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Abstract. Streamflow, or discharge, is an essential measure in the study of rivers and streams. However, quantifying 

continuous discharge can be difficult, especially for nascent monitoring efforts, due to the challenges of establishing gauging 25 

locations, sensor protocols, and installations. Here, we investigate the potential for both simple and complex models to 

accurately estimate continuous discharge (at least daily estimates), using only discrete manual measurements of streamflow. 

We were inspired to do this work because some continuous discharge series generated by the National Ecological Observatory 

Network (NEON) during its pre- and early-operational phases (2015-present) are marked by anomalous data due to sensor 

drift, gauge movement, and incomplete rating curves. Using field-measured discharge as truth, we reconstructed continuous 30 

discharge for all 27 NEON stream gauges over this period via linear regression on nearby donor gauges and/or prediction from 

neural networks trained on a large corpus of established gauge data. Reconstructions achieved median efficiencies of 0.83 

(Nash-Sutcliffe, or NSE) and 0.81 (Kling-Gupta, or KGE) across all sites, and improved KGE at 11 sites versus published 

data. Estimates from this analysis inform ~199 site-months of missing data in the official record, and can be used jointly with 

NEON data to enhance the descriptive and predictive value of NEON’s stream data products. We provide 5-minute composite 35 

discharge series for each site that combine the best estimates across modeling approaches and NEON’s published data. 
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1 Introduction 

Discharge, or streamflow, is a fundamental measure in hydrology, biogeochemistry, and river science more broadly. A measure 55 

of water volume over time, discharge is used to infer theoretical watershed runoff (depth of water “blanketing” the land surface, 

or depth over time), which in turn is integral to understanding watershed processes such as chemical weathering (White & 

Blum 1995). Accurate, and at least daily, discharge estimates are essential components of nearly any quantitative study of 

physical or chemical watershed or river processes at the ecosystem scale. Determination of solute fluxes (Bukaveckas et al. 

1998), gas exchange rates (Hall, 2016), ecosystem metabolism (Odum 1956), and sediment transport (Graf 1984) all require 60 

well constrained estimates of discharge.  

Despite its centrality to so many fields of study, discharge is a notoriously difficult metric to capture on a regular basis, 

especially in free-flowing systems, as it may vary greatly with annual cycles and weather events (Turnipseed & Sauer 2010). 

Established institutions like the USGS (USA), ECCC (Canada), and ANA (Brazil) have honed their instrumentation, methods, 

and monitoring locations over decades to generate reasonable discharge estimates even under extreme conditions (Benson & 65 

Dalrymple 1967; Costa 2004); however, nascent and/or small-budget monitoring efforts face several challenges. Critically, 

hundreds of these efforts are constantly occurring within academic research groups, municipalities, counties, and other entities 

building smaller gauge networks, with much less expertise, support, and budget than gauging programs supported by dedicated 

national programs.   

Not including purely model-based methods for discharge prediction (Manning 1891; Hsu et al. 1995, Durand et al. 2022), 70 

automated discharge estimation requires the careful construction of an empirical “rating curve,” by which discharge can be 

continuously inferred from water level, or “stage” (but see Shen 1981). To build such a relationship, technicians must sample 

discharge and stage at points covering the range of observable flow, ideally including flood stage. In dynamic systems, this 

rating curve must be regularly updated. Point estimates of discharge can be collected using Acoustic Doppler current profiling 

(Moore et al. 2017), manual flow meter profiling, or light-based methods (Wang 1988) to determine average cross-sectional 75 

velocity, or via conservative tracer injections (Tazioli 2011). In many streams, two or more of these methods must be employed, 

depending on conditions (Turnipseed & Sauer 2010). During 10-year or 100-year floods, no method may be viable or safe. 

Even under regular storm conditions, a technician may be unable to mount a sampling effort quickly enough to capture peak 

flow, or may produce an inaccurate measurement. As a result, rating curves may remain in a state of insufficiency for years, 

during which time high discharge estimates are unreliable, especially where they are made by extrapolating beyond observed 80 

maximum flow.  

Gauge placement presents another obstacle to the rapid deployment of discharge monitoring stations (Isaacson & Coonrod 

2011). Stage measured via pressure transduction is susceptible to bias and nonlinearity under turbulent flow conditions (Horner 

et al. 2018). Sensors placed in a depositional area may be buried by sediment, and installations in forested watersheds or debris 
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flow regions may be destroyed during floods. Often, equipment must be relocated at least once before a new gauge site can be 85 

properly established. Even an established stage-discharge rating curve must be regularly updated and maintained because the 

bed of the river can change as sediment is deposited or excavated, altering the relationship between stage and flow.  

For some studies aiming to quantify stream or watershed processes that require continuous discharge time series, establishment 

of a high-quality monitoring station may be infeasible. Where co-location with an existing stream gauge is also not possible, 

record extension (Hirsch 1982; Nalley et al. 2020) and gap-filling (Harvey et al. 2012; Arriagada et al. 2021) techniques cannot 90 

be employed, as these rely on prior knowledge of the statistical properties of the discharge time series being augmented. In 

such scenarios, streamflow reconstruction or prediction techniques are suitable, as these may proceed a priori or from minimal 

observation. Reconstruction typically involves methods that leverage the correlation between a partially measured target site 

and nearby “donor” (predictor) gauges. Discharge may also be quantified in the absence of direct measurements at the target 

location via statistical (Chokmani & Ouarda 2004), mechanistic (Regan et al. 2019), or machine learning (Kratzert et al. 2022) 95 

modeling techniques. 

Here, we use both linear regression (OLS, L2/Ridge, segmented) and deep learning (LSTM-RNN) approaches to reconstruct 

discharge from the early operational phase (2015-2022) of the National Ecological Observatory Network (NEON), a time 

during which site location selection issues and rating curve development rendered potentially unreliable many site-months of 

discharge estimates (Rhea et al. 2023a). Our goal was to achieve Kling-Gupta Efficiency (KGE) scores greater than those of 100 

the official NEON continuous discharge product at as many sites as possible. A secondary goal was to improve temporal 

coverage of the official record where it contains gaps. For researchers intending to use NEON continuous discharge data 

between 2015 and 2022, the results of this effort, as well as efforts by Rhea et al. (2023a), can ensure that data gaps and 

questionable periods in the official record are replaced by high-quality estimates wherever possible. We provide composite 

discharge series, for all 27 NEON stream gauge locations, built from the best NEON-published estimates and the best estimates 105 

generated by this study (https://doi.org/10.6084/m9.figshare.c.6488065). Composite series can be visualized at 

https://macrosheds.org/data/vlah_etal_2023_composites/. 

The success of this effort demonstrates the viability of “virtual gauges.” (sensu Philip & McLaughlin 2018; not to be confused 

with the “virtual staff gauges” of Seibert et al. 2019). In this study, we use the term to describe sites at which discrete discharge 

is measured at least 35 times across a wide range of flows, and can be used to fit or evaluate models that generate continuous 110 

flow. Methods like those presented could be used to reduce the cost and simplify the process of establishing streamflow 

monitoring sites, especially in river networks that are already partially gauged. 

2 Methods 

2.1 Data selection, acquisition, and processing 

 115 
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We used the “neonUtilities” package (Lunch et al. 2022) in R to retrieve NEON discharge data. Officially released and 

provisional field measurements (NEON 2023b; accessed 2023-01-23) were used to fit linear regression models and evaluate 

all models, as these data were collected directly by NEON technicians, using a combination of state-of-the-art methods 

including acoustic Doppler current profiling (ADCP; Moore et al. 2017), conservative salt tracer releases (Tazioli 2011), and 

flow meter measurements (Pantelakis et al. 2022). We used quality-controlled “finalQ” values where available, or “totalQ” 120 

values (taken directly from the flowmeter) in their absence. We refer to NEON’s discharge field measurements hereafter as 

e.g. “the response variable”, or “response discharge time series,” in the context of linear regression, or as the “target” variable 

in the context of machine learning. In either context, we refer to the 27 NEON sites for which discharge predictions were 

generated as “target sites” or “target gauges” (Table 1). 

 125 

Continuous discharge data (NEON 2023a; 2023 release accessed 2023-05-01) were also retrieved via neonUtilities. These 

were used to finetune a subset of site-specific neural network models, and to construct composite discharge series. Evaluation 

results used to distinguish likely reliable vs. potentially unreliable subsets of NEON’s continuous discharge time series, per 

site-month, were provided by Rhea et al. (2023a) and accessed through HydroShare (Rhea 2023). Continuous elevation of 

surface water data are available, but approximately one third of all site-months are marked by disagreement between reported 130 

surface elevation and measured stage, or by likely sensor drift (Rhea et al. 2023a). We therefore chose not to use surface 

elevation to inform our models, though it no doubt contains predictive value. 

 

Donor gauge data for linear regression analysis were acquired primarily from the US Geological Survey’s National Water 

Information System (NWIS), using the “dataRetrieval” package (DeCicco et al. 2022) in R. Additional donor gauge data from 135 

Niwot Ridge LTER and Andrews Forest LTER were retrieved from the MacroSheds dataset (Vlah et al. 2023) via package 

“macrosheds” (Rhea et al. 2023b), and from the EDI data portal (Johnson et al. 2020), respectively. 

 

We used the original CAMELS dataset (Newman et al. 2014; Addor et al. 2017), the USGS National Hydrologic Model with 

Precipitation-Runoff Modeling System (NHM-PRMS; hereafter NHM; Regan et al. 2019), and the MacroSheds dataset as 140 

training data for neural network simulations of discharge data at each target site. CAMELS watershed attributes were generated 

for MacroSheds and NHM sites using the code provided at https://github.com/naddor/camels, except where otherwise indicated 

in Table 2, and daily Daymet meteorological forcings (Thornton et al. 2022; sensu Newman et al. 2015) were retrieved via 

Google Earth Engine (Gorelick et al. 2017). All code for this project can be found on GitHub, at 

https://github.com/vlahm/neon_q_sim, or in the Zenodo archive at https://doi.org/10.5281/zenodo.7976251. 145 

 

2.2 Target sites 
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Figure 1. Map of target sites (NEON) and donor gauge candidates for three target sites: MCRA = McRae Creek, 

state of Oregon; REDB = Red Butte Creek, state of Utah; GUIL = Rio Guilarte, Puerto Rico. 150 

 

All 27 lotic (flowing) aquatic sites associated with NEON were included as target sites for discharge prediction in this study 

(Figure 1). Sites TOMB, BLWA, and FLNT are installed on major rivers, downstream of hydropower dams. All other sites 

have been free of dam influence since 2012 at the latest, and are designated “wadeable streams” by NEON. In addition to the 

three sites above, hydrology at BLUE, GUIL, KING, MCDI, and ARIK may be influenced by agricultural activity, especially 155 

in the relatively arid Midwest (i.e. states KS, CO, OK). Continuous discharge data for TOMB are provided by a nearby gauge 

of the U.S. Geological Survey’s National Water Information System, and are given at hourly intervals, rather than NEON’s 

customary 1-minute intervals. 

 

Table 1. Target sites for discharge prediction. See https://www.neonscience.org/field-sites for more information. 160 

Site code Full name State (USA) Watershed area (km2) Mean watershed elevation (m) 
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TOMB Lower Tombigbee River AL 47085.3 20 

BLWA Black Warrior River AL 16159.4 22 

FLNT Flint River GA 14999.4 30 

ARIK Arikaree River CO 2631.8 1179 

BLUE Blue River OK 322.2 289 

SYCA Sycamore Creek AZ 280.3 645 

OKSR Oksrukuyik Creek AK 57.8 766 

PRIN Pringle Creek TX 48.9 253 

BLDE Blacktail Deer Creek WY 37.8 2053 

CARI Caribou Creek AK 31.0 225 

MCDI McDiffett Creek KS 22.6 396 

REDB Red Butte Creek UT 16.7 1694 

MAYF Mayfield Creek AL 14.4 77 

KING Kings Creek KS 13.0 324 

HOPB Lower Hop Brook MA 11.9 203 

LEWI Lewis Run VA 11.9 152 

BIGC Upper Big Creek CA 10.9 1197 
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GUIL Rio Guilarte PR 9.6 551 

LECO LeConte Creek TN 9.1 579 

MART Martha Creek WA 6.3 337 

WLOU West St Louis Creek CO 4.9 2908 

CUPE Rio Cupeyes PR 4.3 157 

MCRA McRae Creek OR 3.9 876 

COMO Como Creek CO 3.6 3021 

TECR Teakettle Creek - Watershed 2 CA 3.0 2011 

POSE Posey Creek VA 2.0 276 

WALK Walker Branch TN 1.1 264 

 

2.3 Linear regression and model selection 

 

Candidate donor gauges were identified by visually examining an interactive map of NEON gauges, USGS gauges, and 

MacroSheds gauges (https://macrosheds.org/ms_usgs_etc_reference_map/megamap.html), generated with package 165 

“mapview” (Appelhans et al. 2022) in R. We also used the National Water Dashboard of the USGS 

(https://dashboard.waterdata.usgs.gov/app/nwd/en/?aoi=default) to identify active gauges in Alaska, USA. For each target site, 

up to four donor gauge candidates were selected on the basis of spatial proximity and geographic similarity to the target site 

(Figure 1). Generally, no greater than this number of gauges were even remotely reasonable candidates (e.g. within 50 km of 

the target site; not in an urban area; not downstream of a reservoir), but for one target site (MCRA) we had ten nearby candidate 170 

gauges to select from–all associated with the Andrews Experimental Forest in western Oregon State, USA. In this case we 

chose three candidate sites representing a catchment upstream of the target site (GSWS08), downstream of the target site on 

the MCRA mainstem (GSLOOK), and downstream on a tributary of MCRA (GSWS01). All donor and response discharge 

time series were neglog transformed (Equation 1; Whittaker et al. 2005) before fitting linear regression models. 
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 175 

Equation 1: 𝒙𝒏𝒆𝒈𝒍𝒐𝒈 = 𝒔𝒊𝒈𝒏(𝒙)𝐥𝐨𝐠⁡(|𝒙| + 𝟏) 

 

Series were scaled by 1000 before transformation, in order to reduce the disproportionate impact of adding one to every value. 

Response observations were synchronized to the interval of the predictor series by approximate datetime join, allowing forward 

or backward time-shifts of up to 12 hours if necessary.  180 

 

One of three forms of linear regression was employed at each site, depending on the number and location of donor gauges, and 

the donor-target gauge relationships. For sites with a single donor gauge (REDB, HOPB, BLUE, SYCA, LECO), considered 

predictors were: discharge from the donor gauge, a 4-season categorical variable, and their interaction. Additionally, an 

intercept parameter could be estimated, or not, for each specification. Thus, up to six models were fit using Ordinary Least 185 

Squares (OLS) regression (Galton 1886), ensuring at least 15 observations per model parameter. At LECO, an additional 

dummy variable was included to address an intercept change due to a wildfire in November of 2016. The best model was 

selected via 10-fold cross-validation, minimizing mean squared error (MSE). MSE, being a squared-error term, 

disproportionately penalizes inaccurate prediction of high discharge values, and helps to balance against the relative rarity of 

high discharge measurements in the field data. At site SYCA, the log-log relationship between discharge at the target gauge 190 

and a single donor gauge exhibited a distinct breakpoint, and segmented least-squares regression was used (R package 

“segmented”; Muggeo 2008). At all other sites (19 in total), predictors included discharge series from 2-4 donor gauges, season, 

and all interactions. To control overfitting and shrink covarying coefficients toward zero, we used L2 regularization (Ridge 

regression; Gruber 2017) via R package “glmnet” (Friedman et al. 2010). As with the other regression approaches, 10-fold 

cross-validation and MSE loss were used for model parameter selection–in this case for the value of the penalty hyperparameter 195 

λ, which was set to the mean across folds of λ producing minimum cross-validated error. Unlike OLS and segmented 

regression, Ridge regression uses biased estimators that complicate calculation of prediction intervals. We generated 95% 

prediction intervals for glmnet discharge estimates using the 95th percentiles of 1000 bootstrap predictions at each prediction 

point, generated from 1000 resamples of the fitting data, stratified by season. We emphasize that these prediction intervals 

should be conservative estimates of the true uncertainty, as they do not fully account for uncertainty due to bias (Goeman et 200 

al. 2012). 

 

For each site, we fit two sets of models as described above, one with discharge scaled by watershed area (i.e. “specific 

discharge” in the surface water hydrology sense) prior to transformation, and one without areal scaling. Only one model from 

each set was ultimately selected for each target site, on the basis of Kling-Gupta efficiency (KGE; Gupta et al. 2009), a 205 

composite model efficiency metric that incorporates measures of correlation, variance, and bias. We also report percent bias 

and Nash-Sutcliffe efficiency (NSE; Nash & Sutcliffe 1970), a measure of predictive accuracy that implicitly compares 

predictions to a mean-only reference model. 
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Predictions were generated for all time points during which data were available at the selected donor gauges. At target site 210 

COMO, a secondary model omitting one donor gauge was able to produce 36% more predictions than the selected model, so 

our predicted discharge at COMO is a composite of both models, preferring the better model’s predictions where available. 

We were unable to locate sub-daily donor gauge data near COMO, so regression predictions for this site are at a daily interval. 

Regression predictions for all other sites were generated at sub-daily intervals matching the coarsest interval across predictor 

gauges–generally 15 minutes, though note that in most cases these predictions were interpolated to five minutes for our 215 

composite discharge product. 

 

2.4 Neural network setup and operation 

 

Supplementing the linear regression methods described above, we simulated discharge data at all 27 target sites using long 220 

short-term memory recurrent neural networks (LSTM-RNN; hereafter “LSTM”; Hochreiter & Schmidhuber 1997). Four 

LSTM strategies were employed, all of which involved training on a large and diverse corpus of stream discharge data (Table 

3). Two of these strategies included further finetuning to the time-series dynamics of each target site in turn. Due to the relative 

scarcity of field-measured discharge observations (between 39 and 213 per site; mean 122), none were used in LSTM training. 

Instead, these measurements were used only to evaluate predictions. LSTMs trained in this study are intended only for 225 

discharge prediction within the temporal and spatial bounds of NEON’s early operational phase, not for forecasting or 

application to other sites. Therefore, all available, daily training data were used as such; no validation set was kept for 

hyperparameter tuning, and no holdout set of daily estimates was kept for evaluation (note that split-sample designs may be 

undesirable more generally: Arsenault et al. 2018; Guo et al 2018; Shen et al. 2022). 

 230 

After a hyperparameter search routine, described below, potentially skilled models were identified as those achieving at least 

0.5 KGE and 0.4 NSE. The best performing, potentially skilled LSTM for each site (if applicable) was then re-trained 30 times, 

forming an ensemble. Ensembles were trained for 18 of 27 sites. LSTM predictions included in our composite discharge 

product are means taken across the distributions of ensemble point predictions. Uncertainty bounds were computed as the 2.5 

and 97.5% quantiles of these distributions. LSTM skill was evaluated on the basis of mean ensemble efficiency (KGE) with 235 

respect to field-measured discharge (Table A1). 

 

Daily discharge time series (training data) and field-measured discharge were scaled by watershed area. For each predicted 

day, LSTMs received 5 dynamic Daymet meteorological forcing variables and 11 static watershed attribute summary statistics 

(Table 2). Multitask learning (Caruana 1998; Sadler et al. 2022) was found to improve discharge prediction broadly in a 240 

preliminary analysis, so Daymet minimum air temperature was used as a secondary target variable. Kratzert et al. (2019a) 

found that a maximum of about 150 preceding days were able to influence LSTM output on a similar prediction problem, so 
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we set the input sequence length to 200 days to ensure full utilization of available information. In other words, for each day of 

prediction, the model was able to leverage information from the preceding 200 days. 

 245 

We employed four different training pipelines described in Table 3. Of the 671 CAMELS watersheds (i.e. basins), we used a 

subset of 531 with undisputed areas less than 2000 km2 (Newman et al. 2017). For finetuning data, we used version 1 of the 

MacroSheds dataset (Vlah et al. 2023). We excluded MacroSheds sites outside North America, or with coastal or urban 

hydrological influence, for a total of 133 sites out of the 169 that are currently available. We chose MacroSheds sites for 

finetuning because the MacroSheds and NEON datasets focus primarily on small watersheds, often smaller than 10 km2 in 250 

area, while only eight CAMELS watersheds are smaller than 10 km2 and most are larger than 100 km2 (Vlah et al. 2023). Daily 

mean discharge computed from NEON’s continuous discharge product, only for those site-months deemed Tier 1 or Tier 2 by 

Rhea et al (2023a), was used alongside MacroSheds data for finetuning. 

 

For the process-guided strategies, we used NHM estimates for all reaches coinciding with a CAMELS or MacroSheds gauge, 255 

for a total of 551 reaches. Only nine target sites on relatively high-order streams were amenable to the process-guided specialist 

approach, as these sites are on reaches large enough to be modeled by the NHM. The most recent version of the NHM at the 

time of this writing provides discharge estimates beginning in 1980, and ending in 2016, just before the installation of most 

NEON target sites.  

 260 

Table 2. LSTM input data. * = Attribute tested as an afterthought, but not included in this study due to negligible improvement 

in trial parameter search. 

Meteorological forcing data (watershed-average time series) 

Maximum air 

temp 

2-meter daily maximum air temperature (°C) 

Precipitation Mean daily precipitation (mm/day) 

Solar radiation Daily surface-incident solar radiation (W/m2) 

Vapor pressure Near-surface daily average vapor pressure (Pa) 

PET Potential evapotranspiration (mm); estimated using Priestley-Taylor formulation with gridded alpha 

product (Aschonitis et al. 2017) 

Watershed attributes (statistics computed over full record) 

https://doi.org/10.5194/egusphere-2023-1178
Preprint. Discussion started: 18 July 2023
c© Author(s) 2023. CC BY 4.0 License.



12 

 

Precipitation 

mean 

Mean daily precipitation (mm/day) 

PET mean Mean daily potential evapotranspiration (mm/day); estimated using Priestley-Taylor formulation with 

gridded alpha product (Aschonitis et al. 2017) 

Aridity index Ratio of PET mean to Precipitation mean 

Precip seasonality Seasonality of precipitation; estimated by representing annual precipitation and temperature as sine 

waves. Positive values indicate summer peaks, while negative values indicate winter peaks. 

Values  near 0 indicate uniform precipitation throughout the year. 

Snow fraction Fraction of precipitation falling on days with temp < 0 °C 

High precipitation 

frequency 

Frequency of high precipitation days (days with ≥ 5x mean daily precipitation) 

High precip 

duration 

Average duration of high precipitation events (number of consecutive days ≥ 5x mean daily 

precipitation) 

Low precip 

frequency 

Frequency of dry days (days with precipitation < 1 mm/day) 

Low precip 

duration 

Average duration of dry periods (number of consecutive days with precipitation < 1 mm/day) 

Elevation Catchment mean elevation (m) 

Slope Catchment mean slope (m/km) 

Area Catchment area (km2) 

Source* Binary indicator for NHM estimates–process-guided LSTMs only. 

Target data (time series) 

Discharge Specific discharge, or discharge normalized by watershed area. The same quantity may be referred to 

as “runoff” in other studies (mm/day). 
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Minimum air 

temp 

2-meter daily minimum air temperature (°C) 

 

Table 3. LSTM model training pipelines used in the simulation of discharge at target sites. Here, “NEON” refers to NEON’s 

continuous discharge product, 2023 release, with quality-flagged estimates and < Tier-2 site-months (according to Rhea et al. 265 

2023a) removed. 

Model type Phase 1 Phase 2 Phase 3 

Generalist Pretrain on CAMELS Finetune on MacroSheds + NEON N/A 

Specialist Pretrain on CAMELS Finetune on MacroSheds + NEON Finetune on NEON 

target site 

Process-guided 

generalist 

Pretrain on CAMELS + 

CAMELS-NHM 

Finetune on MacroSheds + 

MacroSheds-NHM + NEON + NEON-

NHM 

N/A 

Process-guided 

specialist 

Pretrain on CAMELS + 

CAMELS-NHM 

Finetune on MacroSheds + 

MacroSheds-NHM + NEON + NEON-

NHM 

Finetune on NHM 

estimates for target site 

 

LSTMs were configured in R, and trained, validated, and tested using v1.3.0 of the NeuralHydrology library in Python 

(Kratzert et al. 2022; Van Rossum & Drake 2009) on the Duke Compute Cluster at Duke University, Durham NC, USA. All 

trained models used the Adam optimizer (Kingma & Ba 2014) and NeuralHydrology’s “NSE loss” function, after an initial 270 

evaluation in which we compared it to MSE and root mean squared error (Table 4). Learning was annealed using series of 

three fixed rates for pretraining and for round one of finetuning, according to: 

 

Equation 2: 𝒓 =

{
 
 

 
 𝒂, 𝝐 {𝟎,⋯ , ⌊

𝑬

𝟑
⌋}

𝒂

𝟏𝟎
, 𝝐 {⌈

𝑬

𝟑
⌉ ,⋯ , ⌊

𝟐𝑬

𝟑
⌋}

𝒂

𝟏𝟎𝟎
, 𝝐 {⌈

𝟐𝑬

𝟑
⌉ ,⋯ , 𝑬}

 

 275 

Where r is the learning rate, a is any power of 10 between 0.1 and 10-7, and E is the number of training epochs. Learning rate 

was annealed using series of two fixed rates for round two of finetuning, according to: 
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Equation 3: 𝒓 = {

𝒂

𝟏𝟎
, 𝝐 {𝟎,⋯ , ⌊

𝑬

𝟐
⌋}

𝒂

𝟏𝟎𝟎
, 𝝐 {⌈

𝑬

𝟐
⌉ ,⋯ , 𝑬}

 

 280 

Learning rate and other hyperparameters were selected via an inexhaustive (pseudo) grid search (Table 4), i.e. we specified a 

sequence of possible values for each hyperparameter and randomly selected from them to specify 30 models for each generalist. 

For each site, one specialist model was then configured to further finetune each of the 30 generalists, again using partial grid 

search to define any mutable hyperparameters. Otherwise, hyperparameters were inherited from the previous training period 

(Table 4). Due to our incomplete hyperparameter search procedure, better combinations probably exist. We elected not to 285 

exhaustively pursue optimal hyperparameter combinations due to the computational demand of a full grid search, and a lack 

of access via NeuralHydrology to callback methods necessary for implementation of true random search (Bergstra & Bengio 

2012). 

 

Table 4. LSTM hyperparameter search space for all model types, and selected values (bold, italic) used for pretraining. These 290 

were observed to allow for both malleability and high performance of subsequent finetuning iterations over nearly 2000 

exploratory LSTM trials. The ditto mark “``” indicates that a finetuning parameter is inherited from the preceding training 

iteration. The relationship of a to the learning_rate is defined in Equations 2 and 3. See the NeuralHydrology documentation 

for parameter definitions: https://neuralhydrology.readthedocs.io/en/latest/usage/config.html. 

LSTM parameter Pretrain Finetune 1 Finetune 2 (specialists only) 

hidden_size 20, 30, 40, 50 `` `` 

output_dropout 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 0.2, 0.3, 0.4, 0.5 `` 

learning_rate a 10-2, 10-3, 10-4, 10-5 10-2, 10-3, 10-4, 10-5 10-2, 10-3, 10-4, 10-5 

batch_size 32, 64, 128, 256, 512, 1024 32, 64, 128, 256, 512 `` 

epochs 20, 30, 40, 50, 60 20, 30, 40 10, 20, 30 

finetune_modules N/A head, lstm, head & lstm head, lstm 

target_variables discharge, discharge & min air temp `` `` 

loss NSE, MSE, RMSE `` `` 
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 295 

All LSTM models were outfitted with fully connected, single-layer embedding networks to efficiently encode inputs as fixed-

length numerical vectors (Arsov & Mirceva 2019). Separate embedding networks were used for static and dynamic inputs, 

with 20 neurons for static inputs and 200 neurons for dynamic inputs. All embedding neurons used the hyperbolic tangent 

activation function. Another advantage of embedding networks in the context of the NeuralHydrology library is that they 

provide one of few opportunities to introduce dropout, which can improve training efficiency and reduce overfitting (Srivastava 300 

et al. 2014). 

 

2.5 Composite discharge data product 

 

This study generated time-series predictions of discharge for each lotic NEON site using up to three distinct processes: linear 305 

regression on absolute discharge, linear regression on specific discharge, and one of four LSTM strategies. We provide 

regression predictions wherever applicable (24 of 27 sites). LSTM predictions are provided only for sites that had promising 

model performance after a hyperparameter search, and for which ensemble models were therefore trained (18 of 27). All model 

outputs and results from this study are archived at https://dx.doi.org/10.6084/m9.figshare.22344589. 

 310 

In addition to predictions from individual modeling strategies, we provide an analysis-ready discharge dataset for all 27 sites 

that splices the best available predictions across methods, including published NEON estimates (NEON 2023a; accessed 2023-

05-01), into composite series (https://dx.doi.org/10.6084/m9.figshare.23206592), which can be visualized interactively at 

https://macrosheds.org/data/vlah_etal_2023_composites/. Composite series for each NEON site begin at the start of site 

operation and extend to at most September 30, 2021, the last date included in the 2023 release of NEON’s continuous discharge 315 

product. We also provide individual model predictions extending through 2022. 

 

To construct composite series, we first distinguished as “good” site-months of NEON discharge estimates categorized as Tier 

1 or Tier 2 by Rhea et al. (2023a). For a NEON site-month to meet the requirements for at least Tier 2, four requirements must 

be met. The linear relationship between stage, determined from pressure transducer readings, and field-measured gauge height 320 

must score at least 0.9 NSE. The transducer-derived stage series must also pass a drift test, relative to gauge height, but only 

if sufficient data exist to perform such a test. The rating curve used to relate stage to discharge must score at least 0.75 NSE, 

and fewer than 30% of predicted discharge values may exceed the range of measured discharge used to build the curve. See 

Rhea et al. (2023a) for further details. 

 325 

Although only 50% of NEON’s 2023-release estimates are classified as Tier 1 or Tier 2, the remainder may still be of high 

analytical value if NEON’s quality control indicators and uncertainty bounds are observed. We also stress that NEON rating 

curves and protocols have improved over the course of its early operational phase, and continue to do so. 
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We then ranked the available predictions for each site, assigning rank 1 either to predictions from linear regression, or to 330 

NEON’s continuous data product, depending on overall KGE and NSE against field measured discharge. KGE was considered 

first, and used to determine preference except in cases where the difference between NSE scores was greater than that between 

KGE scores, and opposite in sign. Rank 2 predictions were then used to fill gaps of 12 or more hours in the rank 1 series, but 

only “good” NEON site-months were included. Only after this first round of gap-filling were the remaining NEON data 

incorporated, with site-years achieving at least 0.5 KGE and 0.4 NSE against field-measured discharge being used to fill still-335 

remaining gaps. Finally, daily LSTM predictions (placed at 12:00:00 UTC on the day of prediction) were used to fill any 

recalcitrant gaps, but only if produced by an ensemble model achieving at least 0.5 KGE and 0.5 NSE across all field discharge 

observations. After visual examination of composite series plots, we chose to prefer NEON predictions to linear regression 

predictions at site ARIK, “good” or not, due to frequent sharp disjoints between the two predicted series. See Table A1 for an 

account of linear regression and LSTM methods used in the construction of ensemble series. 340 

 

The prevailing interval varies across data sources used to assemble our composite discharge product, from one minute (NEON) 

to one day (LSTM predictions; regression predictions at site COMO). Regression predictions were primarily generated at 15-

minute intervals, and their timestamps are always divisible by 15 minutes. Around the prevailing NEON interval there is 

considerable variation due to data gaps and sensor reconfigurations, both across sites and across the temporal ranges of each 345 

site’s record. To reduce the complexity associated with irregular time-series analysis, we synchronized the interval across data 

sources to five minutes. Regression estimates were linearly interpolated to five minutes, though gaps larger than 15 minutes 

were not interpolated. NEON estimates were first smoothed with a triangular moving average window of 15 minutes to remove 

unrealistic minute-to-minute noise associated with Bayesian error propagation. They were then interpolated the same way as 

the regression estimates, and finally downsampled to five minutes, with some timestamps being shifted by up to two minutes. 350 

For example, a duration of 30-minute sampling, with a sample taken at 00:03:00, would be shifted by two minutes, by rounding 

each timestamp up to the nearest minute divisible by five. 

 

3 Results and discussion 

 355 

This study was designed to produce high-quality estimates of continuous discharge for NEON stream gauges, especially at ten 

gauges for which the KGE of published continuous discharge was lower than 0.8, over the full record, when compared to field-

measured discharge. A secondary goal was to improve temporal coverage of the official discharge record where possible. Via 

linear regression on discharge from donor gauges, we were able to produce 15-minute discharge estimates at 11 sites with 

overall KGE scores higher than those of published series (Figure 2). At four of the same sites, we achieved higher KGE via 360 

LSTM methods, which generated daily discharge series. Of the ten sites at which published discharge KGE was less than 0.8, 

we improved five to above that mark (mean 0.932, n = 5). We caution that evaluation scores for both NEON’s published 
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estimates and ours are computed on a small fraction of each series for which both an estimate and a direct field measurement 

are available (39-213 per site), and that measurements tend to be collected disproportionately at low flow. Therefore, users of 

our composite discharge product should observe uncertainties associated with estimates from all methods. 365 

 

In addition to improvements in accuracy, estimates from this study inform ~5,981 site-days (75%) of missing data in the 

official discharge record (Figure 3), though note that they also omit ~4,486 site-days otherwise present in NEON’s official 

record. Omissions occur wherever observations are missing from the records of one or more donor gauges, and LSTM methods 

did not achieve desired efficiencies. Approximately 1,221 site-days are missing from the official record and from our 370 

reconstructions. 

 

 

Figure 2. Efficiency of five stream discharge prediction methods and NEON’s published continuous discharge product at 27 

NEON gauge locations, versus field-measured discharge. Small, white triangles represent max/min KGE of published 375 

discharge by water year (Oct 1 through Sept 30) with at least 5 field measurements (or 2 for site OKSR). NEON estimates 

with quality flags (dischargeFinalQF or dischargeFinalQFSciRvw of 1) were not included in KGE calculation. For the best 

performing LSTM method, at all sites except TECR, FLNT, REDB, WALK, POSE, and KING, displayed KGE is averaged 

over 30 ensemble runs with identical hyperparameters. For the sites just named, performance of a chosen method, after 

ensembling, dropped below that of at least one other method’s optimal KGE from parameter search. For all other LSTM site-380 

method pairs, which were not ensembled, displayed performance is that of the best model trained during the parameter search 

phase. Sites are ordered by the KGE of NEON continuous discharge. See Table 3 for LSTM model definitions. KGE of 1 is a 
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perfect prediction, while KGE of -0.41 is similar in skill to prediction from the mean. Negative values are truncated at -0.05 

in this plot to improve visualization. 
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Figure 3. Durations of missing values (gaps) in NEON’s 2023 release of continuous discharge time series, illustrating gaps 

filled or informed by estimates from this analysis. All officially published values are shown, including those with quality 

control flags. Gaps smaller than six hours are not indicated. 

A performance comparison of linear regression and four LSTM strategies is shown in Figure 2 and Figure A1, and detailed in 

Table A1. For 12 of 27 sites, linear regression on specific discharge (i.e. scaled by watershed area) provided the most accurate 390 

discharge predictions, while linear regression on absolute discharge performed best at the other 12 sites with donor gauges. 

LSTM models (as proper ensembles) outperformed linear regression at only 2 sites. In this study, we treat NEON field-

measured discharge as truth, which means there are 39-213 observations for each target site. Although these numbers represent 

a tremendous investment of time and technical effort, they do not meet the high data requirements for most machine learning 

approaches, so we used field discharge only to evaluate, rather than train, LSTM models. By contrast, in linear regression, 395 

regardless of the details of any particular method, we ultimately fit a line to the relationship between donor gauge data and 

field measurements at each target site. Because the linear regression models are allowed to “see” all of the target site data (after 

a model is selected via cross-validation), they have a powerful advantage over the LSTM approaches, which in this context 

must essentially treat target watersheds as if they are ungauged. See Figures A2, A3, A4, A5, A7, and A8 for linear regression 

diagnostics. 400 

 

Linear regression was not applicable at sites TECR, BIGC, or WLOU due to the lack of donor gauges contemporary with 

target gauge data. Donor gauges associated with Kings River Experimental Watersheds exist within close proximity to TECR 

and BIGC, but we were unable to access up-to-date discharge records for these gauges. 

 405 

In general, linear regression provided more accurate predictions than all LSTM methods. Linear regression on absolute 

discharge produced estimates with median NSE of 0.848 and median KGE of 0.806, across sites (n = 24; Table 5). Linear 

regression on specific discharge (i.e. scaled by watershed area) produced similar median scores (Table 5), but with deviations 

of up to 0.05 NSE and 0.08 KGE at individual sites. 

 410 

The process-guided specialist LSTM strategy yielded predictions on par with those of the other LSTM strategies in terms of 

KGE, (median 0.652; n = 9), but performed worst of the four in terms of NSE (median 0.329; n = 9), possibly indicating that 

information gleaned from NHM estimates helped this strategy to accurately capture discharge variance and reduce prediction 

bias, without ultimately improving the correlation between predictions and observations. Unlike KGE, NSE only explicitly 

captures this latter metric (Nash & Sutcliffe 1970; Gupta et al. 2009). Conversely, the specialist performed better than the 415 

generalist in terms of NSE, but not KGE, suggesting information contained in NEON’s continuous discharge estimates was of 

disproportionate predictive value relative to each of correlation, variance, and bias, favoring correlation. 
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The specialist may have also been affected by data filtering choices. After filtering NEON continuous discharge for rating 

curve issues, drift, and quality flags, relatively few daily estimates were available for some sites (47-1642). Annual and 420 

seasonal variation in meteorological forcings and discharge in NEON sites’ generally small, often mountainous watersheds 

may be large enough that finetuning a pretrained LSTM on a few hundred days of site-specific data reduces its ability to 

generalize at that site. Our specialist LSTM strategy in particular might be improved with a broader hyperparameter search, 

especially one that explores smaller learning rates. Ideally, site-specific finetuning should enable better prediction by allowing 

the network to assimilate information unique to the target site without corrupting previously learned generalities. For validation 425 

plots of all ensembled LSTMs, see Figure A6. 

 

Table 5. Performance of five stream discharge prediction methods, and official continuous discharge time-series data, across 

n of 27 NEON gauge locations (final column). For both the Nash-Sutcliffe and Kling-Gupta Efficiency coefficients, a value 

of 1 indicates perfect prediction. A value of 0 NSE indicates that predictive skill is equivalent to prediction from the mean, 430 

while negative NSE is worse than mean prediction. This threshold lies at approximately -0.41 for KGE (Knoben et al. 2019). 

“Linreg” = linear regression on donor gauge discharge series, and “scaled” means predictor and response discharge were scaled 

by their respective watershed areas. 

 NSE KGE  

Model/Data Median Mean Min Max Median Mean Min Max n 

Official record 0.880 0.417 -9.95 0.989 0.839 0.711 -1.50 0.964 27 

Linreg 0.848 0.760 -0.038 0.993 0.806 0.746 -0.697 0.988 24 

Linreg scaled 0.847 0.757 -0.037 0.993 0.807 0.743 -0.695 0.989 24 

Generalist LSTM 0.473 -18.8 -498 0.904 0.634 -0.220 -20.2 0.852 26 

Specialist LSTM 0.477 -12.6 -307 0.920 0.556 -0.256 -15.7 0.895 25 

Process-guided 

generalist LSTM 

0.434 -31.3 -824 0.848 0.618 -0.453 -26.4 0.869 26 

Process-guided 

specialist LSTM 

0.329 -92.0 -831 0.749 0.652 -2.40 -26.5 0.866 9 
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The process-guided specialist LSTM strategy was viable at nine sites for which discharge estimates were available from the 435 

National Hydrologic Model. By using a mechanistic (i.e. process-based) model with higher spatial resolution than the NHM, 

it should be possible to apply this process-guided approach at more of the NEON sites. A potentially stronger process-guided 

approach would use mechanistic model predictions as features (predictors), rather than training targets, but that would require 

mechanistic model predictions concurrent with discharge series at target sites, whereas NHM predictions at the time of this 

writing are available only through the year 2016. For a summary of process-guided deep learning strategies, see the “Integrating 440 

Design” subsection of Appling et al. (2022). 

 

Estimated discharge time series from this study are of practical value for any researcher using NEON continuous discharge 

data, especially for those sites and site-months at which published data from NEON’s early operational phase may be unreliable 

(Rhea et al. 2023a). Figure 4 shows that official records at sites REDB and LEWI are compromised by disagreement (erratic 445 

sections of gray lines) between pressure transducer stage readings and manual gauge height recordings, discussed in Rhea et 

al (2023a). Red lines show improved estimates via linear regression on discharge from donor gauges. Sites FLNT and WALK 

show generally close agreement between NEON discharge and our regression estimates, but note uncertainty associated with 

high discharge values. 

 450 
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Figure 4. Best linear regression predictions of continuous discharge for four NEON gauge-years, compared with official NEON 

discharge data. All officially published values are shown, including those with quality control flags, indicated by black marks 

on lower border. Light red polygons represent 95% prediction intervals. NEON uncertainty is not shown. 

 

For practical reasons, field discharge measurements are often collected disproportionately in low flow conditions. As a result, 455 

any model attempting to use field measurements to reconstruct continuous discharge will estimate with higher uncertainty at 

high flow than at low. Mechanistic models that proceed from physical principles, or data-driven approaches that can generalize 

from prior observations, do not in principle suffer this disadvantage, as they do not depend on observations from a target site. 

However, these approaches may not reliably generate strong predictions at all sites or under all conditions (Razavi & Coulibaly 

2013; Kratzert et al. 2019b), and may produce erratic point estimates where conditions diverge from past observations. Hybrid 460 

approaches that successfully leverage field measurements, as well as physical principles or learned relationships, are likely to 

yield well-constrained predictions where our efforts did not. 

This study demonstrates that, in proximity to established streamflow gauges, even simple statistical methods can be used to 

generate accurate, continuous discharge at “virtual gauges,” where discrete discharge has been measured. The number of field 

measurements across sites in this study varies from 39 to 213, but the number required for virtual gauging may be substantially 465 

smaller even than the minimum of this range. If the discharge relationships between a target site and all donor gauges were 

perfectly linear or log-linear, they could in principle be established with only two precise measurements at the target site. More 

important than the quantity is the distribution of measurements across flow conditions, which should be sufficient to fully 

characterize all modeled discharge relationships and their linearity or lack thereof (Sauer 2002; Zakwan et al. 2017). 

Concretely, we advocate for “storm chasing,” or disproportionately seeking to sample discharge under extreme conditions, and 470 

during both rising and falling limbs of storm events, rather than routine sampling. Observed NEON flow conditions relative 

to predicted discharge can be seen in Figure A9. See Philip & McLaughlin (2018) for further commentary on establishing a 

virtual gauge network, and Seibert & Beven (2009) and Pool & Seibert (2021) for information on the number and statistical 

properties of discharge samples required to establish strong stage-discharge or discharge-discharge relationships. 

4 Conclusions 475 

 

Using linear regression on donor gauge data and LSTM-RNNs, we reconstructed continuous discharge at 5-minute and/or 

daily frequency for the 27 stream and river monitoring locations of the National Ecological Observatory Network (NEON) 

over the water years 2015-2022. Relative to field-measured discharge as ground truth, our estimates achieve higher Kling-

Gupta efficiency than NEON’s official continuous discharge at 11 sites. We also provide continuous discharge estimates for 480 

~199 site-months for which no official values have been published. Estimates from this study can be used in conjunction with 

officially released NEON continuous discharge data to enhance the analytical potential of NEON’s river and stream data 
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products during its early operational phase. Toward that end, we provide composite discharge series for each site, incorporating 

the best available estimates across all methods used in this study and NEON’s published estimates. Considering the lag of up 

to 2.5 years before provisional discharge data become fully quality controlled and officially released by NEON, our methods 485 

may also be used to increase the rate at which discharge-associated stream chemistry, dissolved gas, and water quality products 

become fully usable by the community. All data and results from this study can be downloaded from the Figshare collection 

at  https://doi.org/10.6084/m9.figshare.c.6488065. Composite series can be visualized interactively at 

https://macrosheds.org/data/vlah_etal_2023_composites/. All code necessary to reproduce this analysis is archived at 

https://doi.org/10.5281/zenodo.7976251. 490 

In general, linear regression methods produced more accurate discharge estimates (median KGE: 0.79; median NSE: 0.81; n 

= 24 sites) than LSTM approaches due to the fact that regression models were able to fully leverage available field 

measurements as well as highly informative donor gauge data. Nonetheless, LSTM methods achieved median ensemble KGE 

of 0.71 and NSE of 0.56 across 18 sites, making their estimates a valuable supplement. Although LSTM-generated discharge 

series are of daily frequency, some users will prefer them to higher resolution regression estimates, as the latter may be subject 495 

to error in the event of highly localized precipitation events affecting either donor or target gauges, but not both.  

Improvements to our design could be made in several ways. LSTM models could be exposed to additional training data, such 

as the recently published Caravan compendium of CAMELS offshoots (Kratzert et al. 2023) or future expansions of the 

MacroSheds dataset (Vlah et al. 2023). Neural networks trained on sub-daily inputs might be better equipped to exploit 

atmospheric-hydrological dynamics that respond to both daily and annual cycles. Linear regression methods too might be 500 

improved with the use of additional predictors, such as continuous water level or precipitation. 

The success of simple statistical methods in generating high-quality continuous discharge time series demonstrates the viability 

of “virtual gauges,” or locations at which a small number of field discharge measurements, in proximity to one or more 

established gauges, provide a basis for continuous discharge estimation in lieu of a gauging station. Virtual gauges have the 

potential to greatly expand the spatial coverage of continuous discharge data throughout the USA and any richly gauged region 505 

of the world. 

Appendix A 

Table A1: Methods from this study used in the construction of composite discharge series. Composite series also incorporate 

NEON continuous discharge product DP4.00230.001 (NEON 2023a; 2023 release accessed 2023-05-01). “Linreg” = linear 

regression; “glmnet” = Ridge regression; “lm” = OLS regression; “segmented” = segmented regression; “abs” = absolute 510 

discharge; “spec” = specific discharge; “pgdl” = process-guided deep learning. 

Site KGE linreg NSE linreg Method linreg KGE LSTM NSE LSTM Method LSTM 
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FLNT 0.989 0.980 glmnet_spec 0.664 0.507 generalist 

TOMB 0.970 0.993 glmnet_abs    

HOPB 0.966 0.937 lm_abs 0.852 0.704 generalist 

BLUE 0.962 0.932 lm_spec 0.746 0.567 specialist 

REDB 0.946 0.973 lm_abs 0.511 0.551 generalist_pgdl 

KING 0.935 0.888 glmnet_abs    

LEWI 0.929 0.875 glmnet_abs 0.848 0.724 specialist 

SYCA 0.919 0.938 segmented_spec    

MCDI 0.912 0.897 glmnet_spec    

LECO 0.877 0.833 lm_spec    

MCRA 0.868 0.866 glmnet_spec 0.723 0.531 generalist 

MART 0.811 0.706 glmnet_spec 0.779 0.566 generalist 

POSE 0.803 0.648 glmnet_spec    

MAYF 0.787 0.806 glmnet_abs 0.586 0.666 generalist 

BLWA 0.779 0.892 glmnet_abs    

COMO 0.771 0.806 glmnet_composite_s

pec 

   

BLDE 0.744 0.863 glmnet_abs 0.744 0.687 generalist 

CARI 0.721 0.637 glmnet_abs    

GUIL 0.692 0.653 glmnet_abs    

ARIK 0.674 0.596 glmnet_abs    

CUPE 0.663 0.728 glmnet_spec    

WALK 0.607 0.532 glmnet_spec    

BIGC    0.895 0.827 specialist 

WLOU    0.778 0.596 generalist_pgdl 

TECR    0.711 0.904 generalist 

PRIN       

OKSR       
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Figure A1. Efficiency of five stream discharge prediction methods and NEON’s published continuous discharge product at 27 515 

NEON gauge locations, versus field-measured discharge. Small, white triangles represent max/min NSE of published 

discharge by water year (Oct 1 through Sept 30) with at least 5 field measurements (or 2 for site OKSR). NEON estimates 

with quality flags (dischargeFinalQF or dischargeFinalQFSciRvw of 1) were not included in NSE calculation. For the best 

performing LSTM method, at all sites except TECR, FLNT, REDB, WALK, POSE, and KING, displayed NSE is averaged 

over 30 ensemble runs with identical hyperparameters. For the sites just named, performance of a chosen method, after 520 

ensembling, dropped below that of at least one other method’s optimal NSE from parameter search. For all other LSTM site-

method pairs, which were not ensembled, displayed performance is that of the best model trained during the parameter search 

phase. Sites are ordered by the NSE of NEON continuous discharge. See Table 3 for LSTM model definitions. NSE of 1 is a 

perfect prediction, while NSE of 0 is equivalent in skill to prediction from the mean. Negative values are truncated at -0.05 in 

this plot to improve visualization. 525 
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Figure A2. Observed (field) discharge vs. predictions from linear regression on specific discharge (i.e. scaled by watershed 

area). 

 530 
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Figure A3. Observed (field) discharge vs. predictions from linear regression on absolute discharge (i.e. not scaled by watershed 

area). 
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Figure A4: Marginal relationships between donor and target gauges for regression on specific discharge. Regression lines are 

shown only for single-donor regressions, fitted via OLS. Site SYCA, here exhibiting a breakpoint, was modeled with 

segmented regression, and thus the regression line shown has no relevance. 
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Figure A5: Marginal relationships between donor and target gauges for regression on absolute discharge. Regression lines are 

shown only for single-donor regressions, fitted via OLS. Site SYCA, here exhibiting a breakpoint, could not be fitted via 

segmented regression in the context of absolute discharge. 
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Figure A6. Observed (field) discharge vs. ensembled LSTM predictions. 

 

 

Figure A7. Diagnostic plots for the four sites modeled by OLS regression on specific discharge. 
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Figure A8. Diagnostic plots for the four sites modeled by OLS regression on absolute discharge. 
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Figure A9. Density of NEON-estimated discharge (blue polygon) relative to field-measured discharge observations (red 

marks). 
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