Preprints
https://doi.org/10.5194/egusphere-2023-1178
https://doi.org/10.5194/egusphere-2023-1178
18 Jul 2023
 | 18 Jul 2023

Leveraging gauge networks and strategic discharge measurements to aid development of continuous streamflow records

Michael J. Vlah, Matthew R. V. Ross, Spencer Rhea, and Emily S. Bernhardt

Abstract. Streamflow, or discharge, is an essential measure in the study of rivers and streams. However, quantifying continuous discharge can be difficult, especially for nascent monitoring efforts, due to the challenges of establishing gauging locations, sensor protocols, and installations. Here, we investigate the potential for both simple and complex models to accurately estimate continuous discharge (at least daily estimates), using only discrete manual measurements of streamflow. We were inspired to do this work because some continuous discharge series generated by the National Ecological Observatory Network (NEON) during its pre- and early-operational phases (2015–present) are marked by anomalous data due to sensor drift, gauge movement, and incomplete rating curves. Using field-measured discharge as truth, we reconstructed continuous discharge for all 27 NEON stream gauges over this period via linear regression on nearby donor gauges and/or prediction from neural networks trained on a large corpus of established gauge data. Top reconstructions achieved median efficiencies of 0.83 (Nash-Sutcliffe, or NSE) and 0.81 (Kling-Gupta, or KGE) across all sites, and improved KGE at 11 sites versus published data. Estimates from this analysis inform ~199 site-months of missing data in the official record, and can be used jointly with NEON data to enhance the descriptive and predictive value of NEON’s stream data products. We provide 5-minute composite discharge series for each site that combine the best estimates across modeling approaches and NEON’s published data.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

08 Feb 2024
Leveraging gauge networks and strategic discharge measurements to aid the development of continuous streamflow records
Michael J. Vlah, Matthew R. V. Ross, Spencer Rhea, and Emily S. Bernhardt
Hydrol. Earth Syst. Sci., 28, 545–573, https://doi.org/10.5194/hess-28-545-2024,https://doi.org/10.5194/hess-28-545-2024, 2024
Short summary
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
Virtual stream gauging enables continuous streamflow estimation where a gauge might be difficult...
Share