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‭Abstract‬

‭Quantifying continuous discharge can be difficult, especially for nascent monitoring efforts, due to the‬
‭challenges of establishing gauging locations, sensor protocols, and installations. Some continuous‬
‭discharge series generated by the National Ecological Observatory Network (NEON) during its pre- and‬
‭early-operational phases (2015-present) are marked by anomalies related to sensor drift, gauge movement,‬
‭and incomplete rating curves. Here, we investigate the potential to estimate continuous discharge when‬
‭discrete streamflow measurements are available at the site of interest.  Using field-measured discharge as‬
‭truth, we reconstructed continuous discharge for all 27 NEON stream gauges via linear regression on‬
‭nearby donor gauges and/or prediction from neural networks trained on a large corpus of established‬
‭gauge data. Reconstructions achieved median efficiencies of 0.83 (Nash-Sutcliffe, or NSE) and 0.81‬
‭(Kling-Gupta, or KGE) across all sites, and improved KGE at 11 sites versus published data, with linear‬
‭regression generally outperforming deep learning approaches due to the use of target site data for model‬
‭fitting, rather than evaluation only.‬‭Estimates from‬‭this analysis inform ~199 site-months of missing data‬
‭in the official record, and can be used jointly with NEON data to enhance the descriptive and predictive‬
‭value of NEON’s stream data products. We provide 5-minute composite discharge series for each site that‬
‭combine the best estimates across modeling approaches and NEON’s published data. The success of this‬
‭effort demonstrates the potential to establish “virtual gauges,” or sites at which continuous streamflow can‬
‭be accurately estimated from discrete measurements, by transferring information from nearby donor‬
‭gauges and/or large collections of training data.‬
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‭1. Introduction‬

‭Discharge, or streamflow, is a fundamental measure in hydrology, biogeochemistry, and river science‬
‭more broadly. A measure of water volume over time, discharge is used to infer theoretical watershed‬
‭runoff (depth of water “blanketing” the land surface, or depth over time), which in turn is integral to‬
‭understanding watershed processes such as chemical weathering (White & Blum 1995). Accurate, and at‬
‭least daily, discharge estimates are essential components of nearly any quantitative study of physical or‬
‭chemical watershed or river processes at the ecosystem scale. Determination of solute fluxes (Bukaveckas‬
‭et al. 1998), gas exchange rates (Hall, 2016), ecosystem metabolism (Odum 1956), and sediment transport‬
‭(Graf 1984) all require well constrained estimates of discharge.‬

‭Despite its centrality to so many fields of study, discharge is a notoriously difficult metric to capture on a‬
‭regular basis, especially in free-flowing systems, as it may vary greatly with annual cycles and weather‬
‭events (Turnipseed & Sauer 2010). Established institutions like the USGS (USA), ECCC (Canada), and‬
‭ANA (Brazil) have honed their instrumentation, methods, and monitoring locations over decades to‬
‭generate reasonable discharge estimates even under extreme conditions (Benson & Dalrymple 1967;‬
‭Costa 2004); however, nascent and/or small-budget monitoring efforts face several challenges. Critically,‬
‭hundreds of these efforts are constantly occurring within academic research groups, municipalities,‬
‭counties, and other entities building smaller gauge networks, with much less expertise, support, and‬
‭budget than gauging programs supported by dedicated national programs.‬

‭Not including purely model-based methods for discharge prediction (Manning 1891; Hsu et al. 1995,‬
‭Durand et al. 2022), automated discharge estimation requires the careful construction of an empirical‬
‭“rating curve,” by which discharge can be continuously inferred from water level, or “stage” (but see‬
‭Shen 1981). To build such a relationship, technicians must sample discharge and stage at points covering‬
‭the range of observable flow, ideally including flood stage. In dynamic systems, this rating curve must be‬
‭regularly updated. Point estimates of discharge can be collected using Acoustic Doppler current profiling‬
‭(Moore et al. 2017), manual flow meter profiling, or light-based methods (Wang 1988) to determine‬
‭average cross-sectional velocity, or via conservative tracer injections (Tazioli 2011). In many streams, two‬
‭or more of these methods must be employed, depending on conditions (Turnipseed & Sauer 2010).‬
‭During 10-year or 100-year floods, no method may be viable or safe. Even under regular storm‬
‭conditions, a technician may be unable to mount a sampling effort quickly enough to capture peak flow,‬
‭or may produce an inaccurate measurement. As a result, rating curves may remain in a state of‬
‭insufficiency for years, during which time high discharge estimates are unreliable, especially where they‬
‭are made by extrapolating beyond observed maximum flow.‬

‭Gauge placement presents another obstacle to the rapid deployment of discharge monitoring stations‬
‭(Isaacson & Coonrod 2011). Stage measured via pressure transduction is susceptible to bias and‬
‭nonlinearity under turbulent flow conditions (Horner et al. 2018). Sensors placed in a depositional area‬
‭may be buried by sediment, and installations in forested watersheds or debris flow regions may be‬
‭destroyed during floods. Often, equipment must be relocated at least once before a new gauge site can be‬
‭properly established. Even an established stage-discharge rating curve must be regularly updated and‬
‭maintained because the bed of the river can change as sediment is deposited or excavated, altering the‬
‭relationship between stage and flow.‬
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‭For some studies aiming to quantify stream or watershed processes that require continuous discharge time‬
‭series, establishment of a high-quality monitoring station may be infeasible. Where co-location of the site‬
‭of interest with an existing stream gauge is also infeasible, record extension (Hirsch 1982; Nalley et al.‬
‭2020) and gap-filling (Harvey et al. 2012; Arriagada et al. 2021) techniques cannot be employed, as these‬
‭rely on prior knowledge of the statistical properties of the discharge time series being augmented. In such‬
‭scenarios, streamflow reconstruction or prediction techniques are suitable, as these may proceed a priori‬
‭or from minimal observation. Reconstruction typically involves methods that leverage the correlation‬
‭between a partially measured target site and nearby “donor” (predictor) gauges. Discharge may also be‬
‭quantified in the absence of direct measurements at the target location via statistical (Chokmani & Ouarda‬
‭2004), mechanistic (Regan et al. 2019), or machine learning (Kratzert et al. 2022) modeling techniques.‬

‭Here, we use both linear regression (OLS, L2/ridge, segmented) and deep learning (LSTM-RNN)‬
‭approaches to reconstruct discharge from the early operational phase (2015-2022) of the National‬
‭Ecological Observatory Network (NEON), a time during which site selection issues and rating curve‬
‭development rendered potentially unreliable many site-months of discharge estimates (Rhea et al. 2023a).‬
‭Our goal was to achieve Kling-Gupta Efficiency (KGE) scores greater than those of the official NEON‬
‭continuous discharge product at as many sites as possible. A secondary goal was to improve temporal‬
‭coverage of the official record where it contains gaps. For researchers intending to use NEON continuous‬
‭discharge data between 2015 and 2022, the results of this effort, as well as efforts by Rhea et al. (2023a),‬
‭can ensure that data gaps and questionable periods in the official record are replaced by high-quality‬
‭estimates wherever possible. We provide composite discharge series for all 27 NEON stream gauge‬
‭locations, built from the best NEON-published estimates and the best estimates generated by this study‬
‭(‬‭https://doi.org/10.6084/m9.figshare.c.6488065‬‭). Composite‬‭series can be visualized at‬
‭https://macrosheds.org/data/vlah_etal_2023_composites/‬‭.‬

‭The success of this effort demonstrates the viability of “virtual gauges” (‬‭sensu‬‭Philip & McLaughlin‬
‭2018; not to be confused with the “virtual staff gauges” of Seibert et al. 2019). In this study, we use the‬
‭term to describe sites at which discrete discharge observations can be used to fit or evaluate models that‬
‭generate continuous flow. For accurate results, field measurement campaigns should prioritize‬
‭characterizing the distribution of possible flow conditions, rather than achieving any particular threshold‬
‭number of observations. Methods like those presented could be used to reduce the cost and simplify the‬
‭process of establishing streamflow monitoring sites, especially in river networks that are already partially‬
‭gauged.‬

‭2. Methods‬

‭2.1 Data selection, acquisition, and processing‬

‭We used the “neonUtilities” package (Lunch et al. 2022) in R to retrieve NEON discharge data. Officially‬
‭released (NEON 2023c) and provisional (NEON 2023b) field measurements were used to fit linear‬
‭regression models and evaluate all models, as these data were collected directly by NEON technicians,‬
‭using a combination of state-of-the-art methods including acoustic Doppler current profiling (ADCP;‬
‭Moore et al. 2017), conservative salt tracer releases (Tazioli 2011), and flow meter measurements‬
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‭(Pantelakis et al. 2022). We used quality-controlled “finalQ” values where available, or “totalQ” values‬
‭(taken directly from the flowmeter) in their absence. We refer to NEON’s discharge field measurements‬
‭hereafter as e.g. “the response variable”, or “response discharge time series,” in the context of linear‬
‭regression, or as the “target” variable in the context of machine learning. In either context, we refer to the‬
‭27 NEON sites for which discharge predictions were generated as “target sites” or “target gauges” (Table‬
‭1).‬

‭Continuous discharge data (NEON 2023a) were also retrieved via neonUtilities. We used‬
‭RELEASE-2023 and‬‭not‬‭provisional data in this case. These data were used to finetune a subset of‬
‭site-specific neural network models, and to construct composite discharge series. Provisional continuous‬
‭discharge data were not used. Evaluation results used to distinguish likely reliable vs. potentially‬
‭unreliable subsets of NEON’s RELEASE-2023 continuous discharge time series, per site-month, were‬
‭provided by Rhea et al. (2023a) and accessed through HydroShare (Rhea 2023). Continuous elevation of‬
‭surface water data are available, but approximately one third of all site-months are marked by‬
‭disagreement between reported surface elevation and measured stage, or by likely sensor drift (Rhea et al.‬
‭2023a). We therefore chose not to use surface elevation to inform our models, though it no doubt contains‬
‭predictive value.‬

‭Donor gauge data for linear regression analysis were acquired primarily from the US Geological Survey’s‬
‭National Water Information System (NWIS), using the “dataRetrieval” package (DeCicco et al. 2022) in‬
‭R.‬‭NWIS gauge ID numbers are provided in cfg/donor_gauges.yml‬‭at the GitHub and Zenodo links‬
‭below. Additional donor gauge data from Niwot Ridge LTER and Andrews Forest LTER were retrieved‬
‭from the MacroSheds dataset (Vlah et al. 2023) via package “macrosheds” (Rhea et al. 2023b), and from‬
‭the EDI data portal (Johnson et al. 2020), respectively.‬

‭We used the original CAMELS dataset (Newman et al. 2014; Addor et al. 2017), the USGS National‬
‭Hydrologic Model with Precipitation-Runoff Modeling System (NHM-PRMS; hereafter NHM; Regan et‬
‭al. 2019), and the MacroSheds dataset as training data for neural network simulations of discharge data at‬
‭each target site. CAMELS watershed attributes were generated for MacroSheds and NHM sites using the‬
‭code provided at‬‭https://github.com/naddor/camels‬‭,‬‭except where otherwise indicated in Table 2, and‬
‭daily Daymet meteorological forcings (Thornton et al. 2022;‬‭sensu‬‭Newman et al. 2015) were retrieved‬
‭via Google Earth Engine (Gorelick et al. 2017). All code for this project can be found on GitHub, at‬
‭https://github.com/vlahm/neon_q_sim‬‭, or in the Zenodo archive at‬
‭https://doi.org/10.5281/zenodo.10067683‬‭. All data sources and links are provided in Table A2.‬

‭2.2 Donor Gauge Selection‬

‭Candidate donor gauges were identified by visually examining an interactive map of NEON gauges,‬
‭USGS gauges, and MacroSheds gauges‬
‭(‬‭https://macrosheds.org/ms_usgs_etc_reference_map/megamap.html‬‭),‬‭generated with package “mapview”‬
‭(Appelhans et al. 2022) in R. We also used the National Water Dashboard of the USGS‬
‭(‬‭https://dashboard.waterdata.usgs.gov/app/nwd/en/?aoi=default‬‭)‬‭to identify active gauges in Alaska, USA.‬
‭For each target site, up to four donor gauge candidates were selected on the basis of spatial proximity and‬
‭geographic similarity to the target site (Figure 1). Generally, no greater than this number of gauges were‬

‭177‬

‭178‬

‭179‬

‭180‬

‭181‬

‭182‬

‭183‬

‭184‬

‭185‬

‭186‬

‭187‬

‭188‬

‭189‬

‭190‬

‭191‬

‭192‬

‭193‬

‭194‬

‭195‬

‭196‬

‭197‬

‭198‬

‭199‬

‭200‬

‭201‬

‭202‬

‭203‬

‭204‬

‭205‬

‭206‬

‭207‬

‭208‬

‭209‬

‭210‬

‭211‬

‭212‬

‭213‬

‭214‬

‭215‬

‭216‬

‭217‬

‭218‬

‭219‬

‭220‬

https://github.com/naddor/camels
https://github.com/vlahm/neon_q_sim
https://doi.org/10.5281/zenodo.10067683
https://macrosheds.org/ms_usgs_etc_reference_map/megamap.html
https://dashboard.waterdata.usgs.gov/app/nwd/en/?aoi=default


‭6‬

‭even remotely reasonable candidates (i.e. within 50 km of the target site; not in an urban area; not‬
‭downstream of a reservoir), but for one target site (MCRA) we had ten nearby candidate gauges to select‬
‭from–all associated with the Andrews Experimental Forest in western Oregon State, USA. In this case we‬
‭chose three candidate sites representing a catchment upstream of the target site (GSWS08), downstream‬
‭of the target site on the MCRA mainstem (GSLOOK), and downstream on a tributary of MCRA‬
‭(GSWS01).‬

‭Barring gauges on reaches that are subject to overt human influence, the exact methods used to choose‬
‭donor gauges are of little consequence, so long as informative donor gauges are not overlooked. In‬
‭practice, there will usually be just a few, if any, potential donor gauges available for a given location. If‬
‭multiple donor gauges are included in a regression, L2 regularization (ridge regression) should be used to‬
‭account for their covariance (see Sect. 2.4)‬

‭2.3 Target sites‬

‭Figure 1: Map of target sites (NEON) and donor gauge candidates for three target sites: MCRA =‬
‭McRae Creek, state of Oregon; REDB = Red Butte Creek, state of Utah; GUIL = Rio Guilarte,‬
‭Puerto Rico.‬
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‭All 27 lotic (flowing) aquatic sites associated with NEON were included as target sites for discharge‬
‭prediction in this study (Figure 1). Sites TOMB, BLWA, and FLNT are installed on major rivers,‬
‭downstream of hydropower dams. All other sites have been free of dam influence since 2012 at the‬
‭latest, and are designated “wadeable streams” by NEON. In addition to the three sites above,‬
‭hydrology at BLUE, GUIL, KING, MCDI, and ARIK may be influenced by agricultural activity,‬
‭especially in the relatively arid Midwest (i.e. states KS, CO, OK). Continuous discharge data for‬
‭TOMB are provided by a nearby gauge of the U.S. Geological Survey’s National Water Information‬
‭System, and are given at hourly intervals, rather than NEON’s customary 1-minute intervals.‬

‭Table 1: Target sites for discharge prediction. See‬‭https://www.neonscience.org/field-sites‬‭for more‬
‭information.‬

‭Site code‬ ‭Full name‬ ‭State (USA)‬ ‭Watershed area‬
‭(km2)‬

‭Mean watershed‬
‭elevation (m)‬

‭TOMB‬ ‭Lower Tombigbee River‬ ‭AL‬ ‭47085.3‬ ‭20‬

‭BLWA‬ ‭Black Warrior River‬ ‭AL‬ ‭16159.4‬ ‭22‬

‭FLNT‬ ‭Flint River‬ ‭GA‬ ‭14999.4‬ ‭30‬

‭ARIK‬ ‭Arikaree River‬ ‭CO‬ ‭2631.8‬ ‭1179‬

‭BLUE‬ ‭Blue River‬ ‭OK‬ ‭322.2‬ ‭289‬

‭SYCA‬ ‭Sycamore Creek‬ ‭AZ‬ ‭280.3‬ ‭645‬

‭OKSR‬ ‭Oksrukuyik Creek‬ ‭AK‬ ‭57.8‬ ‭766‬

‭PRIN‬ ‭Pringle Creek‬ ‭TX‬ ‭48.9‬ ‭253‬

‭BLDE‬ ‭Blacktail Deer Creek‬ ‭WY‬ ‭37.8‬ ‭2053‬

‭CARI‬ ‭Caribou Creek‬ ‭AK‬ ‭31.0‬ ‭225‬

‭MCDI‬ ‭McDiffett Creek‬ ‭KS‬ ‭22.6‬ ‭396‬

‭REDB‬ ‭Red Butte Creek‬ ‭UT‬ ‭16.7‬ ‭1694‬

‭MAYF‬ ‭Mayfield Creek‬ ‭AL‬ ‭14.4‬ ‭77‬

‭KING‬ ‭Kings Creek‬ ‭KS‬ ‭13.0‬ ‭324‬

‭HOPB‬ ‭Lower Hop Brook‬ ‭MA‬ ‭11.9‬ ‭203‬

‭LEWI‬ ‭Lewis Run‬ ‭VA‬ ‭11.9‬ ‭152‬

‭BIGC‬ ‭Upper Big Creek‬ ‭CA‬ ‭10.9‬ ‭1197‬

‭242‬

‭243‬

‭244‬

‭245‬

‭246‬

‭247‬

‭248‬

‭249‬

‭250‬

‭251‬

‭252‬

https://www.neonscience.org/field-sites


‭8‬

‭GUIL‬ ‭Rio Guilarte‬ ‭PR‬ ‭9.6‬ ‭551‬

‭LECO‬ ‭LeConte Creek‬ ‭TN‬ ‭9.1‬ ‭579‬

‭MART‬ ‭Martha Creek‬ ‭WA‬ ‭6.3‬ ‭337‬

‭WLOU‬ ‭West St Louis Creek‬ ‭CO‬ ‭4.9‬ ‭2908‬

‭CUPE‬ ‭Rio Cupeyes‬ ‭PR‬ ‭4.3‬ ‭157‬

‭MCRA‬ ‭McRae Creek‬ ‭OR‬ ‭3.9‬ ‭876‬

‭COMO‬ ‭Como Creek‬ ‭CO‬ ‭3.6‬ ‭3021‬

‭TECR‬ ‭Teakettle Creek - Watershed‬
‭2‬

‭CA‬ ‭3.0‬ ‭2011‬

‭POSE‬ ‭Posey Creek‬ ‭VA‬ ‭2.0‬ ‭276‬

‭WALK‬ ‭Walker Branch‬ ‭TN‬ ‭1.1‬ ‭264‬

‭2.4 Linear regression and model selection‬

‭All donor and response discharge time series were neglog transformed (Eq. 1; Whittaker et al. 2005)‬
‭before fitting linear regression models.‬

‭𝑥‬
‭𝑛𝑒𝑔𝑙𝑜𝑔‬

= ‭𝑠𝑖𝑔𝑛‬(‭𝑥‬)‭𝑙𝑜𝑔‬( ‭𝑥‬| | + ‭1‬)

‭(1)‬

‭Series were scaled by 1000 before transformation, in order to reduce the disproportionate impact of‬
‭adding one to every value. Response observations were synchronized to the interval of the predictor series‬
‭by approximate datetime join, allowing forward or backward time-shifts of up to 12 hours if necessary.‬

‭One of three forms of linear regression was employed at each site, depending on the number and location‬
‭of donor gauges, and the donor-target gauge relationships. For sites with a single donor gauge (REDB,‬
‭HOPB, BLUE, SYCA, LECO), considered predictors were: discharge from the donor gauge, a 4-season‬
‭categorical variable, and their interaction. Additionally, an intercept parameter could be estimated, or not,‬
‭for each specification. Thus, up to six models were fit using Ordinary Least Squares (OLS) regression‬
‭(Galton 1886), ensuring at least 15 observations per model parameter. At LECO, an additional dummy‬
‭variable was included to address an intercept change due to a wildfire in November of 2016. The best‬
‭model was selected via 10-fold cross-validation, minimizing mean squared error (MSE). MSE, being a‬
‭squared-error term, disproportionately penalizes inaccurate prediction of high discharge values, and helps‬
‭to balance against the relative rarity of high discharge measurements in the field data. At site SYCA, the‬
‭log-log relationship between discharge at the target gauge and a single donor gauge exhibited a distinct‬
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‭breakpoint, and segmented least-squares regression was used (R package “segmented”; Muggeo 2008). At‬
‭all other sites (19 in total), predictors included discharge series from 2-4 donor gauges, season, and all‬
‭interactions. To control overfitting and shrink covarying coefficients toward zero, we used L2‬
‭regularization (ridge regression; Gruber 2017) via R package “glmnet” (Friedman et al. 2010). As with‬
‭the other regression approaches, 10-fold cross-validation and MSE loss were used for model parameter‬
‭selection–in this case for the value of the penalty hyperparameter λ, which was set to the mean across‬
‭folds of λ producing minimum cross-validated error. Unlike OLS and segmented regression, ridge‬
‭regression uses biased estimators that complicate calculation of prediction intervals. We generated 95%‬
‭prediction intervals for ridge regression discharge estimates using the 95th percentiles of 1000 bootstrap‬
‭predictions at each prediction point, generated from 1000 resamples of the fitting data, stratified by‬
‭season. We emphasize that these prediction intervals should be conservative estimates of the true‬
‭uncertainty, as they do not fully account for uncertainty due to bias (Goeman et al. 2012).‬

‭For each site, we fit two sets of models as described above, one with discharge scaled by watershed area‬
‭(i.e. “specific discharge” in the surface water hydrology sense) prior to transformation, and one without‬
‭areal scaling. Only one model from each set was ultimately selected for each target site, on the basis of‬
‭Kling-Gupta efficiency (KGE; Gupta et al. 2009), a composite model efficiency metric that incorporates‬
‭measures of correlation, variance, and bias. We also report percent bias and Nash-Sutcliffe efficiency‬
‭(NSE; Nash & Sutcliffe 1970), a measure of predictive accuracy that implicitly compares predictions to a‬
‭mean-only reference model.‬

‭Predictions were generated for all time points during which data were available at the selected donor‬
‭gauges. At target site COMO, a secondary model omitting one donor gauge was able to produce 36%‬
‭more predictions than the selected model, so our predicted discharge at COMO is a composite of both‬
‭models, preferring the better model’s predictions where available. We were unable to locate sub-daily‬
‭donor gauge data near COMO, so regression predictions for this site are at a daily interval. Regression‬
‭predictions for all other sites were generated at sub-daily intervals matching the coarsest interval across‬
‭predictor gauges–generally 15 minutes, though note that in most cases these predictions were interpolated‬
‭to five minutes for our composite discharge product.‬

‭2.5 Neural network setup and operation‬

‭Supplementing the linear regression methods described above, we simulated discharge data at all 27 target‬
‭sites using long short-term memory recurrent neural networks (LSTM-RNN; hereafter “LSTM”;‬
‭Hochreiter & Schmidhuber 1997). Four LSTM strategies were employed, all of which involved training‬
‭on a large and diverse corpus of stream discharge data (Table 3). Two of these strategies included further‬
‭finetuning to the time-series dynamics of each target site in turn. Due to the relative scarcity of‬
‭field-measured discharge observations (between 39 and 213 per site; mean 122), none were used in‬
‭LSTM training. Instead, these measurements were used only to evaluate predictions. LSTMs trained in‬
‭this study are intended only for discharge prediction within the temporal and spatial bounds of NEON’s‬
‭early operational phase, not for forecasting or application to other sites. Therefore, all available, daily‬
‭training data were used as such; no validation set was kept for hyperparameter tuning, and no holdout set‬
‭of daily estimates was kept for evaluation (note that split-sample designs may be undesirable more‬
‭generally: Arsenault et al. 2018; Guo et al. 2018; Shen et al. 2022). See Kratzert et al. (2019b) and Read‬
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‭et al. (2019) for split-sample considerations in the context of a generalist and process-guided generalist‬
‭LSTM, respectively.‬

‭After a hyperparameter search routine, described below, potentially skilled models were identified as‬
‭those achieving at least 0.5 KGE and 0.4 NSE. The best performing, potentially skilled LSTM for each‬
‭site (if applicable) was then re-trained 30 times, forming an ensemble. Ensembles were trained for 18 of‬
‭27 sites. LSTM predictions included in our composite discharge product are means taken across the‬
‭distributions of ensemble point predictions. Uncertainty bounds were computed as the 2.5 and 97.5%‬
‭quantiles of these distributions. LSTM skill was evaluated on the basis of mean ensemble efficiency‬
‭(KGE) with respect to field-measured discharge (Table A1).‬

‭Daily discharge time series (training data) and field-measured discharge were scaled by watershed area.‬
‭For each predicted day, LSTMs received 5 dynamic Daymet meteorological forcing variables and 11‬
‭static watershed attribute summary statistics (Table 2). Multitask learning (Caruana 1998; Sadler et al.‬
‭2022) was found to improve discharge prediction broadly in a preliminary analysis, so Daymet minimum‬
‭air temperature was used as a secondary target variable. Kratzert et al. (2019a) found that a maximum of‬
‭about 150 preceding days were able to influence LSTM output on a similar prediction problem, so we set‬
‭the input sequence length to 200 days to ensure full utilization of available information. In other words,‬
‭for each day of prediction, the model was able to leverage information from the preceding 200 days.‬

‭We employed four different training pipelines described in Table 3. Of the 671 CAMELS watersheds (i.e.‬
‭basins), we used a subset of 531 with undisputed areas less than 2000 km‬‭2‬ ‭(Newman et al. 2017). For‬
‭finetuning data, we used version 1 of the MacroSheds dataset (Vlah et al. 2023). We excluded‬
‭MacroSheds sites outside North America, or with coastal or urban hydrological influence, for a total of‬
‭133 sites out of the 169 that are currently available. We chose MacroSheds sites for finetuning because the‬
‭MacroSheds and NEON datasets focus primarily on small watersheds, often smaller than 10 km‬‭2‬ ‭in area,‬
‭while only eight CAMELS watersheds are smaller than 10 km‬‭2‬ ‭and most are larger than 100 km‬‭2‬ ‭(Vlah et‬
‭al. 2023). Daily mean discharge computed from NEON’s continuous discharge product, only for those‬
‭site-months deemed Tier 1 or Tier 2 by Rhea et al (2023a), was used alongside MacroSheds data for‬
‭finetuning.‬

‭For the process-guided strategies, we used NHM estimates for all reaches coinciding with a CAMELS or‬
‭MacroSheds gauge, for a total of 551 reaches. Only nine target sites on relatively high-order streams were‬
‭amenable to the process-guided specialist approach, as these sites are on reaches large enough to be‬
‭modeled by the NHM. The most recent version of the NHM at the time of this writing provides discharge‬
‭estimates beginning in 1980, and ending in 2016, just before the installation of most NEON target sites.‬

‭Table 2: LSTM input data. * = Attribute tested as an afterthought, but not included in this study‬
‭due to negligible improvement in trial parameter search.‬

‭Meteorological forcing data (watershed-average time series)‬

‭Maximum air temp‬ ‭2-meter daily maximum air temperature (°C)‬

‭Precipitation‬ ‭Mean daily precipitation (mm/day)‬
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‭Solar radiation‬ ‭Daily surface-incident solar radiation (W/m2)‬

‭Vapor pressure‬ ‭Near-surface daily average vapor pressure (Pa)‬

‭PET‬ ‭Potential evapotranspiration (mm); estimated using Priestley-Taylor‬
‭formulation with gridded alpha product (Aschonitis et al. 2017)‬

‭Watershed attributes (statistics computed over full record)‬

‭Precipitation mean‬ ‭Mean daily precipitation (mm/day)‬

‭PET mean‬ ‭Mean daily potential evapotranspiration (mm/day); estimated using‬
‭Priestley-Taylor formulation with gridded alpha product (Aschonitis et al.‬
‭2017)‬

‭Aridity index‬ ‭Ratio of PET mean to Precipitation mean‬

‭Precip seasonality‬ ‭Seasonality of precipitation; estimated by representing annual precipitation and‬
‭temperature as sine waves. Positive values indicate summer peaks, while‬
‭negative values indicate winter peaks. Values  near 0 indicate uniform‬
‭precipitation throughout the year.‬

‭Snow fraction‬ ‭Fraction of precipitation falling on days with temp < 0 °C‬

‭High precipitation‬
‭frequency‬

‭Frequency of high precipitation days (days with ≥ 5x mean daily precipitation)‬

‭High precip‬
‭duration‬

‭Average duration of high precipitation events (number of consecutive days ≥‬
‭5x mean daily precipitation)‬

‭Low precip‬
‭frequency‬

‭Frequency of dry days (days with precipitation < 1 mm/day)‬

‭Low precip duration‬ ‭Average duration of dry periods (number of consecutive days with‬
‭precipitation < 1 mm/day)‬

‭Elevation‬ ‭Catchment mean elevation (m)‬

‭Slope‬ ‭Catchment mean slope (m/km)‬

‭Area‬ ‭Catchment area (km‬‭2‬‭)‬

‭Source*‬ ‭Binary indicator for NHM estimates–process-guided LSTMs only.‬

‭Target data (time series)‬

‭Discharge‬ ‭Specific discharge, or discharge normalized by watershed area. The same‬
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‭quantity may be referred to as “runoff” in other studies (mm/day).‬

‭Minimum air temp‬ ‭2-meter daily minimum air temperature (°C)‬

‭Table 3: LSTM model training pipelines used in the simulation of discharge at target sites. Here,‬
‭“NEON” refers to NEON’s continuous discharge product, RELEASE-2023, with quality-flagged‬
‭estimates and < Tier-2 site-months (according to Rhea et al. 2023a) removed.‬

‭Model type‬ ‭Phase 1‬ ‭Phase 2‬ ‭Phase 3‬

‭Generalist‬ ‭Pretrain on CAMELS‬ ‭Finetune on‬
‭MacroSheds + NEON‬

‭N/A‬

‭Specialist‬ ‭Pretrain on CAMELS‬ ‭Finetune on‬
‭MacroSheds + NEON‬

‭Finetune on NEON‬
‭target site‬

‭Process-guided‬
‭generalist‬

‭Pretrain on CAMELS +‬
‭CAMELS-NHM‬

‭Finetune on‬
‭MacroSheds +‬
‭MacroSheds-NHM +‬
‭NEON + NEON-NHM‬

‭N/A‬

‭Process-guided‬
‭specialist‬

‭Pretrain on CAMELS +‬
‭CAMELS-NHM‬

‭Finetune on‬
‭MacroSheds +‬
‭MacroSheds-NHM +‬
‭NEON + NEON-NHM‬

‭Finetune on NHM‬
‭estimates for target site‬

‭LSTMs were configured in R, and trained using v1.3.0 of the NeuralHydrology library in Python‬
‭(Kratzert et al. 2022; Van Rossum & Drake 2009) on the Duke Compute Cluster at Duke University,‬
‭Durham NC, USA. All trained models used the Adam optimizer (Kingma & Ba 2014) and‬
‭NeuralHydrology’s “NSE loss” function, after an initial evaluation in which we compared it to MSE and‬
‭root mean squared error (Table 4). Learning was annealed using series of three fixed rates for pretraining‬
‭and for round one of finetuning, according to Eq. (2):‬

‭(2)‬

‭Where‬‭r‬‭is the learning rate,‬‭a‬‭is any power of 10‬‭between 0.1 and 10‬‭-7‬‭, and‬‭E‬‭is the number of training‬
‭epochs. Learning rate was annealed using series of two fixed rates for round two of finetuning, according‬
‭to Eq. (3):‬

‭(3)‬

‭361‬

‭362‬

‭363‬

‭364‬

‭365‬

‭366‬

‭367‬

‭368‬

‭369‬

‭370‬

‭371‬

‭372‬

‭373‬

‭374‬

‭375‬

‭376‬

‭377‬

‭378‬

‭379‬

‭380‬

‭381‬



‭13‬

‭Learning rate and other hyperparameters were selected via an inexhaustive (pseudo) grid search (Table 4),‬
‭i.e. we specified a sequence of possible values for each hyperparameter and randomly selected from them‬
‭to specify 30 models for each generalist. For each site, one specialist model was then configured to further‬
‭finetune each of the 30 generalists, again using partial grid search to define any mutable hyperparameters.‬
‭Otherwise, hyperparameters were inherited from the previous training period (Table 4). Due to our‬
‭incomplete hyperparameter search procedure, better combinations probably exist. We elected not to‬
‭exhaustively pursue optimal hyperparameter combinations due to the computational demand of a full grid‬
‭search, and a lack of access via NeuralHydrology to callback methods necessary for implementation of‬
‭true random search (Bergstra & Bengio 2012).‬

‭Table 4: LSTM hyperparameter search space for all model types, and selected values (bold, italic)‬
‭used for pretraining. These were observed to allow for both malleability and high performance of‬
‭subsequent finetuning iterations over nearly 2000 exploratory LSTM trials. The ditto mark “``”‬
‭indicates that a finetuning parameter is inherited from the preceding training iteration. The‬
‭relationship of‬‭a‬‭to the learning_rate is defined in Equations 2 and 3. See the NeuralHydrology‬
‭documentation for parameter definitions:‬
‭https://neuralhydrology.readthedocs.io/en/latest/usage/config.html‬‭.‬

‭LSTM parameter‬ ‭Pretrain‬ ‭Finetune 1‬ ‭Finetune 2 (specialists‬
‭only)‬

‭hidden_size‬ ‭20,‬‭30‬‭, 40, 50‬ ‭̀`‬ ‭̀ `‬

‭output_dropout‬ ‭0.1, 0.2, 0.3, 0.4,‬‭0.5‬‭, 0.6‬ ‭0.2, 0.3, 0.4, 0.5‬ ‭̀`‬

‭learning_rate‬‭a‬ ‭10‬‭-2‬‭,‬‭10‬‭-3‬‭, 10‬‭-4‬‭, 10‬‭-5‬ ‭10‬‭-2‬‭, 10‬‭-3‬‭, 10‬‭-4‬‭, 10‬‭-5‬ ‭10‬‭-2‬‭, 10‬‭-3‬‭, 10‬‭-4‬‭, 10‬‭-5‬

‭batch_size‬ ‭32, 64, 128, 256,‬‭512‬‭, 1024‬ ‭32, 64, 128, 256, 512‬ ‭̀`‬

‭epochs‬ ‭20,‬‭30‬‭, 40, 50, 60‬ ‭20, 30, 40‬ ‭10, 20, 30‬

‭finetune_modules‬ ‭N/A‬ ‭head, lstm, head & lstm‬ ‭head, lstm‬

‭target_variables‬ ‭discharge,‬‭discharge & min air‬
‭temp‬

‭̀ `‬ ‭̀ `‬

‭loss‬ ‭NSE‬‭, MSE, RMSE‬ ‭̀`‬ ‭̀ `‬

‭All LSTM models were outfitted with fully connected, single-layer embedding networks to efficiently‬
‭encode inputs as fixed-length numerical vectors (Arsov & Mirceva 2019). Separate embedding networks‬
‭were used for static and dynamic inputs, with 20 neurons for static inputs and 200 neurons for dynamic‬
‭inputs. All embedding neurons used the hyperbolic tangent activation function. Another advantage of‬
‭embedding networks in the context of the NeuralHydrology library is that they provide one of few‬
‭opportunities to introduce dropout, which can improve training efficiency and reduce overfitting‬
‭(Srivastava et al. 2014).‬

‭2.6 Composite discharge data product‬
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‭This study generated time-series predictions of discharge for each lotic NEON site using up to three‬
‭distinct processes: linear regression on absolute discharge, linear regression on specific discharge, and one‬
‭of four LSTM strategies. We provide regression predictions wherever applicable (24 of 27 sites). LSTM‬
‭predictions are provided only for sites that had promising model performance after a hyperparameter‬
‭search, and for which ensemble models were therefore trained (18 of 27). All model outputs and results‬
‭from this study are archived at‬‭https://dx.doi.org/10.6084/m9.figshare.22344589‬‭.‬

‭In addition to predictions from individual modeling strategies, we provide an analysis-ready discharge‬
‭dataset for all 27 sites that splices the best available predictions across methods, including published‬
‭NEON estimates (NEON 2023a), into composite series‬
‭(‬‭https://dx.doi.org/10.6084/m9.figshare.23206592‬‭),‬‭which can be visualized interactively at‬
‭https://macrosheds.org/data/vlah_etal_2023_composites/‬‭.‬‭Composite series for each NEON site begin at‬
‭the start of site operation and extend to at most September 30, 2021, the last date included in the 2023‬
‭release of NEON’s continuous discharge product. We also provide individual model predictions extending‬
‭through 2022. A complete list of products from this study, and their links, can be found in Table A3.‬

‭To construct composite series, we first distinguished as “good” site-months of NEON discharge estimates‬
‭categorized as Tier 1 or Tier 2 by Rhea et al. (2023a). For a NEON site-month to meet the requirements‬
‭for at least Tier 2, four requirements must be met. The linear relationship between stage, determined from‬
‭pressure transducer readings, and field-measured gauge height must score at least 0.9 NSE. The‬
‭transducer-derived stage series must also pass a drift test, relative to gauge height, but only if sufficient‬
‭data exist to perform such a test. The rating curve used to relate stage to discharge must score at least 0.75‬
‭NSE, and fewer than 30% of predicted discharge values may exceed the range of measured discharge‬
‭used to build the curve. See Rhea et al. (2023a) for further details.‬

‭Although only 50% of NEON’s RELEASE-2023 estimates are classified as Tier 1 or Tier 2, the remainder‬
‭may still be of high analytical value if NEON’s quality control indicators and uncertainty bounds are‬
‭observed. We also stress that NEON rating curves and protocols have improved over the course of its‬
‭early operational phase, and continue to do so.‬

‭We then ranked the available predictions for each site, assigning rank 1 either to predictions from linear‬
‭regression, or to NEON’s continuous data product, depending on overall KGE and NSE against field‬
‭measured discharge. KGE was considered first, and used to determine preference except in cases where‬
‭the difference between NSE scores was greater than that between KGE scores, and opposite in sign. Rank‬
‭2 predictions were then used to fill gaps of 12 or more hours in the rank 1 series, but only “good” NEON‬
‭site-months were included. Only after this first round of gap-filling were the remaining NEON data‬
‭incorporated, with site-years achieving at least 0.5 KGE and 0.5 NSE against field-measured discharge‬
‭being used to fill still-remaining gaps. Finally, daily LSTM predictions (placed at 12:00:00 UTC on the‬
‭day of prediction) were used to fill any recalcitrant gaps, but only if produced by an ensemble model‬
‭achieving at least 0.5 KGE and 0.5 NSE across all field discharge observations. Note that while such‬
‭benchmarks are in common use (Moriasi et al. 2015), the efficiency that any model can or should achieve‬
‭varies substantially with the hydroclimate and watershed characteristics of a given site (Seibert et al.‬
‭2018). We provide all data and code for modifying the composite discharge product in accordance with‬
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‭alternative benchmarks as users see fit. After visual examination of composite series plots, we chose to‬
‭prefer NEON predictions to linear regression predictions at site ARIK, “good” or not, due to frequent‬
‭sharp disjoints between the two predicted series. See Table A1 for an account of linear regression and‬
‭LSTM methods used in the construction of ensemble series.‬

‭The prevailing interval varies across data sources used to assemble our composite discharge product, from‬
‭one minute (NEON) to one day (LSTM predictions; regression predictions at site COMO). Regression‬
‭predictions were primarily generated at 15-minute intervals, and their timestamps are always divisible by‬
‭15 minutes. Around the prevailing NEON interval there is considerable variation due to data gaps and‬
‭sensor reconfigurations, both across sites and across the temporal ranges of each site’s record. To reduce‬
‭the complexity associated with irregular time-series analysis, we synchronized the interval across data‬
‭sources to five minutes. Regression estimates were linearly interpolated to five minutes, though gaps‬
‭larger than 15 minutes were not interpolated. NEON estimates were first smoothed with a triangular‬
‭moving average window of 15 minutes to remove unrealistic minute-to-minute noise associated with‬
‭Bayesian error propagation. They were then interpolated the same way as the regression estimates, and‬
‭finally downsampled to five minutes, with some timestamps being shifted by up to two minutes. For‬
‭example, a duration of 30-minute sampling, with a sample taken at 00:03:00, would be shifted by two‬
‭minutes, by rounding each timestamp up to the nearest minute divisible by five.‬

‭3. Results‬

‭A performance comparison of linear regression on discharge from donor gauges, and four LSTM‬
‭strategies, is shown in Figure 2 and Figure A1, and detailed in Table A1. Via linear regression, we were‬
‭able to produce 15-minute discharge estimates at 11 sites with overall KGE scores higher than those of‬
‭published series (Figure 2). At four of the same sites, we achieved higher KGE via LSTM methods, which‬
‭generated daily discharge series. Of the ten sites at which published discharge KGE was less than 0.8, we‬
‭improved five to above that mark (mean 0.932, n = 5).‬
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‭Figure 2: Efficiency of five stream discharge prediction methods and NEON’s published continuous‬
‭discharge product at 27 NEON gauge locations, versus field-measured discharge. Small, white‬
‭triangles represent max/min KGE of published discharge by water year (Oct 1 through Sept 30)‬
‭with at least 5 field measurements (or 2 for site OKSR). KGE was computed on all available‬
‭observation-estimate pairs except those with quality flags (dischargeFinalQF or‬
‭dischargeFinalQFSciRvw of 1). For the best performing LSTM method, at all sites except TECR,‬
‭FLNT, REDB, WALK, POSE, and KING, displayed KGE is averaged over 30 ensemble runs with‬
‭identical hyperparameters. For the sites just named, performance of a chosen method, after‬
‭ensembling, dropped below that of at least one other method’s optimal KGE from parameter‬
‭search. For all other LSTM site-method pairs, which were not ensembled, displayed performance is‬
‭that of the best model trained during the parameter search phase. Sites are ordered by the KGE of‬
‭NEON continuous discharge. See Table 3 for LSTM model definitions. KGE of 1 is a perfect‬
‭prediction, while KGE of -0.41 is similar in skill to prediction from the mean. Negative values are‬
‭truncated at -0.05 in this plot to improve visualization.‬

‭For 12 of 27 sites, linear regression on specific discharge (i.e. scaled by watershed area) provided the‬
‭most accurate discharge predictions, while linear regression on absolute discharge performed better at the‬
‭other 12 sites with donor gauges. LSTM models (as proper ensembles) outperformed linear regression at‬
‭only 2 sites. In general, linear regression provided more accurate predictions than all LSTM methods.‬
‭Linear regression on absolute discharge produced estimates with median NSE of 0.848 and median KGE‬
‭of 0.806, across sites (‬‭n‬‭= 24; Table 5). Linear regression‬‭on specific discharge produced similar median‬
‭scores (Table 5), but with deviations of up to 0.05 NSE and 0.08 KGE at individual sites.‬

‭Table 5: Performance of five stream discharge prediction methods, and official continuous‬
‭discharge time-series data, across‬‭n‬‭of 27 NEON gauge locations (final column). For both the‬
‭Nash-Sutcliffe and Kling-Gupta Efficiency coefficients, a value of 1 indicates perfect prediction. A‬
‭value of 0 NSE indicates that predictive skill is equivalent to prediction from the mean, while‬
‭negative NSE is worse than mean prediction. This threshold lies at approximately -0.41 for KGE‬
‭(Knoben et al. 2019). “Linreg” = linear regression on donor gauge discharge series, and “scaled”‬
‭means predictor and response discharge were scaled by their respective watershed areas.‬

‭NSE‬ ‭KGE‬

‭Model/Data‬ ‭Median‬ ‭Mean‬ ‭Min‬ ‭Max‬ ‭Median‬ ‭Mean‬ ‭Min‬ ‭Max‬ ‭n‬

‭Official record‬ ‭0.880‬ ‭0.417‬ ‭-9.95‬ ‭0.989‬ ‭0.839‬ ‭0.711‬ ‭-1.50‬ ‭0.964‬ ‭27‬

‭Linreg‬ ‭0.848‬ ‭0.760‬ ‭-0.038‬ ‭0.993‬ ‭0.806‬ ‭0.746‬ ‭-0.697‬ ‭0.988‬ ‭24‬

‭Linreg scaled‬ ‭0.847‬ ‭0.757‬ ‭-0.037‬ ‭0.993‬ ‭0.807‬ ‭0.743‬ ‭-0.695‬ ‭0.989‬ ‭24‬

‭Generalist LSTM‬ ‭0.473‬ ‭-18.8‬ ‭-498‬ ‭0.904‬ ‭0.634‬ ‭-0.220‬ ‭-20.2‬ ‭0.852‬ ‭26‬

‭Specialist LSTM‬ ‭0.477‬ ‭-12.6‬ ‭-307‬ ‭0.920‬ ‭0.556‬ ‭-0.256‬ ‭-15.7‬ ‭0.895‬ ‭25‬
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‭NSE‬ ‭KGE‬

‭Model/Data‬ ‭Median‬ ‭Mean‬ ‭Min‬ ‭Max‬ ‭Median‬ ‭Mean‬ ‭Min‬ ‭Max‬ ‭n‬

‭Process-guided‬
‭generalist LSTM‬

‭0.434‬ ‭-31.3‬ ‭-824‬ ‭0.848‬ ‭0.618‬ ‭-0.453‬ ‭-26.4‬ ‭0.869‬ ‭26‬

‭Process-guided‬
‭specialist LSTM‬

‭0.329‬ ‭-92.0‬ ‭-831‬ ‭0.749‬ ‭0.652‬ ‭-2.40‬ ‭-26.5‬ ‭0.866‬ ‭9‬

‭Linear regression was not applicable at sites TECR, BIGC, or WLOU due to the lack of donor gauges‬
‭contemporary with target gauge data. Donor gauges associated with Kings River Experimental‬
‭Watersheds exist within close proximity to TECR and BIGC, but we were unable to access up-to-date‬
‭discharge records for these gauges.‬

‭The process-guided specialist LSTM yielded predictions on par with those of the other LSTM strategies‬
‭in terms of KGE, (median 0.652;‬‭n‬‭= 9), but performed‬‭worst of the four in terms of NSE (median 0.329;‬
‭n‬‭= 9). Conversely, the specialist performed better‬‭than the generalist in terms of NSE, but not KGE. The‬
‭process-guided specialist LSTM strategy was viable at nine sites for which discharge estimates were‬
‭available from the National Hydrologic Model.‬

‭In addition to improvements in accuracy, estimates from this study inform ~5,981 site-days (75%) of‬
‭missing data in the official discharge record (Figure 3), though note that they also omit ~4,486 site-days‬
‭otherwise present in NEON’s official record. Omissions occur wherever observations are missing from‬
‭the records of one or more donor gauges, and LSTM methods did not achieve desired efficiencies.‬
‭Approximately 1,221 site-days are missing from the official record and from our reconstructions.‬
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‭Figure 3: Durations of missing values (gaps) in NEON’s 2023 release of continuous discharge time‬
‭series, illustrating gaps filled or informed by estimates from this analysis. All officially published‬
‭values are shown, including those with quality control flags. Sites are ordered as in Figure 2. Gaps‬
‭smaller than six hours are not indicated. Figure A10 is the same, but with a fixed and labeled x-axis.‬

‭Estimated discharge time series from this study are of practical value for any researcher using NEON‬
‭continuous discharge data, especially for those sites and site-months at which published data from‬
‭NEON’s early operational phase may be unreliable (Rhea et al. 2023a). Figure 4 shows that official‬
‭records at sites REDB and LEWI are compromised by disagreement (erratic sections of gray lines)‬
‭between pressure transducer stage readings and manual gauge height recordings, discussed in Rhea et al‬
‭(2023a). Red lines show improved estimates via linear regression on discharge from donor gauges. Sites‬
‭FLNT and WALK show generally close agreement between NEON discharge and our regression‬
‭estimates, but note uncertainty associated with high discharge values.‬

‭Figure 4: Best linear regression predictions of continuous discharge for four NEON gauge-years,‬
‭compared with official NEON discharge data. All officially published values are shown, including‬
‭those with quality control flags, indicated by black marks on lower border. Light red polygons‬
‭represent 95% prediction intervals. NEON uncertainty is not shown.‬

‭4. Discussion‬

‭This study was designed to produce high-quality estimates of continuous discharge for NEON stream‬
‭gauges, especially at ten gauges for which the KGE of published continuous discharge was lower than‬
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‭0.8, over the full record, when compared to field-measured discharge. A secondary goal was to improve‬
‭temporal coverage of the official discharge record where possible.‬

‭We treat NEON field-measured discharge as truth, which means there are 39-213 observations for each‬
‭target site. Although these numbers represent a tremendous investment of time and technical effort, they‬
‭do not meet the high data volume requirements for most machine learning approaches, so we used field‬
‭discharge only to evaluate, rather than train, LSTM models. By contrast, in linear regression, regardless of‬
‭the details of any particular method, we ultimately fit a line to the relationship between donor gauge data‬
‭and field measurements at each target site. Because the linear regression models are allowed to “see” all‬
‭of the target site data (after a model is selected via cross-validation), they have a powerful advantage over‬
‭the LSTM approaches, which in this context must essentially treat target watersheds as if they are‬
‭ungauged. Furthermore, whereas the LSTM models must parameterize each day of prediction‬
‭individually, the regression models need only parameterize relationships between flow regimes. Still, if‬
‭given enough training data, including examples of watersheds and streams similar to each of those‬
‭modeled in this study, the LSTM approaches would eventually close the performance gap. See Figures‬
‭A2, A3, A4, A5, A7, and A8 for linear regression diagnostics.‬

‭In this study, discharge estimates produced by linear regression were more accurate than those generated‬
‭by LSTM models in 21 of 23 comparisons (Figure 2). This demonstrates the value of existing gauge‬
‭networks in advancing discharge estimation at newly or partially gauged locations; however, there is a‬
‭limit to the predictive potential of linear regression methods, as they depend on strong correlation‬
‭between streamflow at target and donor gauges. In principle, there is no such limit for machine learning‬
‭approaches, which are instead limited by the quality and quantity of training data.‬

‭The process-guided specialist LSTM yielded predictions on par with those of the other LSTM strategies‬
‭in terms of KGE, but performed worst of the four in terms of NSE, possibly indicating that information‬
‭gleaned from NHM estimates helped this strategy to accurately capture discharge variance and reduce‬
‭prediction bias, without ultimately improving the correlation between predictions and observations.‬
‭Unlike KGE, NSE only explicitly captures this latter metric (Nash & Sutcliffe 1970; Gupta et al. 2009).‬
‭Conversely, the specialist performed better than the generalist in terms of NSE, but not KGE, suggesting‬
‭information contained in NEON’s continuous discharge product was of disproportionate predictive value‬
‭relative to each of correlation, variance, and bias, favoring correlation.‬

‭The specialist may have been affected by data filtering choices. After filtering NEON continuous‬
‭discharge for rating curve issues, drift, and quality flags, relatively few daily estimates were available for‬
‭some sites (47-1642). Annual and seasonal variation in meteorological forcings and discharge in NEON‬
‭sites’ generally small, often mountainous watersheds may be large enough that finetuning a pretrained‬
‭LSTM on a few hundred days of site-specific data reduces its ability to generalize at that site. Our‬
‭specialist LSTM strategy in particular might be improved with a broader hyperparameter search,‬
‭especially one that explores smaller learning rates. Ideally, site-specific finetuning should enable better‬
‭prediction by allowing the network to assimilate information unique to the target site without corrupting‬
‭previously learned generalities. For validation plots of all ensembled LSTMs, see Figure A6.‬
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‭The process-guided specialist LSTM strategy was viable at nine sites for which discharge estimates were‬
‭available from the National Hydrologic Model. By using a mechanistic (i.e. process-based) model with‬
‭higher spatial resolution than the NHM, it should be possible to apply this process-guided approach at‬
‭more of the NEON sites. A potentially stronger process-guided approach would use mechanistic model‬
‭predictions as features (predictors), rather than training targets, but that would require mechanistic model‬
‭predictions concurrent with discharge series at target sites, whereas NHM predictions at the time of this‬
‭writing are available only through the year 2016. For a summary of process-guided deep learning‬
‭strategies, see the “Integrating Design” subsection of Appling et al. (2022).‬

‭We caution that evaluation scores for both NEON’s published estimates and ours are computed on a small‬
‭fraction of each series for which both an estimate and a direct field measurement are available (39-213 per‬
‭site), and that measurements tend to be collected disproportionately at low flow. This often occurs for‬
‭practical reasons such as site access and technician safety, but may also reflect a need to characterize the‬
‭low-flow variability of the stage-discharge relationship in streams with unstable low-flow hydrologic‬
‭controls, such as unconsolidated bed material.‬

‭Whatever the reason for less sampling at high flow, any model attempting to use field measurements to‬
‭reconstruct continuous discharge will estimate with greater uncertainty at high flow than at low, and users‬
‭of our composite discharge product should observe uncertainties associated with estimates from all‬
‭methods. Mechanistic models that proceed from physical principles, or data-driven approaches that can‬
‭generalize from prior observations, do not in principle suffer this disadvantage, as they do not depend on‬
‭observations from a target site. However, these approaches may not reliably generate strong predictions at‬
‭all sites or under all conditions (Razavi & Coulibaly 2013; Kratzert et al. 2019b), and may produce erratic‬
‭point estimates where conditions diverge from past observations. Hybrid approaches that successfully‬
‭leverage field measurements, as well as physical principles or learned relationships, are likely to yield‬
‭well-constrained predictions where our efforts did not.‬

‭This study demonstrates that, in proximity to established streamflow gauges, even simple statistical‬
‭methods can be used to generate accurate, continuous discharge at “virtual gauges,” where discrete‬
‭discharge has been measured. The number of field measurements across sites in this study varies from 39‬
‭to 213, but the number required for virtual gauging may be substantially smaller even than the minimum‬
‭of this range. If the discharge relationships between a target site and all donor gauges were perfectly linear‬
‭or log-linear, they could in principle be established with only two precise measurements at the target site.‬
‭More important than the quantity is the distribution of measurements across flow conditions, which‬
‭should be sufficient to fully characterize all modeled discharge relationships and their linearity or lack‬
‭thereof (Sauer 2002; Zakwan et al. 2017). Concretely, we advocate for “storm chasing,” or‬
‭disproportionately seeking to sample discharge under high-flow conditions, and during both rising and‬
‭falling limbs of storm events, rather than routine sampling. Observed NEON flow conditions relative to‬
‭predicted discharge can be seen in Figure A9. See Philip & McLaughlin (2018) for further commentary‬
‭on establishing a virtual gauge network, and Seibert & Beven (2009) and Pool & Seibert (2021) for‬
‭information on the number and statistical properties of discharge samples required to establish strong‬
‭stage-discharge or discharge-discharge relationships.‬

‭5. Conclusions‬
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‭Using linear regression on donor gauge data and LSTM-RNNs, we reconstructed continuous discharge at‬
‭5-minute and/or daily frequency for the 27 stream and river monitoring locations of the National‬
‭Ecological Observatory Network (NEON) over the water years 2015-2022. Relative to field-measured‬
‭discharge as ground truth, our estimates achieve higher Kling-Gupta efficiency than NEON’s official‬
‭continuous discharge at 11 sites. We also provide continuous discharge estimates for ~199 site-months for‬
‭which no official values have been published. Estimates from this study can be used in conjunction with‬
‭officially released NEON continuous discharge data to enhance the analytical potential of NEON’s river‬
‭and stream data products during its early operational phase. Toward that end, we provide composite‬
‭discharge series for each site, incorporating the best available estimates across all methods used in this‬
‭study and NEON’s published estimates. Considering the lag of up to 2.5 years before provisional‬
‭discharge data become fully quality controlled and officially released by NEON, our methods may also be‬
‭used to increase the rate at which discharge-associated stream chemistry, dissolved gas, and water quality‬
‭products become fully usable by the community. All data and results from this study can be downloaded‬
‭from the Figshare collection at‬ ‭https://doi.org/10.6084/m9.figshare.c.6488065‬‭.‬‭Composite series can be‬
‭visualized interactively at‬‭https://macrosheds.org/data/vlah_etal_2023_composites/‬‭.‬‭All code necessary to‬
‭reproduce this analysis is archived at‬‭https://doi.org/10.5281/zenodo.10067683‬‭. A complete list of‬
‭products and URLs can be found in Table A3.‬

‭In general, linear regression methods produced more accurate discharge estimates (median KGE: 0.79;‬
‭median NSE: 0.81;‬‭n‬‭= 24 sites) than LSTM approaches‬‭due to the fact that regression models were able‬
‭to fully leverage available field measurements as well as highly informative donor gauge data.‬
‭Nonetheless, LSTM methods achieved median ensemble KGE of 0.71 and NSE of 0.56 across 18 sites,‬
‭making their estimates a valuable supplement. Although LSTM-generated discharge series are of daily‬
‭frequency, some users will prefer them to higher resolution regression estimates, as the latter may be‬
‭subject to error in the event of highly localized precipitation events affecting either donor or target‬
‭gauges, but not both.‬

‭Improvements to our design could be made in several ways. LSTM models could be exposed to additional‬
‭training data, such as the recently published Caravan compendium of CAMELS offshoots (Kratzert et al.‬
‭2023) or future expansions of the MacroSheds dataset (Vlah et al. 2023). Neural networks trained on‬
‭sub-daily inputs might be better equipped to exploit atmospheric-hydrological dynamics that respond to‬
‭both daily and annual cycles. Linear regression methods too might be improved with the use of additional‬
‭predictors, such as continuous water level or precipitation.‬

‭The success of simple statistical methods in generating high-quality continuous discharge time series‬
‭demonstrates the viability of “virtual gauges,” or locations at which a small number of field discharge‬
‭measurements, in proximity to one or more established gauges, provide a basis for continuous discharge‬
‭estimation in lieu of a gauging station. Virtual gauges have the potential to greatly expand the spatial‬
‭coverage of continuous discharge data throughout the USA and any richly gauged region of the world.‬
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‭Appendix A‬

‭Tables‬

‭Table A1: Methods from this study used in the construction of composite discharge series. Composite‬
‭series also incorporate NEON continuous discharge product DP4.00130.001 (NEON 2023a). “Linreg” =‬
‭linear regression; “glmnet” = ridge regression; “lm” = OLS regression; “segmented” = segmented‬
‭regression; “abs” = absolute discharge; “spec” = specific discharge; “pgdl” = process-guided deep‬
‭learning.‬

‭Site‬ ‭KGE linreg‬ ‭NSE linreg‬ ‭Method linreg‬ ‭KGE LSTM‬ ‭NSE LSTM‬ ‭Method LSTM‬
‭FLNT‬ ‭0.989‬ ‭0.980‬ ‭glmnet_spec‬ ‭0.664‬ ‭0.507‬ ‭generalist‬
‭TOMB‬ ‭0.970‬ ‭0.993‬ ‭glmnet_abs‬
‭HOPB‬ ‭0.966‬ ‭0.937‬ ‭lm_abs‬ ‭0.852‬ ‭0.704‬ ‭generalist‬
‭BLUE‬ ‭0.962‬ ‭0.932‬ ‭lm_spec‬ ‭0.746‬ ‭0.567‬ ‭specialist‬
‭REDB‬ ‭0.946‬ ‭0.973‬ ‭lm_abs‬ ‭0.511‬ ‭0.551‬ ‭generalist_pgdl‬
‭KING‬ ‭0.935‬ ‭0.888‬ ‭glmnet_abs‬
‭LEWI‬ ‭0.929‬ ‭0.875‬ ‭glmnet_abs‬ ‭0.848‬ ‭0.724‬ ‭specialist‬
‭SYCA‬ ‭0.919‬ ‭0.938‬ ‭segmented_spec‬
‭MCDI‬ ‭0.912‬ ‭0.897‬ ‭glmnet_spec‬
‭LECO‬ ‭0.877‬ ‭0.833‬ ‭lm_spec‬
‭MCRA‬ ‭0.868‬ ‭0.866‬ ‭glmnet_spec‬ ‭0.723‬ ‭0.531‬ ‭generalist‬
‭MART‬ ‭0.811‬ ‭0.706‬ ‭glmnet_spec‬ ‭0.779‬ ‭0.566‬ ‭generalist‬
‭POSE‬ ‭0.803‬ ‭0.648‬ ‭glmnet_spec‬
‭MAYF‬ ‭0.787‬ ‭0.806‬ ‭glmnet_abs‬ ‭0.586‬ ‭0.666‬ ‭generalist‬
‭BLWA‬ ‭0.779‬ ‭0.892‬ ‭glmnet_abs‬
‭COMO‬ ‭0.771‬ ‭0.806‬ ‭glmnet_composite‬

‭_spec‬
‭BLDE‬ ‭0.744‬ ‭0.863‬ ‭glmnet_abs‬ ‭0.744‬ ‭0.687‬ ‭generalist‬
‭CARI‬ ‭0.721‬ ‭0.637‬ ‭glmnet_abs‬
‭GUIL‬ ‭0.692‬ ‭0.653‬ ‭glmnet_abs‬
‭ARIK‬ ‭0.674‬ ‭0.596‬ ‭glmnet_abs‬
‭CUPE‬ ‭0.663‬ ‭0.728‬ ‭glmnet_spec‬
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‭WALK‬ ‭0.607‬ ‭0.532‬ ‭glmnet_spec‬
‭BIGC‬ ‭0.895‬ ‭0.827‬ ‭specialist‬
‭WLOU‬ ‭0.778‬ ‭0.596‬ ‭generalist_pgdl‬
‭TECR‬ ‭0.711‬ ‭0.904‬ ‭generalist‬
‭PRIN‬
‭OKSR‬

‭Table A2: Model input data used in this study.‬

‭Resource‬ ‭Description‬ ‭Source/Link‬

‭NEON discharge‬
‭field collection‬

‭Discharge measurements‬
‭from field-based surveys‬

‭NEON 2023b, NEON 2023c‬

‭NEON continuous‬
‭discharge‬

‭Discharge calculated from‬
‭a rating curve and sensor‬
‭measurements of water‬
‭level‬

‭NEON 2023a‬

‭User-focused‬
‭evaluation of NEON‬
‭streamflow‬
‭estimates‬

‭3-tier classification of the‬
‭reliability of NEON‬
‭continuous discharge by‬
‭site-month‬

‭https://www.nature.com/articles/s41597-023-0198‬
‭3-w‬

‭CAMELS dataset‬ ‭Catchment Attributes,‬
‭Meteorology, (and‬
‭streamflow) for‬
‭Large-sample Studies‬

‭https://ral.ucar.edu/solutions/products/camels‬

‭National Hydrologic‬
‭Model (NHM)‬

‭USGS infrastructure that,‬
‭when coupled with the‬
‭Precipitation-Runoff‬
‭Modeling System, can‬
‭produce streamflow‬
‭simulations at local to‬
‭national scale‬

‭https://www.usgs.gov/mission-areas/water-resourc‬
‭es/science/national-hydrologic-model-infrastructu‬
‭re‬

‭MacroSheds‬ ‭A synthesis of long-term‬
‭biogeochemical,‬
‭hydroclimatic, and‬
‭geospatial data from small‬
‭watershed ecosystem‬
‭studies‬

‭https://portal.edirepository.org/nis/mapbrowse?sco‬
‭pe=edi&identifier=1262‬

‭947‬

‭948‬

‭949‬
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‭Daymet‬ ‭Gridded estimates of daily‬
‭weather parameters‬

‭https://developers.google.com/earth-engine/datase‬
‭ts/catalog/NASA_ORNL_DAYMET_V4‬

‭HJ Andrews‬
‭Experimental Forest‬
‭stream discharge‬

‭Stream discharge in gaged‬
‭watersheds, 1949 to‬
‭present‬

‭https://portal.edirepository.org/nis/mapbrowse?pa‬
‭ckageid=knb-lter-and.4341.33‬

‭USGS National‬
‭Water Information‬
‭System‬

‭Streamflow and associated‬
‭data for thousands of‬
‭gauged streams and rivers‬
‭within the USA‬

‭https://waterdata.usgs.gov/nwis, e.g.‬
‭https://waterdata.usgs.gov/monitoring-location/06‬
‭879100/‬

‭Table A3: Products of this study.‬

‭Product‬ ‭Description‬ ‭Link‬

‭Data archive‬
‭landing page‬

‭Figshare page linking to each‬
‭of four archives described‬
‭below‬

‭https://doi.org/10.6084/m9.figshare.c.6488065‬

‭Composite‬
‭discharge‬
‭timeseries‬

‭Analysis-ready CSVs‬
‭combining the best available‬
‭discharge estimates across‬
‭linear regression and LSTM‬
‭approaches from this study, and‬
‭NEON’s published data‬

‭https://doi.org/10.6084/m9.figshare.23206592.v1‬

‭Composite‬
‭discharge plots‬

‭Interactive plots of our‬
‭composite discharge product‬

‭https://macrosheds.org/data/vlah_etal_2023_com‬
‭posites‬

‭All model‬
‭outputs and‬
‭results‬

‭Complete predictions from all‬
‭linear regression and LSTM‬
‭models, run results, and‬
‭diagnostics‬

‭https://doi.org/10.6084/m9.figshare.22344589.v1‬

‭All model input‬
‭data‬

‭Donor gauge streamflow,‬
‭training data for LSTMs,‬
‭model configurations, etc.‬

‭https://doi.org/10.6084/m9.figshare.22349377.v1‬

‭All code‬
‭associated with‬
‭this paper‬

‭Zenodo archive of GitHub‬
‭repository‬

‭https://doi.org/10.5281/zenodo.10067683‬
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‭All figures‬
‭associated with‬
‭this paper‬

‭High-resolution images of all‬
‭figures from the main body and‬
‭appendix‬

‭https://doi.org/10.6084/m9.figshare.23169362.v1‬

‭Figures‬

‭Figure A1: Efficiency of five stream discharge prediction methods and NEON’s published continuous‬
‭discharge product at 27 NEON gauge locations, versus field-measured discharge. Small, white triangles‬
‭represent max/min NSE of published discharge by water year (Oct 1 through Sept 30) with at least 5 field‬
‭measurements (or 2 for site OKSR). NSE was computed on all available observation-estimate pairs except‬
‭those with quality flags (dischargeFinalQF or dischargeFinalQFSciRvw of 1).. For the best performing‬
‭LSTM method, at all sites except TECR, FLNT, REDB, WALK, POSE, and KING, displayed NSE is‬
‭averaged over 30 ensemble runs with identical hyperparameters. For the sites just named, performance of‬
‭a chosen method, after ensembling, dropped below that of at least one other method’s optimal NSE from‬
‭parameter search. For all other LSTM site-method pairs, which were not ensembled, displayed‬
‭performance is that of the best model trained during the parameter search phase. Sites are ordered by the‬
‭NSE of NEON continuous discharge. See Table 3 for LSTM model definitions. NSE of 1 is a perfect‬
‭prediction, while NSE of 0 is equivalent in skill to prediction from the mean. Negative values are‬
‭truncated at -0.05 in this plot to improve visualization.‬
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‭Figure A2: Observed (field) discharge vs. predictions from linear regression on specific discharge (i.e.‬
‭scaled by watershed area).‬
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‭Figure A3: Observed (field) discharge vs. predictions from linear regression on absolute discharge (i.e.‬
‭not scaled by watershed area).‬
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‭Figure A4: Marginal relationships between donor and target gauges for regression on specific discharge.‬
‭Regression lines are shown only for single-donor regressions, fitted via OLS. Site SYCA, here exhibiting‬
‭a breakpoint, was modeled with segmented regression, and thus the regression line shown has no‬
‭relevance.‬
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‭Figure A5: Marginal relationships between donor and target gauges for regression on absolute discharge.‬
‭Regression lines are shown only for single-donor regressions, fitted via OLS. Site SYCA, here exhibiting‬
‭a breakpoint, could not be fitted via segmented regression in the context of absolute discharge.‬
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‭Figure A6: Observed (field) discharge vs. ensembled LSTM predictions.‬

‭Figure A7: Diagnostic plots for the four sites modeled by OLS regression on specific discharge.‬
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‭Figure A8: Diagnostic plots for the four sites modeled by OLS regression on absolute discharge.‬
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‭Figure A9: Density of NEON-estimated discharge (blue polygon) relative to field-measured discharge‬
‭observations (red marks).‬
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‭Figure A10: Durations of missing values (gaps) in NEON’s 2023 release of continuous discharge time‬
‭series, illustrating gaps filled or informed by estimates from this analysis. All officially published values‬
‭are shown, including those with quality control flags. Sites are ordered as in Figure 2. Gaps smaller than‬
‭six hours are not indicated.‬
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