𝑅𝐸𝐹!
"#$/&' is the ith RO refractivity profile, 𝑅𝐸𝐹!(& is 128 

the reference profile, and n is the total profile number. 129 

REFB	 = 	 )
*
∑ 𝑅𝐸𝐹!

"#$/&' − 𝑅𝐸𝐹!(&!+*
!+) 	                                        (1) 130 

 2.2 Negative refractivity biases (N-REFB) under super refraction 131 

This section provides an overview of the N-REFB that occurs in the PBL. Sokolovskiy (2003) discussed 132 
the details of estimating these N-REFBs. Assuming the atmosphere is spherically symmetric under multipath 133 
propagation and a typical moist troposphere, the impact parameter 𝑎 can be defined as 134 

𝑎	 = 	𝑟𝑛(𝑟)𝑠𝑖𝑛𝜙 = 𝑐𝑜𝑛𝑠𝑡                                       (2) 135 

where 𝑛 is the refractive index, 𝑟 is the radius from the center of curvature to the ray path, and 𝜙 is the angle 136 
between the ray path and the radial vector. As shown in Tatarskiy (1968), the bending angle 𝛼 of a GNSS-RO ray 137 
path between two points 𝑟∗ and 𝑟- is given by 138 

𝛼(𝑟-) 	= 	−2𝑟-𝑛(𝑟-) ∫
.*/./

*(/)2/!*!(/)3/"!*!(/")
/∗
/- 𝑑𝑟                      (3) 139 

With (3), bending angle	𝛼(𝑟) is the nonlinear function of refractivity index 𝑛(𝑟), and the convenient replacement 140 
using 𝑥 = 𝑟𝑛(𝑟) and 𝑎 = 𝑟-𝑛(𝑟-) transforms (3) into 141 

𝛼(𝑎) = −2𝑎 ∫ .45	*/.7
27!38!

7∗

8 𝑑𝑥																																													(4)	142 

The bending angle 𝛼  can be calculated as a function of impact parameter 𝑎  using (4). Under typical 143 
atmospheric conditions, 𝑑𝑛/𝑑𝑟 < 0 and 𝑑𝑥/𝑑𝑟 = 𝑛 + 𝑟𝑑𝑛/𝑑𝑟 > 0. Under normal conditions, when refractivity 144 
is spherically symmetric, the transformed RO signal is quasi monochromatic, with no bias introduced by additive 145 
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noise (Jensen et al., 2006). However, in the presence of a large vertical gradient, refractivity is nonspherically 146 
symmetric, and noise appears because of multiple rays (Sokolovskiy 2010). However, if the refractivity is greatly 147 

increased due to super refraction (SR), or 𝑑𝑛/𝑑𝑟 < −𝑛/𝑟 (or .9
./
< 157km3)), then 𝑑𝑥/𝑑𝑟 < 0. The refractivity 148 

within the SR layer is sufficient to trap the signal that carries the tangent point information (the geometry of GNSS 149 
RO with the locations of the transmitter and receiver). In this case, when using Eq. (3) to calculate the bending 150 
angle, assuming 𝑟∗ < 𝑟, the term 𝑟𝑛(𝑟) becomes less than 𝑟∗𝑛(𝑟∗) due to the negative gradient of 𝑥 between the 151 
top and bottom of the layer. This results in a negative sign contained within the square root of Eq. (3). 152 
Consequently, the refractivity determined by the Abel inversion below the SR layer becomes negatively biased 153 
(Sokolovskiy, 2003; Wang et al., 2020). 154 

Under certain conditions, extreme SR occurs, and the signal is trapped within a strong and shallow 155 
inversion layer. This is called the atmospheric duct. Ducting is more prevalent several kilometers above the stable 156 
maritime atmosphere than over land. Previous works (Ao et al., 2008 and Feng et al., 2020) showed that areas 157 
with cool sea surface temperatures, such as the eastern ocean, commonly have ducting. Atmospheric conditions 158 
with a strong vertical lapse of humidity at the PBL top or temperature inversion are favorable for ducting, such as 159 
evaporation ducts over warm SST and frontal inversion (Hsu, 1998). However, Wang et al. (2020) clarified that 160 
evaporation duct cases would not introduce negative bias since the RO profiles are cut off at higher altitudes. 161 
Notably, the N-REFB may not be completely attributed to the ducting effect. While N-REFBs on land are often 162 
related to complex terrain, such as the high mountains of the Himalayas and North American Cordillera (Feng et 163 
al., 2020), other N-REFBs over the oceans are located over the warm-moist Indian Oceans and Western Pacific. 164 
This result means that parameters containing information under different conditions leading to REFB should be 165 
examined. 166 

This study employs different sets of variables to quantify the GNSS-RO REFB, including physical 167 
parameters (LSW) and thermodynamic parameters (temperature and specific humidity). Each parameter attempts 168 
to define different attributions of the observational error in GNSS RO data. Liu et al. (2018) used a linear function 169 
of LSW/2 to illustrate the FS3/C dynamic error variance in the bending angle and refractivity. Following Liu et 170 
al. (2018), we use the variable LSW/2 and modify this relationship to a polynomial regression. The other bias 171 
estimation model is established using the thermodynamic variables to emphasize the impact of the thermodynamic 172 
structure on REFB within the PBL. 173 

2.3 Algorithms for bias estimation 174 

Two types of regression models are developed to estimate the REFB. The first one uses LSW/2 as the 175 
predictor, and the other uses temperature (T) and specific humidity (Q) as the predictors. Afterward, the regression 176 
models are referred to as the LSW and TQ estimators, respectively. The LSW represents the RO inversion 177 
uncertainty, and T and Q represent the impact of the thermodynamic structure on REFB within the PBL. Each of 178 
these variables is expected to partly explain the characteristics of the bias. In each estimator, the order of the 179 
polynomial and regression coefficients are optimized by using the R-square to assess the goodness of the fitting 180 
ability. The data are subsets for training (80%) and testing (20%). To derive a robust fitting model, independent 181 
fitting is performed five times by replacing the testing data with another 20% of the data. The regression model 182 
with the highest score for both training and testing data is retained. According to the coverage of the FS7/C2 data, 183 
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we group the RO REF profiles from 45°S to 45°N into 5° x 3° boxes (Figure 1), and the estimators are built in 184 
each box. In total, there are 72 x 30 boxes. The purpose of a region-dependent model is to improve the performance 185 
of the estimator by considering the spatial variation in the REFB. 186 

The optimal regression model for the LSW estimator is a second-order polynomial function.  Eq. (5) shows 187 
the formula of the LSW estimator in the ith box 188 

	𝑢! =	𝛼!,)𝑥!' 	+	𝛼!,'𝑥! 	+	𝛼!,;                                          (5) 189 

where 𝑢!, the predictand, is the REFB, 𝑥! is the LSW/2, and 𝛼!,∗ are the regression coefficients. It is expected that 190 
the LSW reflects the issue of multipath propagation of the radio ray, and thus, this estimator quantifies the 191 
relationship between the RO inversion uncertainty and REFB. 192 

A similar procedure is applied to derive a multivariable polynomial regression model with T and Q as the 193 
predictors. Here, both T and Q are obtained from the RO wet products after the one-dimensional variational 194 
retrieval product. Before fitting, T and Q are standardized as 195 

𝜒	 = 	 7$3<=5	(7$)
<>?(7$)3<=5	(7$)

                                                                 (6) 196 

where 𝜒 represents a normalized quantity ranging between 0 and 1 and 𝑥! is the original value of Q or T in the ith 197 
box. The optimal fitting model is 198 

𝑢! 	= 	𝛽!,)𝑦!' +	𝛽!,'𝑦! 	+ 	𝛽!,;𝑦!𝑧!                                                        (7) 199 

where 𝑢! is REFB, 𝑦! is the normalized Q, 𝑧! is the normalized T and 𝛽!,∗ are the regression coefficients. 200 

 We further apply the minimum variance estimation (MVE, Clarizia et al., 2014) to combine the results 201 
from the LSW and TQ estimators. This approach has the advantage of having a smaller RMS error than either the 202 
LSW or TQ estimation. The MVE is built to linearly combine the estimations so that the new estimation has the 203 
minimum error variance: 204 

 𝑢!,@A( = 𝐦 ∙ 𝐮                                                          (9) 205 

where u is the vector of individual estimated refractivity bias and m is the vector of combination coefficients. One 206 
of the advantages of this combination is that 𝐦 is derived considering the error covariance matrix of individual 207 
bias estimators. 208 

 𝒎 = O∑ ∑ 𝑐!,B3)C
B+)

C
!+) P3)𝐂3)𝟏                                         (10) 209 

where 𝟏 is a vector of ones, K is the dimension of 𝒎 (𝐾 = 2 in our application), 𝐂3)  is the inverse of the 210 

covariance matrix between the individual estimation errors and 𝑐!,B3) are the elements of 𝐂3). 211 

The element of the error covariance matrix C is expressed as	𝒄𝒊,𝒋 = 〈(𝒖𝒊 − 𝒖𝒕)O𝒖𝒋 − 𝒖𝒕P〉, where 𝑢! is the ith bias 212 

estimation and 𝑢G is the real bias. 213 

 214 
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3 Characteristics of the refractivity bias 215 

3.1 General characteristics of REFB 216 

Figure 2a shows the profile of the averaged REFB and its standard deviation from 0-25 km. RO data have 217 
significant N-REFBs in comparison to the ERA5-based RO reference, especially in the low troposphere. The bias 218 
is evident below 5 km and is largest at the surface with an amplitude of approximately -11 N-units. Given the 219 
large variations in moisture and temperature in the low troposphere, the standard deviation below the 2 km height 220 
increases as the height decreases. Notably, although the total number of profiles quickly decreases below 5 km 221 
(Fig. 2b), there remain enough data for near-surface statistical evaluation. The mean LSW (red line in Fig. 2a) 222 
also increases sharply as the height decreases, with two peaks at the surface and at the top of the PBL. 223 

Figure 3a shows the latitudinal cross-section of the REFB. It is evident that the significant value of REFB 224 
below 5 km is primarily in the subtropics and tropics and slightly shifted to the Southern Hemisphere due to the 225 
austral summer. The opposite pattern, which has a high bias shifted to the Northern Hemisphere, is also seen with 226 
the data from June to August 2020 (not shown). This result indicates the general dependence of the distribution 227 
of N-REFB on the seasonal temperature structure. Similar to the N-REFB pattern, the large LSW is mainly 228 
exhibited over the tropics, tilting toward the Southern Hemisphere with the maximum near the surface (Fig. 3b). 229 
This finding illustrates that LSW variation can be related to the REFB to some extent. Moreover, other high LSW 230 
values are located a few kilometers above the surface of the Southern Hemisphere. Under summer conditions, the 231 
large lapse of humidity on the top of the moist PBL leads to a strong vertical gradient of refractivity. A similar 232 
pattern is also found in the study of Zhang et al. (2023) but with the FS3/C data in August 2008. The increased 233 
LSW just above the boundary layers could be caused by common inversion layers in the troposphere of some 234 
oceans. Another effect that could be considered is the influence of convective clouds just above moist oceans 235 
(Yang et al., 2016). The large LSW near the surface in Fig. 3b reflects the ability of FS7/C2 to penetrate deep into 236 
the moist troposphere of the tropics, which was not seen in Zhang et al. (2023). 237 

3.2 Dependence on geography and thermodynamic conditions 238 

As the REFB has seasonal dependence, we further examine the dependence of the REFB on land/ocean and 239 
thermodynamic conditions. Figure 4 shows the general comparison of REFB between land and ocean, together 240 
with its standard deviation (stdv) and LSW. Over ocean, both REFB and LSW below 4 km are larger than those 241 
over land, and the N-REFB extends to higher altitudes (Fig. 4c vs. 4d) with a greater vertical gradient of REFB 242 
below 2 km. The magnitudes of mean REFB and stdv above 2 km are comparable over land and over ocean. 243 
The LSW over ocean below 4 km increases faster over the ocean, and the second peak value at the PBL top is 244 
much larger. Therefore, the REFB varies differently over land and oceans, and the LSW exhibits similar 245 
sensitivity. This feature suggests the potential of LSW as a predictor for estimating N-REFB to account for the 246 
difference between land and ocean. Notably, the number of RO profiles over land is about 21% of the total 247 
profiles, and the penetration rate is lower than the RO profiles for ocean (Fig. 1). This finding may contribute to 248 
a larger stdv over land below 1 km. 249 

Given the large REFB near the surface, we focus on the regional variations in REFB within the PBL. Figure 250 
5a clearly shows that the N-REFB below 1.5 km is large over the ocean, particularly over the ocean off the western 251 
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coasts of the American and African continents. Small N-REFBs appear over the tropical Pacific and land. However, 252 
there are small but positive REFBs over the high mountain regions. The different behavior of the N-REFB over 253 
ocean and land implies the impact of regional variability and the associated thermodynamic structure in the PBL. 254 
Furthermore, a large LSW usually corresponds to the region where the vertical gradient of refractivity is large, 255 
which is attributed to the nonspherically symmetric irregularities of the atmosphere. This effect is expected to be 256 
strongly associated with the large variation in the thermodynamic structure. We note that the temperature pattern 257 
over the ocean in Fig. 5d is similar to SST and thus can represent the sea surface condition. As shown in Fig. 5b-258 
5d, high LSW occurrence is mainly located over warm-moist oceans, such as the equatorial Pacific Oceans, 259 
equatorial Atlantic and Indian Oceans. However, not all of the regions with high temperature and moisture coexist 260 
with the regions with high LSW. Some exceptional regions can be seen, such as offshore to the coast of Southwest 261 
Australia and offshore of Southwest Africa.  Fig. 5 suggests that although LSW, temperature and specific humidity 262 
have certain cross-relationships, the characteristics of thermodynamic conditions cannot fully explain the 263 
distribution of LSW. In other words, a REFB estimation model, which is based on only one variable, is not enough 264 
to explain REFB since their variation is different for some specific regions. 265 

To further highlight the characteristics of REFB under different conditions, the REFB profiles are grouped 266 
according to each profile’s LSW, temperature and specific humidity averaged below 1.5 km for land and ocean 267 
(Figure 6). In general, it is evident that the larger N-REFB increases with increasing LSW below 4 km, as shown 268 
in Fig. 3; however, the characteristics are different for land and ocean. Over land, the very high LSW does not 269 
guarantee the occurrence of a large N-REFB near the surface. Instead, N-REFB appears at the PBL top, and the 270 
REFB turns positive near an altitude of 8 km. These REF profiles are near the coasts of North America and North 271 
Africa. Moisture and temperature likewise exhibit the same linear relationship with N-REFB in the lower 272 
troposphere. However, N-REFBs also tend to occur under conditions of low moisture over the ocean. Figure 6 273 
reveals that the relationship between REFB and LSW, T and Q under 1.5 km is dominantly linear; however, the 274 
REFB variations can be further explained by a quadratic relationship with T and Q. 275 

4 Results of bias estimation 276 

4.1 General performance 277 

In this section, we present the estimation for REFB using the methods introduced in Section 2. As mentioned, 278 
LSW/2, which represents the retrieval uncertainties of the bending angle and, hence, refractivity uncertainties, is 279 
the predictor for the first bias estimation model. The temperature and specific humidity retrieved from FS7/C2 280 
RO data are the predictors for the second estimator. Although the T and Q products retrieved from RO profiles 281 
are not as optimal as those retrieved from other analysis products, they still provide valuable information to 282 
estimate the real bias through the training process, as described in Section 2. In the following section, we examine 283 
the general behavior of the estimated N-REFB as a function of each predictor set: LSW and TQ. 284 

Figure 7 shows the relationship between the REFB and LSW/2 for the Southern Hemisphere (SH) during 285 
the study period. Here, we focus on the austral summer in the SH, which could emphasize the warm and moist 286 
conditions in our study period. In Fig. 7, REFB is grouped every 2% of LSW/2, from 0 to 36%. The solid and 287 
dashed lines show the LSW-based N-REFB estimates for ocean and land, respectively. Under 1.5 km, the 288 
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magnitude of the N-REFB as a function of LSW is much larger for oceans than for land. Generally, as LSW/2 289 
increases, the REFB becomes more negative below 1.5 km for both land and ocean. The correlation for data below 290 
1.5 km is 0.94 for oceans and 0.9 for land with the training data. As shown in Table 1, the correlations over ocean 291 
and land are robust and similar to the training and testing data. We note that the positively proportional trend is 292 
not evident for the data above 1.5 km, and there is little difference in N-biases between land and ocean. 293 

 Figure 8 shows the result of the second bias estimator, which relates the REFB with temperature and 294 
specific humidity (TQ) for the SH under 1.5 km. The TQ estimation over ocean and land can capture the feature 295 
where the REFB becomes more negative under moist conditions. Similar to the LSW estimator, the TQ estimator 296 
shows a stronger dependence over the ocean. As shown in Fig. 8a, given a fixed specific humidity, the relationship 297 
between REFB and temperature is parabolic under moist conditions but linear under dry conditions. As the water 298 
vapor increases, the estimated REFB tilts toward lower temperatures (e.g., the minimum of estimated REFB 299 
appears at 22.8°C when Q is fixed at 5g/Kg, but it appears at 15°C when Q is fixed at 15 g/Kg). This finding 300 
reflects the condition over the cool SST, west of the coast of South America and South Africa. Over land, there 301 
are fewer data with large negative REFBs. In addition, the estimated REFB gradually tilts toward positive values 302 
as the water vapor decreases, which is associated with the dry conditions over the mid-latitude continent (Fig. 5c). 303 
The multivariable regression has a high correlation coefficient equal to 0.79 and 0.72 for ocean and land, 304 
respectively. Thus, the result also suggests that T and Q are suitable for use to estimate the refractivity bias. Figure 305 
7 and Figure 8 confirm that models with LSW/2 or TQ as predictors can estimate the REFB under 1.5 km, but 306 
there are different sensitivities for ocean and land. 307 

In the next step, we further apply these regression methods to construct the region-dependent bias 308 
estimation model using the data in a 5∘ × 3∘ box within 45°N to 45°S. The estimators are built for each box to 309 
represent the regional variation pattern of N-REFBs. 310 

Figure 9 shows the horizontal distribution of the mean real and estimated REFBs with the training and 311 
testing data. Notably, there are some differences between the training and testing data (Fig. 9a vs. 9b), such as the 312 
large REFB off the coast of Australia. In comparison to the real REFB distribution (Fig. 9a), the LSW-based 313 
REFB (Fig. 9c) captures the general pattern with larger biases over ocean and lower biases over land in both the 314 
training and testing data. However, the LSW-based REFB is less capable of capturing the large bias over the 315 
subtropical oceans off the west coast of South America and South Africa and Australia. Those are expected to be 316 
the oceans that have a cold SST, where ducting and SR occur commonly due to the frequent occurrence of 317 
inversion layers on top of the surface cold atmosphere. Although the LSW-based REFB can also represent a 318 
portion of the N-REFB in these regions in general, it is obvious that the values are underestimated there. The 319 
LSW-based estimation exhibits good performance in estimating the N-REFB in the Indian Ocean, where the 320 
pattern and magnitude of the estimated REFB are close to those of the real REFB. In contrast to the LSW-based 321 
REFB, the TQ-based REFB represents the large N-REFB in the high-ducting-occurrence regions well. Although 322 
the magnitude of the N-REFB offshore the coasts of South America and South Africa is still underestimated, the 323 
pattern and amplitude of the N-REFB are much better represented in comparison with the LSW-based estimation. 324 
In addition, the TQ-based estimation captures the low bias pattern well, such as the tropical western Pacific, 325 
western South America and Africa, while the LSW-based estimation overestimates the negative bias. The similar 326 
pattern between the real and TQ-based estimated N-REFBs can be explained by two reasons. The first reason is 327 
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the ability to capture SST characteristics. For example, cold SST regions can result in a cool, low moisture near-328 
surface atmosphere (Fig. 5c and 5d) and impact the boundary layer. Second, the bias in the RO profiles will be 329 
translated to the retrieval products, which makes the predictors highly related to N-REFB in the ducting areas. 330 
This finding also confirms that the N-REFBs below 1.5 km are highly related to the thermodynamic conditions 331 
and that the TQ estimation successfully reflects the impact of the air-sea interaction on the RO refractivity. 332 

 The third method, the MVE, combines the two independent estimations. As described in Section 2, the 333 
MVE derives the optimal combination by considering the error correlation between the individual estimations. 334 
This method has the benefit of having an RMS error that is less than the lowest RMS error in each bias estimate 335 
and thus could inherit the benefits of each estimation. Notably, the MVE approach requires knowledge of the error 336 
covariance matrix between two components (Eq. 9). The error correlation of the two REFB estimators is 0.294. 337 
Normally, the high error correlation indicates the dependency between two components and thus less benefit from 338 
using the MVE method. Although LSW is known to have a relationship with tropospheric water vapor variation, 339 
our experimental results indicate that the error correlation between two estimates is low enough that it is expected 340 
that the MVE can extract useful information from both estimations. Compared to the LSW and TQ bias estimation, 341 
the results of the MVE showed a pattern closer to the real REFB with both the training and testing data sets. This 342 
finding confirms that the MVE N-REFB carries the advantage from individual estimators. For example, the MVE 343 
REFBs can show the high N-REFB in subtropical oceans off the west coast of South America, South Africa and 344 
Australia from the TQ-based estimation, and it can avoid underestimations with the LSW estimator. 345 
Simultaneously, the MVE REFBs avoid the overestimation of N-REFB offshore of the western coast of North 346 
America and the southern Pacific shown in the TQ-based REFBs due to information from the LSW estimation. 347 

To confirm the performance of the bias estimation, we further compute the root-mean-square error 348 
(RMSE) between the real and estimated REFB in each box. Figure 10 clearly shows the contribution of each 349 
estimation in estimating bias for land and oceans and reflects the representativeness of the mean REFB shown in 350 
Fig. 9. Almost all the large RMSEs in the LSW or TQ estimation are removed by the MVE method (Fig. 10c and 351 
10f). The LSW-based estimation exhibits high RMSE in the cold SST regions and several ocean regions, such as 352 
the Southeastern Atlantic, Southeastern and North Western Pacific Oceans, while the TQ estimation successfully 353 
mitigates this issue. On the other hand, the LSW-based estimation performs better in the tropical Atlantic and 354 
Indian ocean. Again, the MVE estimation has the smallest RMSE compared to the other two estimations, 355 
especially over oceans. With the testing data (Fig. 10d-10f), the RMSEs become larger in individual estimations, 356 
as expected. Most importantly, the MVE method retains its advantage in the optimal estimation, with an RMSE 357 
smaller than that of either estimation. In other words, the REFB can be better estimated by considering the 358 
characteristics in different predictors. Table 2 shows the global mean RMSE. The TQ method has a smaller RMSE 359 
compared to the LSW estimation. The MVE method further improves the TQ method by 32% and 23.6% with the 360 
training and testing data, respectively. 361 

4.2 Verification and Calibration 362 

This section examines the performance of the REFB estimation methods and whether they can be used for 363 
calibrating the refractivity profiles. Taking two areas (indicated in Fig. 9a) with different REFB characteristics 364 
as examples, the REFB profiles are grouped by an interval of 0.5 km in the vertical direction. Area A is in the 365 
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region of Eq < Lat < 10°N and 55°E < Lon <75°E, and Area B is in the region of 20°S < Lat < 30°S and 105°W 366 
< Lon < 85°W. For each area, the estimated REFB at different levels are derived using the same estimation 367 
methods defined in the previous section. Figure 11 shows the mean of the real and estimated REFB profiles in 368 
two areas with the testing data. We note that the results of the training and testing data are very similar. The 369 
general pattern of the REFB profiles reflects the characteristics of the atmospheric conditions in that region. In 370 
Area A, the mean N-REFB is large at the surface but gradually decreases to zero at the 3-km height. In this case, 371 
the air below 2 km is very warm and moist over the Indian Ocean (Fig. 12). The highly humid condition gives a 372 
large LSW (Fig. 6b), and thus, the LSW method can have a good ability to estimate bias in this circumstance, 373 
while the TQ method overestimates the N-REFB. In contrast, Area B shows different patterns (Fig. 11b): the real 374 
N-REFB is even larger (-17 N) at the surface, and the negative bias at 2 km is still large compared to that in Area 375 
A. As shown in Fig. 12, this characteristic is associated with the inversion layer at 2 km over the cold SST region 376 
and large vertical moisture gradient, a typical condition of ducting. While the LSW-based estimation 377 
underestimates the N-REFB with the existence of the inversion layers this can be captured by TQ-based 378 
estimation. Nevertheless, the MVE method is always much closer to the real REFB, as it utilizes the advantages 379 
of each of the individual estimates. 380 

We further examine whether our MVE estimations can capture the behavior of the REFB profiles in these 381 
areas. To effectively illustrate numerous real and estimated REFB profiles, we group them into different bins of 382 
bias and present the results in terms of probability. In Figure 13, each bin spans 0.6 km height and 3 N. The 383 
comparison of the probability distribution is performed with the training data due to the limitation of the samples. 384 
In general, the real REFB probability in Area A has a broad distribution. The distribution is skewed to a large 385 
negative bias near the surface but skewed slightly to a positive bias above the PBL at altitudes of 3 to 5 km. The 386 
estimated REFB profiles exhibit similar behavior, including the positive bias above the PBL. Compared to Area 387 
A, the real REFB probability of Area B is more skewed near the surface. The spread quickly decreases as the 388 
altitude increases and skews slightly toward a positive bias at the 2-km altitude. Such a characteristic is attributed 389 
to the fact that Area B is in the ducting region where the cool stable PBL confined the fluctuation of bias. The 390 
behavior is also well captured by the estimated REFB profiles. The results in Fig. 13 suggest that the mean bias 391 
is well represented by the bias estimation method, and the statistical distribution of the estimated REFB is also 392 
consistent with the real REFB. As expected, bias estimation can be applied to calibrate the RO refractivity profiles. 393 

4 Conclusions 394 

This study investigates the characteristics of refractivity bias (REFB) of FS7/C2 and its sensitivities to RO 395 
measurement uncertainty (LSW) and thermodynamic conditions (temperature and moisture). With the optimal 396 
purpose of calibrating REFB, two bias estimation models are constructed based on polynomial regression with 397 
the LSW, and temperature and specific humidity are used as predictors in each estimation. The study period is the 398 
winter of 2020, with the ECMWF reanalysis data taken as the reference truth. 399 

Similar to previous studies, the low-level FS7/C2 RO refractivity data of during the study period still contain 400 
significant bias when compared with ECMWF reanalysis data. In general, the REFB below 1.5 km is negatively 401 
proportional to LSW and exhibits a stronger dependency over ocean than over land. However, it is noted that high 402 
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LSW over land does not guarantee the occurrence of a large REFB. Additionally, REFB in the PBL has a strong 403 
dependence on low-level temperature and moisture. While the majority of Pacific and Indian Oceans with warm 404 
SSTs have significant N-REFBs, the largest N-REFB regions are near the cold SST regions off the western coasts 405 
of South America and South Africa. Small and even positive REFBs are observed over South America and South 406 
Africa. 407 

Two REFB estimation models based on the polynomial regression approach are first applied to construct the 408 
region-dependent REFB in the PBL (below 1.5 km). One estimation model uses LSW, and the other uses 409 
temperature and moisture (TQ) as predictors. The estimation models are applied to 72´30 boxes from 45°S to 410 

45°N. Furthermore, the MVE method is used to combine two REFB estimations. The results show that the bias 411 
estimation models with either LSW or TQ have their own advantages in estimating REFB. The LSW-based model 412 
shows the ability to capture the general pattern of N-REFB but significantly underestimates the N-REFB in the 413 
ducting areas. On the other hand, the TQ-based model has great performance in representing the pattern and 414 
amplitude of REFB, particularly the large N-REFB in the ducting areas and small REFB over most land regions. 415 
The MVE estimation successfully adopts the advantage from either LSW or TQ estimation. Among the three 416 
REFB estimations, the MVE model has the smallest RMSE. Three REFB estimation models are further applied 417 
to reconstruct the REFB profiles. Both the LSW and TQ estimations can well represent the vertical gradient of 418 
the mean REFB and the MVE estimation gives an estimated REFB profile closest to the real REFB with the 419 
probability distribution similar to the distribution of real REFB. Therefore, our results suggest that the MVE 420 
method can be used to calibrate RO refractivity profiles. 421 

We should note that the methodology proposed in this study still has limitations. For example, the 422 
temperature and moisture from the ERA5 reanalysis may have their own biases, and thus, the simulated 423 
refractivity profiles could carry the bias as well. Therefore, we can only claim that our bias estimations are close 424 
to the bias in which ERA5 is taken as the truth. In addition, factors such as temporal variations, local topology 425 
and meteorological effects, are neglected in this study. The systematic bias may have more characteristics 426 
regarding smaller scales spatiotemporally. For future work, bias estimation models will be constructed at higher 427 
resolutions with more RO profiles collected from the current FS7/C2 or other operational and commercial GNSS-428 
RO satellites. The corrected refractivity can further add value to RO data in the PBL studies, such as improving 429 
the low-level moisture analysis through data assimilation or improving the accuracy of the RO retrieval products 430 
of temperature and moisture to expand their applications in PBL studies. 431 
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Table 1: Correlation coefficients between the real and estimated REFBs over ocean and land 574 

Correlation coefficients LSW based TQ based 

 ocean land ocean land 

Training data set 0.94 0.9 0.79 0.72 

Testing data set 0.93 0.89 0.71 0.70 

 575 

Table 2: Global mean RMSE of each REFB estimation in comparison to the real REFB 576 

Global mean RMSE LSW-based TQ-based MVE 

Training data set 2.033 1.614 1.088 

Testing data set 2.815 2.266 1.731 

577 

https://doi.org/10.5194/egusphere-2023-1246
Preprint. Discussion started: 18 July 2023
c© Author(s) 2023. CC BY 4.0 License.



 18 

 578 

 579 

Figure 1: Density of FS7/C2 RO profiles below the 1.5 km height during the study period (unit: number of profiles). 580 

 581 
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 583 

Figure 2: (a) Mean and standard deviation of REFB and mean LSW during the study period. (b) The amount of 584 
available RO data during the study period (red: bending angle, blue: refractivity). 585 
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 587 

Figure 3: The cross-sections of (a) mean REFB and (b) mean LSW/2 during the study period. 588 
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 590 

Figure 4: (a) and (b) are vertical profiles of the mean (N) and standard deviation (N2) of REFB, and mean LSW with 591 
altitudes up to 25 km over ocean and land, respectively. (c) and (d) are the same as (a) and (b) except zoomed versions 592 
below 5 km. 593 

  594 

https://doi.org/10.5194/egusphere-2023-1246
Preprint. Discussion started: 18 July 2023
c© Author(s) 2023. CC BY 4.0 License.



 22 

 595 

Figure 5: Horizontal distribution of (a) REFB (N), (b) LSW (%), (c) specific humidity (g kg-1), and temperature (°C) 596 
averaged during the study period. 597 
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 599 

Figure 6: Vertical cross-section of refractivity bias over the ocean as a function of height and (a) LSW/2, (c) specific 600 
humidity and (e) temperature over land. (b), (d) and (f) are the same as (a), (c) and (e), except over the ocean. 601 
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 603 

Figure 7: Relationship between LSW/2 and REFB. The solid and dashed lines represent the N-biases computed model 604 
for the ocean and land, respectively, as a function of LSW/2 (Southern Hemisphere only). 605 

 606 
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 608 

Figure 8: Relationship among temperature, specific humidity and REFB for the Southern Hemisphere. 609 
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 611 

Figure 9: Horizontal distribution of refractivity bias and different estimated refractivity biases. The boxes denoted A 612 
and B are the example boxes used in Figures 12 and 13, respectively. 613 
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 615 

 616 

Figure 10: Horizontal distribution of RMSE between the real REFB and estimated REFB by different methods with 617 
training (left column) and testing (right column) data. 618 
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 620 

Figure 11: Profiles of refractivity bias (real and estimates) for two different areas selected in Fig. 8a. Boxes A and B 621 
are in (Eq < Lat < 10°N, 55°E < Lon <75°E) and (20°S < Lat < 30°S, 105°W < Lon < 85°W). 622 
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 624 

Figure 12: Vertical profiles of averaged temperature (red lines) and specific humidity (blue lines) for Areas A (solid 625 
lines) and B (dashed lines). 626 
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 627 

Figure 13: Profiles of (a) real and (c) MVE REFB probability for Area A. The black line shows the mean MVE REFB 628 
profile. (d) and (d) are the same as (a) and (c) except for Area B. 629 
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