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Abstract

quantifying continuous dlscharge can be difficult, especially for nascent monitoring efforts due to the
challenges of establishing gauging locations, sensor protocols, and installations. Some continuous
discharge series generated by the National Ecological Observatory Network (NEON) during its pre- and
early-operational phases (2015-present) are marked by anomalies related to sensor drift, gauge movement,

and 1ncornplete ratrng curves. Here we mvestrgate the potentral fer-beth-sma}e-&nm

me&surements-af-sﬂ'e&mﬂmv'—to estimate continuous dlscharge when drscrete streamﬂow measurements
are available at the site of interest. WWe=we W

m&vemem—&nd-meomp}&ermmg-euﬁes— Usmg freld measured drscharge as truth we reconstructed
continuous discharge for all 27 NEON stream gauges over-this-period-via linear regression on nearby

donor gauges and/or prediction from neural networks trained on a large corpus of established gauge data.
Reconstructions achieved median efficiencies of 0.83 (Nash-Sutcliffe, or NSE) and 0.81 (Kling-Gupta, or
KGE) across all sites, and improved KGE at 11 sites versus published data,: with linear regression
generally outperforming deep learning approaches due to the use of target site data for model fitting,
rather than evaluation only. Estimates from this analysis inform ~199 site-months of missing data in the
official record, and can be used jointly with NEON data to enhance the descriptive and predictive value of
NEON?’s stream data products. We provide 5-minute composite discharge series for each site that combine
the best estimates across modeling approaches and NEON’s published data. The success of this effort
demonstrates the potential to establish “virtual gauges,” or sites at which continuous streamflow can be
accurately estimated from discrete measurements, by transferring information from nearby donor gauges
and/or large collections of training data.



Introduction

Discharge, or streamflow, is a fundamental measure in hydrology, biogeochemistry, and river science
more broadly. A measure of water volume over time, discharge is used to infer theoretical watershed
runoff (depth of water “blanketing” the land surface, or depth over time), which in turn is integral to
understanding watershed processes such as chemical weathering (White & Blum 1995). Accurate, and at
least daily, discharge estimates are essential components of nearly any quantitative study of physical or
chemical watershed or river processes at the ecosystem scale. Determination of solute fluxes (Bukaveckas
et al. 1998), gas exchange rates (Hall, 2016), ecosystem metabolism (Odum 1956), and sediment transport
(Graf 1984) all require well constrained estimates of discharge.

Despite its centrality to so many fields of study, discharge is a notoriously difficult metric to capture on a
regular basis, especially in free-flowing systems, as it may vary greatly with annual cycles and weather
events (Turnipseed & Sauer 2010). Established institutions like the USGS (USA), ECCC (Canada), and
ANA (Brazil) have honed their instrumentation, methods, and monitoring locations over decades to
generate reasonable discharge estimates even under extreme conditions (Benson & Dalrymple 1967;
Costa 2004); however, nascent and/or small-budget monitoring efforts face several challenges. Critically,
hundreds of these efforts are constantly occurring within academic research groups, municipalities,
counties, and other entities building smaller gauge networks, with much less expertise, support, and
budget than gauging programs supported by dedicated national programs.

Not including purely model-based methods for discharge prediction (Manning 1891; Hsu et al. 1995,
Durand et al. 2022), automated discharge estimation requires the careful construction of an empirical
“rating curve,” by which discharge can be continuously inferred from water level, or “stage” (but see
Shen 1981). To build such a relationship, technicians must sample discharge and stage at points covering
the range of observable flow, ideally including flood stage. In dynamic systems, this rating curve must be
regularly updated. Point estimates of discharge can be collected using Acoustic Doppler current profiling
(Moore et al. 2017), manual flow meter profiling, or light-based methods (Wang 1988) to determine
average cross-sectional velocity, or via conservative tracer injections (Tazioli 2011). In many streams, two
or more of these methods must be employed, depending on conditions (Turnipseed & Sauer 2010).
During 10-year or 100-year floods, no method may be viable or safe. Even under regular storm
conditions, a technician may be unable to mount a sampling effort quickly enough to capture peak flow,
or may produce an inaccurate measurement. As a result, rating curves may remain in a state of
insufficiency for years, during which time high discharge estimates are unreliable, especially where they
are made by extrapolating beyond observed maximum flow.

Gauge placement presents another obstacle to the rapid deployment of discharge monitoring stations
(Isaacson & Coonrod 2011). Stage measured via pressure transduction is susceptible to bias and
nonlinearity under turbulent flow conditions (Horner et al. 2018). Sensors placed in a depositional area
may be buried by sediment, and installations in forested watersheds or debris flow regions may be
destroyed during floods. Often, equipment must be relocated at least once before a new gauge site can be
properly established. Even an established stage-discharge rating curve must be regularly updated and



maintained because the bed of the river can change as sediment is deposited or excavated, altering the
relationship between stage and flow.

For some studies aiming to quantify stream or watershed processes that require continuous discharge time
series, establishment of a high-quality monitoring station may be infeasible. Where co-location of the site
of interest with an existing stream gaugewhere-ee-loeation-with-an-existing-stream-gauge is also
infeasiblenet-pessibte, record extension (Hirsch 1982; Nalley et al. 2020) and gap-filling (Harvey et al.
2012; Arriagada et al. 2021) techniques cannot be employed, as these rely on prior knowledge of the
statistical properties of the discharge time series being augmented. In such scenarios, streamflow
reconstruction or prediction techniques are suitable, as these may proceed a priori or from minimal
observation. Reconstruction typically involves methods that leverage the correlation between a partially
measured target site and nearby “donor” (predictor) gauges. Discharge may also be quantified in the
absence of direct measurements at the target location via statistical (Chokmani & Ouarda 2004),
mechanistic (Regan et al. 2019), or machine learning (Kratzert et al. 2022) modeling techniques.

Here, we use both linear regression (OLS, L2/Rridge, segmented) and deep learning (LSTM-RNN)
approaches to reconstruct discharge from the early operational phase (2015-2022) of the National
Ecological Observatory Network (NEON), a time during which site teeatien-selection issues and rating
curve development rendered potentially unreliable many site-months of discharge estimates (Rhea et al.
2023a). Our goal was to achieve Kling-Gupta Efficiency (KGE) scores greater than those of the official
NEON continuous discharge product at as many sites as possible. A secondary goal was to improve
temporal coverage of the official record where it contains gaps. For researchers intending to use NEON
continuous discharge data between 2015 and 2022, the results of this effort, as well as efforts by Rhea et
al. (2023a), can ensure that data gaps and questionable periods in the official record are replaced by
high-quality estimates wherever possible. We provide composite discharge series; for all 27 NEON stream
gauge locations, built from the best NEON-published estimates and the best estimates generated by this
study (https://doi.org/10.6084/m9.figshare.c.6488065). Composite series can be visualized at

https://macrosheds.org/data/vlah_etal 2023_composites/.

The success of this effort demonstrates the viability of “virtual gauges” (sensu Philip & McLaughlin
2018; not to be confused with the “virtual staff gauges” of Seibert et al. 2019). In this study, we use the
term to describe sites at which discrete discharge observations can be used to fit or evaluate models that
generate continuous flow. For accurate results, field measurement campaigns should prioritize
characterizing the distribution of possible flow conditions, rather than achieving any particular threshold

number of observations. s-study, we use the te 0-desc

generate-continreus-flew=Methods like those presented could be used to reduce the cost and simplify the
process of establishing streamflow monitoring sites, especially in river networks that are already partially
gauged.

Methods

Data selection, acquisition, and processing
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We used the “neonUtilities” package (Lunch et al. 2022) in R to retrieve NEON discharge data. Officially
released (NEON 2023b) and provisional (NEON 2023c) field measurements-(NEGON-2023b+NESN-
2023e-aeeessed-2023-84=23) were used to fit linear regression models and evaluate all models, as these
data were collected directly by NEON technicians, using a combination of state-of-the-art methods
including acoustic Doppler current profiling (ADCP; Moore et al. 2017), conservative salt tracer releases
(Tazioli 2011), and flow meter measurements (Pantelakis et al. 2022). We used quality-controlled
“finalQ” values where available, or “totalQ” values (taken directly from the flowmeter) in their absence.
We refer to NEON’s discharge field measurements hereafter as e.g. “the response variable”, or “response
discharge time series,” in the context of linear regression, or as the “target” variable in the context of
machine learning. In either context, we refer to the 27 NEON sites for which discharge predictions were
generated as “target sites” or “target gauges” (Table 1).

Continuous discharge data (NEON 2023a2023-release-aceessed-2023-05-0+) were also retrieved via
neonUtilities. These were used to finetune a subset of site-specific neural network models, and to
construct composite discharge series. Provisional continuous discharge data were not used. Evaluation
results used to distinguish likely reliable vs. potentially unreliable subsets of NEON’s RELEASE-2023
continuous discharge time series, per site-month, were provided by Rhea et al. (2023a) and accessed
through HydroShare (Rhea 2023). Continuous elevation of surface water data are available, but
approximately one third of all site-months are marked by disagreement between reported surface
elevation and measured stage, or by likely sensor drift (Rhea et al. 2023a). We therefore chose not to use
surface elevation to inform our models, though it no doubt contains predictive value.

Donor gauge data for linear regression analysis were acquired primarily from the US Geological Survey’s
National Water Information System (NWIS), using the “dataRetrieval” package (DeCicco et al. 2022) in
R. NWIS gauge ID numbers are provided in cfg/donor_gauges.yml at the GitHub and Zenodo links
below. Additional donor gauge data from Niwot Ridge LTER and Andrews Forest LTER were retrieved
from the MacroSheds dataset (Vlah et al. 2023) via package “macrosheds” (Rhea et al. 2023b), and from
the EDI data portal (Johnson et al. 2020), respectively.

We used the original CAMELS dataset (Newman et al. 2014; Addor et al. 2017), the USGS National
Hydrologic Model with Precipitation-Runoff Modeling System (NHM-PRMS; hereafter NHM; Regan et
al. 2019), and the MacroSheds dataset as training data for neural network simulations of discharge data at
each target site. CAMELS watershed attributes were generated for MacroSheds and NHM sites using the
code provided at https://github.com/naddor/camels, except where otherwise indicated in Table 2, and
daily Daymet meteorological forcings (Thornton et al. 2022; sensu Newman et al. 2015) were retrieved
via Google Earth Engine (Gorelick et al. 2017). All code for this project can be found on GitHub, at

https://github.com/vlahm/neon g sim, or in the Zenodo archive at
https://doi.org/10.5281/zenodo0.7976251. All data sources and links are provided in Table S2.

Donor Gauge Selection

Candidate donor gauges were identified by visually examining an interactive map of NEON gauges,
USGS gauges, and MacroSheds gauges
(https://macrosheds.org/ms usgs etc reference map/megamap.html), generated with package “mapview”
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(Appelhans et al. 2022) in R. We also used the National Water Dashboard of the USGS
(https://dashboard.waterdata.usgs.gov/app/nwd/en/?aoi=default) to identify active gauges in Alaska, USA.
For each target site, up to four donor gauge candidates were selected on the basis of spatial proximity and
geographic similarity to the target site (Figure 1). Generally, no greater than this number of gauges were
even remotely reasonable candidates (i.e. within 50 km of the target site; not in an urban area; not
downstream of a reservoir), but for one target site (MCRA) we had ten nearby candidate gauges to select
from-all associated with the Andrews Experimental Forest in western Oregon State, USA. In this case we
chose three candidate sites representing a catchment upstream of the target site (GSWS08), downstream
of the target site on the MCRA mainstem (GSLOOK), and downstream on a tributary of MCRA
(GSWSO01).

Barring gauges on reaches that are subject to overt human influence, the exact methods used to choose
donor gauges are of little consequence, so long as informative donor gauges are not overlooked. In
practice, there will usually be just a few, if any, potential donor gauges available for a given location. If
multiple donor gauges are included in a regression, L2 regularization (ridge regression) should be used to
account for their covariance (see “Linear regression and model selection” subsection below.)

Target sites

e CREEB

GUIL
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Figure 1. Map of target sites (NEON) and donor gauge candidates for three target sites: MCRA = McRae
Creek, state of Oregon; REDB = Red Butte Creek, state of Utah; GUIL = Rio Guilarte, Puerto Rico.

All 27 lotic (flowing) aquatic sites associated with NEON were included as target sites for discharge
prediction in this study (Figure 1). Sites TOMB, BLWA, and FLNT are installed on major rivers,
downstream of hydropower dams. All other sites have been free of dam influence since 2012 at the latest,
and are designated “wadeable streams” by NEON. In addition to the three sites above, hydrology at
BLUE, GUIL, KING, MCDI, and ARIK may be influenced by agricultural activity, especially in the
relatively arid Midwest (i.e. states KS, CO, OK). Continuous discharge data for TOMB are provided by a
nearby gauge of the U.S. Geological Survey’s National Water Information System, and are given at hourly
intervals, rather than NEON’s customary 1-minute intervals.

Table 1. Target sites for discharge prediction. See https://www.neonscience.org/field-sites for more
information.

Site code Full name State (USA) | Watershed area Mean watershed
(km2) elevation (m)
TOMB Lower Tombigbee River AL 47085.3 20

BLWA Black Warrior River AL 16159.4 22



https://www.neonscience.org/field-sites

FLNT Flint River GA 14999.4 30
ARIK Arikaree River CO 2631.8 1179
BLUE Blue River OK 322.2 289
SYCA Sycamore Creek AZ 280.3 645
OKSR Oksrukuyik Creek AK 57.8 766
PRIN Pringle Creek TX 48.9 253
BLDE Blacktail Deer Creek WY 37.8 2053
CARI Caribou Creek AK 31.0 225
MCDI McDiffett Creek KS 22.6 396
REDB Red Butte Creek uT 16.7 1694
MAYF Mayfield Creek AL 14.4 77
KING Kings Creek KS 13.0 324
HOPB Lower Hop Brook MA 11.9 203
LEWI Lewis Run VA 11.9 152
BIGC Upper Big Creek CA 10.9 1197
GUIL Rio Guilarte PR 9.6 551
LECO LeConte Creek TN 9.1 579
MART Martha Creek WA 6.3 337
WLOU West St Louis Creek CO 4.9 2908
CUPE Rio Cupeyes PR 4.3 157
MCRA McRae Creek OR 3.9 876
COMO Como Creek CO 3.6 3021
TECR Teakettle Creek - Watershed | CA 3.0 2011
2
POSE Posey Creek VA 2.0 276




WALK Walker Branch TN 1.1 264

Linear regression and model selection

€&5W-S04>=All donor and response discharge time series were neglog transformed (Equation 1;
Whittaker et al. 2005) before fitting linear regression models.

Equation 1: X roglog = sign(x)log(|x| + 1)

Series were scaled by 1000 before transformation, in order to reduce the disproportionate impact of
adding one to every value. Response observations were synchronized to the interval of the predictor series
by approximate datetime join, allowing forward or backward time-shifts of up to 12 hours if necessary.

One of three forms of linear regression was employed at each site, depending on the number and location
of donor gauges, and the donor-target gauge relationships. For sites with a single donor gauge (REDB,
HOPB, BLUE, SYCA, LECO), considered predictors were: discharge from the donor gauge, a 4-season
categorical variable, and their interaction. Additionally, an intercept parameter could be estimated, or not,
for each specification. Thus, up to six models were fit using Ordinary Least Squares (OLS) regression
(Galton 1886), ensuring at least 15 observations per model parameter. At LECO, an additional dummy
variable was included to address an intercept change due to a wildfire in November of 2016. The best
model was selected via 10-fold cross-validation, minimizing mean squared error (MSE). MSE, being a
squared-error term, disproportionately penalizes inaccurate prediction of high discharge values, and helps
to balance against the relative rarity of high discharge measurements in the field data. At site SYCA, the
log-log relationship between discharge at the target gauge and a single donor gauge exhibited a distinct
breakpoint, and segmented least-squares regression was used (R package “segmented”; Muggeo 2008). At
all other sites (19 in total), predictors included discharge series from 2-4 donor gauges, season, and all
interactions. To control overfitting and shrink covarying coefficients toward zero, we used L2
regularization (Rridge regression; Gruber 2017) via R package “glmnet” (Friedman et al. 2010). As with
the other regression approaches, 10-fold cross-validation and MSE loss were used for model parameter
selection—in this case for the value of the penalty hyperparameter A, which was set to the mean across
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folds of A producing minimum cross-validated error. Unlike OLS and segmented regression, rRidge
regression uses biased estimators that complicate calculation of prediction intervals. We generated 95%
prediction intervals for ridge regressionglmnet discharge estimates using the 95th percentiles of 1000
bootstrap predictions at each prediction point, generated from 1000 resamples of the fitting data, stratified
by season. We emphasize that these prediction intervals should be conservative estimates of the true
uncertainty, as they do not fully account for uncertainty due to bias (Goeman et al. 2012).

For each site, we fit two sets of models as described above, one with discharge scaled by watershed area
(i.e. “specific discharge” in the surface water hydrology sense) prior to transformation, and one without
areal scaling. Only one model from each set was ultimately selected for each target site, on the basis of
Kling-Gupta efficiency (KGE; Gupta et al. 2009), a composite model efficiency metric that incorporates
measures of correlation, variance, and bias. We also report percent bias and Nash-Sutcliffe efficiency
(NSE; Nash & Sutcliffe 1970), a measure of predictive accuracy that implicitly compares predictions to a
mean-only reference model.

Predictions were generated for all time points during which data were available at the selected donor
gauges. At target site COMO, a secondary model omitting one donor gauge was able to produce 36%
more predictions than the selected model, so our predicted discharge at COMO is a composite of both
models, preferring the better model’s predictions where available. We were unable to locate sub-daily
donor gauge data near COMO, so regression predictions for this site are at a daily interval. Regression
predictions for all other sites were generated at sub-daily intervals matching the coarsest interval across
predictor gauges—generally 15 minutes, though note that in most cases these predictions were interpolated
to five minutes for our composite discharge product.

Neural network setup and operation

Supplementing the linear regression methods described above, we simulated discharge data at all 27 target
sites using long short-term memory recurrent neural networks (LSTM-RNN; hereafter “LLSTM”;
Hochreiter & Schmidhuber 1997). Four LSTM strategies were employed, all of which involved training
on a large and diverse corpus of stream discharge data (Table 3). Two of these strategies included further
finetuning to the time-series dynamics of each target site in turn. Due to the relative scarcity of
field-measured discharge observations (between 39 and 213 per site; mean 122), none were used in
LSTM training. Instead, these measurements were used only to evaluate predictions. LSTMs trained in
this study are intended only for discharge prediction within the temporal and spatial bounds of NEON’s
early operational phase, not for forecasting or application to other sites. Therefore, all available, daily
training data were used as such; no validation set was kept for hyperparameter tuning, and no holdout set
of daily estimates was kept for evaluation (note that split-sample designs may be undesirable more
generally: Arsenault et al. 2018; Guo et al. 2018; Shen et al. 2022). See Kratzert et al. (2019b) and Read
et al. (2019) for split-sample considerations in the context of a generalist and process-guided generalist
LSTM, respectively.

After a hyperparameter search routine, described below, potentially skilled models were identified as
those achieving at least 0.5 KGE and 0.4 NSE. The best performing, potentially skilled LSTM for each
site (if applicable) was then re-trained 30 times, forming an ensemble. Ensembles were trained for 18 of



27 sites. LSTM predictions included in our composite discharge product are means taken across the
distributions of ensemble point predictions. Uncertainty bounds were computed as the 2.5 and 97.5%
quantiles of these distributions. LSTM skill was evaluated on the basis of mean ensemble efficiency
(KGE) with respect to field-measured discharge (Table S1).

Daily discharge time series (training data) and field-measured discharge were scaled by watershed area.
For each predicted day, LSTMs received 5 dynamic Daymet meteorological forcing variables and 11
static watershed attribute summary statistics (Table 2). Multitask learning (Caruana 1998; Sadler et al.
2022) was found to improve discharge prediction broadly in a preliminary analysis, so Daymet minimum
air temperature was used as a secondary target variable. Kratzert et al. (2019a) found that a maximum of
about 150 preceding days were able to influence LSTM output on a similar prediction problem, so we set
the input sequence length to 200 days to ensure full utilization of available information. In other words,
for each day of prediction, the model was able to leverage information from the preceding 200 days.

We employed four different training pipelines described in Table 3. Of the 671 CAMELS watersheds (i.e.
basins), we used a subset of 531 with undisputed areas less than 2000 km? (Newman et al. 2017). For
finetuning data, we used version 1 of the MacroSheds dataset (Vlah et al. 2023). We excluded
MacroSheds sites outside North America, or with coastal or urban hydrological influence, for a total of
133 sites out of the 169 that are currently available. We chose MacroSheds sites for finetuning because the
MacroSheds and NEON datasets focus primarily on small watersheds, often smaller than 10 km? in area,
while only eight CAMELS watersheds are smaller than 10 km? and most are larger than 100 km? (Vlah et
al. 2023). Daily mean discharge computed from NEON’s continuous discharge product, only for those
site-months deemed Tier 1 or Tier 2 by Rhea et al (2023a), was used alongside MacroSheds data for
finetuning.

For the process-guided strategies, we used NHM estimates for all reaches coinciding with a CAMELS or
MacroSheds gauge, for a total of 551 reaches. Only nine target sites on relatively high-order streams were
amenable to the process-guided specialist approach, as these sites are on reaches large enough to be
modeled by the NHM. The most recent version of the NHM at the time of this writing provides discharge
estimates beginning in 1980, and ending in 2016, just before the installation of most NEON target sites.

Table 2. LSTM input data. * = Attribute tested as an afterthought, but not included in this study due to
negligible improvement in trial parameter search.

Meteorological forcing data (watershed-average time series)

Maximum air temp | 2-meter daily maximum air temperature (°C)

Precipitation Mean daily precipitation (mm/day)
Solar radiation Daily surface-incident solar radiation (W/m2)
Vapor pressure Near-surface daily average vapor pressure (Pa)

PET Potential evapotranspiration (mm); estimated using Priestley-Taylor




formulation with gridded alpha product (Aschonitis et al. 2017)

Watershed attributes (statistics computed over full record)

Precipitation mean

Mean daily precipitation (mm/day)

PET mean Mean daily potential evapotranspiration (mm/day); estimated using
Priestley-Taylor formulation with gridded alpha product (Aschonitis et al.
2017)

Aridity index Ratio of PET mean to Precipitation mean

Precip seasonality

Seasonality of precipitation; estimated by representing annual precipitation and
temperature as sine waves. Positive values indicate summer peaks, while
negative values indicate winter peaks. Values near 0 indicate uniform
precipitation throughout the year.

Snow fraction

Fraction of precipitation falling on days with temp < 0 °C

High precipitation Frequency of high precipitation days (days with > 5x mean daily precipitation)
frequency

High precip Average duration of high precipitation events (number of consecutive days >
duration 5x mean daily precipitation)

Low precip Frequency of dry days (days with precipitation < 1 mm/day)

frequency

Low precip duration

Average duration of dry periods (number of consecutive days with
precipitation < 1 mm/day)

Elevation Catchment mean elevation (m)

Slope Catchment mean slope (m/km)

Area Catchment area (km?)

Source* Binary indicator for NHM estimates—process-guided LSTMs only.
Target data (time series)

Discharge Specific discharge, or discharge normalized by watershed area. The same

quantity may be referred to as “runoff” in other studies (mm/day).

Minimum air temp

2-meter daily minimum air temperature (°C)




Table 3. LSTM model training pipelines used in the simulation of discharge at target sites. Here, “NEON”
refers to NEON’s continuous discharge product, RELEASE-20232823-retease, with quality-flagged
estimates and < Tier-2 site-months (according to Rhea et al. 2023a) removed.

MacroSheds + NEON

Model type Phase 1 Phase 2 Phase 3
Generalist Pretrain on CAMELS Finetune on N/A
MacroSheds + NEON
Specialist Pretrain on CAMELS Finetune on Finetune on NEON

target site

specialist

CAMELS-NHM

MacroSheds +

Process-guided Pretrain on CAMELS + | Finetune on N/A
generalist CAMELS-NHM MacroSheds +
MacroSheds-NHM +
NEON + NEON-NHM
Process-guided Pretrain on CAMELS + | Finetune on Finetune on NHM

estimates for target site

MacroSheds-NHM +
NEON + NEON-NHM

LSTMs were configured in R, and trained; validated;-and-tested-using v1.3.0 of the NeuralHydrology
library in Python (Kratzert et al. 2022; Van Rossum & Drake 2009) on the Duke Compute Cluster at Duke
University, Durham NC, USA. All trained models used the Adam optimizer (Kingma & Ba 2014) and
NeuralHydrology’s “NSE loss” function, after an initial evaluation in which we compared it to MSE and
root mean squared error (Table 4). Learning was annealed using series of three fixed rates for pretraining
and for round one of finetuning, according to:

Equation 2: 100

Where r is the learning rate, a is any power of 10 between 0.1 and 107, and E is the number of training
epochs. Learning rate was annealed using series of two fixed rates for round two of finetuning, according
to:

r:{w e e {gn}l1--- |4
Equation 3: To: €€ { ?-I 'E}

Learning rate and other hyperparameters were selected via an inexhaustive (pseudo) grid search (Table 4),
i.e. we specified a sequence of possible values for each hyperparameter and randomly selected from them

to specify 30 models for each generalist. For each site, one specialist model was then configured to further
finetune each of the 30 generalists, again using partial grid search to define any mutable hyperparameters.

Otherwise, hyperparameters were inherited from the previous training period (Table 4). Due to our



incomplete hyperparameter search procedure, better combinations probably exist. We elected not to
exhaustively pursue optimal hyperparameter combinations due to the computational demand of a full grid
search, and a lack of access via NeuralHydrology to callback methods necessary for implementation of
true random search (Bergstra & Bengio 2012).

Table 4. LSTM hyperparameter search space for all model types, and selected values (bold, italic) used
for pretraining. These were observed to allow for both malleability and high performance of subsequent
finetuning iterations over nearly 2000 exploratory LSTM trials. The ditto mark “*"” indicates that a
finetuning parameter is inherited from the preceding training iteration. The relationship of a to the
learning_rate is defined in Equations 2 and 3. See the NeuralHydrology documentation for parameter
definitions: https://neuralhydrology.readthedocs.io/en/latest/usage/config.html.

LSTM parameter Pretrain Finetune 1 Finetune 2 (specialists
only)

hidden_size 20, 30, 40, 50
output_dropout 0.1, 0.2,0.3, 0.4, 0.5, 0.6 0.2,0.3,0.4,0.5
learning_rate a 102,103, 10%, 10° 102,103, 10, 10° 102,103, 10%, 10°
batch_size 32, 64, 128, 256, 512, 1024 32, 64, 128, 256, 512
epochs 20, 30, 40, 50, 60 20, 30, 40 10, 20, 30
finetune_modules N/A head, Istm, head & Istm | head, Istm
target_variables discharge, discharge & min air

temp
loss NSE, MSE, RMSE h

All LSTM models were outfitted with fully connected, single-layer embedding networks to efficiently
encode inputs as fixed-length numerical vectors (Arsov & Mirceva 2019). Separate embedding networks
were used for static and dynamic inputs, with 20 neurons for static inputs and 200 neurons for dynamic
inputs. All embedding neurons used the hyperbolic tangent activation function. Another advantage of
embedding networks in the context of the NeuralHydrology library is that they provide one of few
opportunities to introduce dropout, which can improve training efficiency and reduce overfitting
(Srivastava et al. 2014).

Composite discharge data product

This study generated time-series predictions of discharge for each lotic NEON site using up to three
distinct processes: linear regression on absolute discharge, linear regression on specific discharge, and one
of four LSTM strategies. We provide regression predictions wherever applicable (24 of 27 sites). LSTM
predictions are provided only for sites that had promising model performance after a hyperparameter
search, and for which ensemble models were therefore trained (18 of 27). All model outputs and results
from this study are archived at https://dx.doi.org/10.6084/m9.figshare.22344589.
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In addition to predictions from individual modeling strategies, we provide an analysis-ready discharge
dataset for all 27 sites that splices the best available predictions across methods, including published
NEON estimates (NEON 2023aaeeessed-2023-05-0+), into composite series
(https://dx.doi.org/10.6084/m9.figshare.23206592), which can be visualized interactively at
https://macrosheds.org/data/vlah etal 2023 composites/. Composite series for each NEON site begin at
the start of site operation and extend to at most September 30, 2021, the last date included in the 2023
release of NEON’s continuous discharge product. We also provide individual model predictions extending
through 2022. A complete list of products from this study, and their links, can be found in Table S3.

To construct composite series, we first distinguished as “good” site-months of NEON discharge estimates
categorized as Tier 1 or Tier 2 by Rhea et al. (2023a). For a NEON site-month to meet the requirements
for at least Tier 2, four requirements must be met. The linear relationship between stage, determined from
pressure transducer readings, and field-measured gauge height must score at least 0.9 NSE. The
transducer-derived stage series must also pass a drift test, relative to gauge height, but only if sufficient
data exist to perform such a test. The rating curve used to relate stage to discharge must score at least 0.75
NSE, and fewer than 30% of predicted discharge values may exceed the range of measured discharge
used to build the curve. See Rhea et al. (2023a) for further details.

Although only 50% of NEON’s RELEASE-20232823=release estimates are classified as Tier 1 or Tier 2,
the remainder may still be of high analytical value if NEON’s quality control indicators and uncertainty
bounds are observed. We also stress that NEON rating curves and protocols have improved over the
course of its early operational phase, and continue to do so.

We then ranked the available predictions for each site, assigning rank 1 either to predictions from linear
regression, or to NEON’s continuous data product, depending on overall KGE and NSE against field
measured discharge. KGE was considered first, and used to determine preference except in cases where
the difference between NSE scores was greater than that between KGE scores, and opposite in sign. Rank
2 predictions were then used to fill gaps of 12 or more hours in the rank 1 series, but only “good” NEON
site-months were included. Only after this first round of gap-filling were the remaining NEON data
incorporated, with site-years achieving at least 0.5 KGE and 0.54 NSE against field-measured discharge
being used to fill still-remaining gaps. Finally, daily LSTM predictions (placed at 12:00:00 UTC on the
day of prediction) were used to fill any recalcitrant gaps, but only if produced by an ensemble model
achieving at least 0.5 KGE and 0.5 NSE across all field discharge observations. Note that while such
benchmarks are in common use (Moriasi et al. 2015), the efficiency that any model can or should achieve
varies substantially with the hydroclimate and watershed characteristics of a given site (Seibert et al.
2018). We provide all data and code for modifying the composite discharge product in accordance with
alternative benchmarks as users see fit. After visual examination of composite series plots, we chose to
prefer NEON predictions to linear regression predictions at site ARIK, “good” or not, due to frequent
sharp disjoints between the two predicted series. See Table S1 for an account of linear regression and
LSTM methods used in the construction of ensemble series.

The prevailing interval varies across data sources used to assemble our composite discharge product, from
one minute (NEON) to one day (LSTM predictions; regression predictions at sitt COMO). Regression
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predictions were primarily generated at 15-minute intervals, and their timestamps are always divisible by
15 minutes. Around the prevailing NEON interval there is considerable variation due to data gaps and
sensor reconfigurations, both across sites and across the temporal ranges of each site’s record. To reduce
the complexity associated with irregular time-series analysis, we synchronized the interval across data
sources to five minutes. Regression estimates were linearly interpolated to five minutes, though gaps
larger than 15 minutes were not interpolated. NEON estimates were first smoothed with a triangular
moving average window of 15 minutes to remove unrealistic minute-to-minute noise associated with
Bayesian error propagation. They were then interpolated the same way as the regression estimates, and
finally downsampled to five minutes, with some timestamps being shifted by up to two minutes. For
example, a duration of 30-minute sampling, with a sample taken at 00:03:00, would be shifted by two
minutes, by rounding each timestamp up to the nearest minute divisible by five.

Results and Discussion

A performance comparison of linear regression on discharge from donor gauges, and four LSTM
strategies, is shown in Figure 2 and Figure S1, and detailed in Table S1. Via linear regression, we were
able to produce 15-minute discharge estimates at 11 sites with overall KGE scores higher than those of
published series (Figure 2). At four of the same sites, we achieved higher KGE via LSTM methods, which
generated daily discharge series. Of the ten sites at which published discharge KGE was less than 0.8, we
improved five to above that mark (mean 0.932, n = 5).
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Figure 2. Efficiency of five stream discharge prediction methods and NEON’s published continuous
discharge product at 27 NEON gauge locations, versus field-measured discharge. Small, white triangles
represent max/min KGE of published discharge by water year (Oct 1 through Sept 30) with at least 5 field
measurements (or 2 for site OKSR). KGE was computed on all available observation-estimate pairs
except those with quality flags (dischargeFinalQF or dischargeFinal QFSciRvw of 1). For the best
performing LSTM method, at all sites except TECR, FLNT, REDB, WALK, POSE, and KING, displayed
KGE is averaged over 30 ensemble runs with identical hyperparameters. For the sites just named,



performance of a chosen method, after ensembling, dropped below that of at least one other method’s
optimal KGE from parameter search. For all other LSTM site-method pairs, which were not ensembled,
displayed performance is that of the best model trained during the parameter search phase. Sites are
ordered by the KGE of NEON continuous discharge. See Table 3 for LSTM model definitions. KGE of 1
is a perfect prediction, while KGE of -0.41 is similar in skill to prediction from the mean. Negative values
are truncated at -0.05 in this plot to improve visualization.

For 12 of 27 sites, linear regression on specific discharge (i.e. scaled by watershed area) provided the
most accurate discharge predictions, while linear regression on absolute discharge performed better at the
other 12 sites with donor gauges. LSTM models (as proper ensembles) outperformed linear regression at
only 2 sites. In general, linear regression provided more accurate predictions than all LSTM methods.
Linear regression on absolute discharge produced estimates with median NSE of 0.848 and median KGE
of 0.806, across sites (n = 24; Table 5). Linear regression on specific discharge produced similar median
scores (Table 5), but with deviations of up to 0.05 NSE and 0.08 KGE at individual sites.

Table 5. Performance of five stream discharge prediction methods, and official continuous discharge
time-series data, across n of 27 NEON gauge locations (final column). For both the Nash-Sutcliffe and
Kling-Gupta Efficiency coefficients, a value of 1 indicates perfect prediction. A value of 0 NSE indicates
that predictive skill is equivalent to prediction from the mean, while negative NSE is worse than mean
prediction. This threshold lies at approximately -0.41 for KGE (Knoben et al. 2019). “Linreg” = linear
regression on donor gauge discharge series, and “scaled” means predictor and response discharge were
scaled by their respective watershed areas.

NSE KGE

Model/Data Median | Mean Min Max | Median | Mean Min Max n

Official record 0.880 0.417 -9.95 | 0.989 | 0.839 0.711 | -1.50 | 0.964 | 27
Linreg 0.848 0.760 | -0.038 | 0.993 | 0.806 0.746 | -0.697 | 0.988 | 24
Linreg scaled 0.847 0.757 | -0.037 | 0.993 | 0.807 0.743 | -0.695 | 0.989 | 24

Generalist LSTM 0.473 -18.8 -498 0.904 0.634 -0.220 | -20.2 | 0.852 | 26

Specialist LSTM 0.477 -12.6 -307 | 0920 | 0.556 | -0.256 | -15.7 | 0.895 | 25

Process-guided 0.434 -31.3 -824 1 0.848 | 0.618 | -0.453 [ -26.4 | 0.869 | 26
generalist LSTM
Process-guided 0.329 -92.0 -831 0.749 | 0.652 -2.40 | -26.5 | 0.866 | 9

specialist LSTM




Linear regression was not applicable at sites TECR, BIGC, or WLOU due to the lack of donor gauges
contemporary with target gauge data. Donor gauges associated with Kings River Experimental
Watersheds exist within close proximity to TECR and BIGC, but we were unable to access up-to-date
discharge records for these gauges.

The process-guided specialist LSTM yielded predictions on par with those of the other LSTM strategies
in terms of KGE, (median 0.652; n = 9), but performed worst of the four in terms of NSE (median 0.329;
n =9). Conversely, the specialist performed better than the generalist in terms of NSE, but not KGE. The
process-guided specialist LSTM strategy was viable at nine sites for which discharge estimates were
available from the National Hydrologic Model.

In addition to improvements in accuracy, estimates from this study inform ~5,981 site-days (75%) of
missing data in the official discharge record (Figure 3), though note that they also omit ~4,486 site-days
otherwise present in NEON’s official record. Omissions occur wherever observations are missing from
the records of one or more donor gauges, and LSTM methods did not achieve desired efficiencies.
Approximately 1,221 site-days are missing from the official record and from our reconstructions.
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Figure 3. Durations of missing values (gaps) in NEON’s 2023 release of continuous discharge time series,
illustrating gaps filled or informed by estimates from this analysis. All officially published values are
shown, including those with quality control flags. Sites are ordered as in Figure 2. Gaps smaller than six
hours are not indicated. Figure S10 is the same, but with a fixed and labeled x-axis.

Estimated discharge time series from this study are of practical value for any researcher using NEON
continuous discharge data, especially for those sites and site-months at which published data from
NEON?’s early operational phase may be unreliable (Rhea et al. 2023a). Figure 4 shows that official
records at sites REDB and LEWTI are compromised by disagreement (erratic sections of gray lines)
between pressure transducer stage readings and manual gauge height recordings, discussed in Rhea et al
(2023a). Red lines show improved estimates via linear regression on discharge from donor gauges. Sites
FLNT and WALK show generally close agreement between NEON discharge and our regression
estimates, but note uncertainty associated with high discharge values.
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Figure 4. Best linear regression predictions of continuous discharge for four NEON gauge-years,
compared with official NEON discharge data. All officially published values are shown, including those
with quality control flags, indicated by black marks on lower border. Light red polygons represent 95%
prediction intervals. NEON uncertainty is not shown.

Discussion



This study was designed to produce high-quality estimates of continuous discharge for NEON stream
gauges, especially at ten gauges for which the KGE of published continuous discharge was lower than
0.8, over the full record, when compared to field-measured discharge. A secondary goal was to improve
temporal coverage of the official discharge record where possible.

We treat NEON field-measured discharge as truth, which means there are 39-213 observations for each
target site. Although these numbers represent a tremendous investment of time and technical effort, they
do not meet the high data volume requirements for most machine learning approaches, so we used field
discharge only to evaluate, rather than train, LSTM models. By contrast, in linear regression, regardless of
the details of any particular method, we ultimately fit a line to the relationship between donor gauge data
and field measurements at each target site. Because the linear regression models are allowed to “see” all
of the target site data (after a model is selected via cross-validation), they have a powerful advantage over
the LSTM approaches, which in this context must essentially treat target watersheds as if they are
ungauged. Furthermore, whereas the LSTM models must parameterize each day of prediction
individually, the regression models need only parameterize relationships between flow regimes. Still, if
given enough training data, including examples of watersheds and streams similar to each of those
modeled in this study, the LSTM approaches would eventually close the performance gap. See Figures

S2, S3, S4, S5, S7, and S8

for linear regression diagnostics.
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In this study, discharge estimates produced by linear regression were more accurate than those generated
by LSTM models in 21 of 23 comparisons (Figure 2). This demonstrates the value of existing gauge
networks in advancing discharge estimation at newly or partially gauged locations; however, there is a
limit to the predictive potential of linear regression methods, as they depend on strong correlation
between streamflow at target and donor gauges. In principle, there is no such limit for machine learning
approaches, which are instead limited by the quality and quantity of training data.

The process-guided specialist LSTM yielded predictions on par with those of the other LSTM strategies
in terms of KGE, but performed worst of the four in terms of NSE, possibly indicating that information
gleaned from NHM estimates helped this strategy to accurately capture discharge variance and reduce



prediction bias, without ultimately improving the correlation between predictions and observations.
Unlike KGE, NSE only explicitly captures this latter metric (Nash & Sutcliffe 1970; Gupta et al. 2009).
Conversely, the specialist performed better than the generalist in terms of NSE, but not KGE, Genverselys-
the-specialist-performed- better-than-the-generalist-in-terms-of NSE, but not KGE,-suggesting information
contained in NEON’s continuous discharge productestimates was of disproportionate predictive value
relative to each of correlation, variance, and bias, favoring correlation.

The specialist may have alse-been affected by data filtering choices. After filtering NEON continuous
discharge for rating curve issues, drift, and quality flags, relatively few daily estimates were available for

some sites (47-1642). Annual and seasonal variation in meteorological forcings and discharge in NEON
sites’ generally small, often mountainous watersheds may be large enough that finetuning a pretrained
LSTM on a few hundred days of site-specific data reduces its ability to generalize at that site. Our
specialist LSTM strategy in particular might be improved with a broader hyperparameter search,
especially one that explores smaller learning rates. Ideally, site-specific finetuning should enable better
prediction by allowing the network to assimilate information unique to the target site without corrupting
previously learned generalities. For validation plots of all ensembled LSTMs, see Figure S6.

q NSEf KGET i
Model/Datat | Median§| Mean§|| Min} | Max$| Median§| Meanf| Min | Max{| nf

Linreg scaledf 0.847% | 0.757%| -0.037| 0,993 0.807% | 0.743f| -0.6959| 0.989%| 247

generalist 1LSTM

Process-guided’| | 0.329% | -92.0% | -831% | 0.749Y| 0.652% | -2.40% | -26.5%| 0.866% 94
o ESTMS




available-from-the-National-Hydrologic- Model-
at nine sites for which discharge estimates were available from the National Hydrologic Model. By using
a mechanistic (i.e. process-based) model with higher spatial resolution than the NHM, it should be
possible to apply this process-guided approach at more of the NEON sites. A potentially stronger
process-guided approach would use mechanistic model predictions as features (predictors), rather than
training targets, but that would require mechanistic model predictions concurrent with discharge series at
target sites, whereas NHM predictions at the time of this writing are available only through the year 2016.
For a summary of process-guided deep learning strategies, see the “Integrating Design” subsection of
Appling et al. (2022).

i i =The process-guided specialist LSTM strategy was viable
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We caution that evaluation scores for both NEON’s published estimates and ours are computed on a small
fraction of each series for which both an estimate and a direct field measurement are available (39-213 per
site), and that measurements tend to be collected disproportionately at low flow. This often occurs for
practical reasons such as site access and technician safety, but may also reflect a need to characterize the
low-flow variability of the stage-discharge relationship in streams with unstable low-flow hydrologic
controls, such as unconsolidated bed material.

Whatever the reason for less sampling at high flowFer-praetical-reasens;field-discharge-measurements-are

i ionately-in-low flow-c —As-a=restlt, any model attempting to use field
measurements to reconstruct continuous discharge will estimate with greatermerehigher uncertainty at
high flow than at low, and=Fherefere users of our composite discharge product should observe
uncertainties associated with estimates from all methods. Mechanistic models that proceed from physical
principles, or data-driven approaches that can generalize from prior observations, do not in principle
suffer this disadvantage, as they do not depend on observations from a target site. However, these
approaches may not reliably generate strong predictions at all sites or under all conditions (Razavi &
Coulibaly 2013; Kratzert et al. 2019b), and may produce erratic point estimates where conditions diverge
from past observations. Hybrid approaches that successfully leverage field measurements, as well as
physical principles or learned relationships, are likely to yield well-constrained predictions where our
efforts did not.

This study demonstrates that, in proximity to established streamflow gauges, even simple statistical
methods can be used to generate accurate, continuous discharge at “virtual gauges,” where discrete
discharge has been measured. The number of field measurements across sites in this study varies from 39
to 213, but the number required for virtual gauging may be substantially smaller even than the minimum
of this range. If the discharge relationships between a target site and all donor gauges were perfectly linear
or log-linear, they could in principle be established with only two precise measurements at the target site.
More important than the quantity is the distribution of measurements across flow conditions, which
should be sufficient to fully characterize all modeled discharge relationships and their linearity or lack
thereof (Sauer 2002; Zakwan et al. 2017). Concretely, we advocate for “storm chasing,” or
disproportionately seeking to sample discharge under high-flowextreme conditions, and during both rising
and falling limbs of storm events, rather than routine sampling. Observed NEON flow conditions relative
to predicted discharge can be seen in Figure S9. See Philip & McLaughlin (2018) for further commentary
on establishing a virtual gauge network, and Seibert & Beven (2009) and Pool & Seibert (2021) for
information on the number and statistical properties of discharge samples required to establish strong
stage-discharge or discharge-discharge relationships.

Conclusions

Using linear regression on donor gauge data and LSTM-RINNs, we reconstructed continuous discharge at
5-minute and/or daily frequency for the 27 stream and river monitoring locations of the National
Ecological Observatory Network (NEON) over the water years 2015-2022. Relative to field-measured
discharge as ground truth, our estimates achieve higher Kling-Gupta efficiency than NEON’s official
continuous discharge at 11 sites. We also provide continuous discharge estimates for ~199 site-months for
which no official values have been published. Estimates from this study can be used in conjunction with



officially released NEON continuous discharge data to enhance the analytical potential of NEON’s river
and stream data products during its early operational phase. Toward that end, we provide composite
discharge series for each site, incorporating the best available estimates across all methods used in this
study and NEON’s published estimates. Considering the lag of up to 2.5 years before provisional
discharge data become fully quality controlled and officially released by NEON, our methods may also be
used to increase the rate at which discharge-associated stream chemistry, dissolved gas, and water quality
products become fully usable by the community. All data and results from this study can be downloaded
from the Figshare collection at https://doi.org/10.6084/m9.figshare.c.6488065. Composite series can be
visualized interactively at https://macrosheds.org/data/vlah etal 2023 composites/. All code necessary to
reproduce this analysis is archived at https://doi.org/10.5281/zenodo.7976251. A complete list of products
and URLs can be found in Table S3.

In general, linear regression methods produced more accurate discharge estimates (median KGE: 0.79;
median NSE: 0.81; n = 24 sites) than LSTM approaches due to the fact that regression models were able
to fully leverage available field measurements as well as highly informative donor gauge data.
Nonetheless, LSTM methods achieved median ensemble KGE of 0.71 and NSE of 0.56 across 18 sites,
making their estimates a valuable supplement. Although LSTM-generated discharge series are of daily
frequency, some users will prefer them to higher resolution regression estimates, as the latter may be
subject to error in the event of highly localized precipitation events affecting either donor or target
gauges, but not both.

Improvements to our design could be made in several ways. LSTM models could be exposed to additional
training data, such as the recently published Caravan compendium of CAMELS offshoots (Kratzert et al.
2023) or future expansions of the MacroSheds dataset (Vlah et al. 2023). Neural networks trained on
sub-daily inputs might be better equipped to exploit atmospheric-hydrological dynamics that respond to
both daily and annual cycles. Linear regression methods too might be improved with the use of additional
predictors, such as continuous water level or precipitation.

The success of simple statistical methods in generating high-quality continuous discharge time series
demonstrates the viability of “virtual gauges,” or locations at which a small number of field discharge
measurements, in proximity to one or more established gauges, provide a basis for continuous discharge
estimation in lieu of a gauging station. Virtual gauges have the potential to greatly expand the spatial
coverage of continuous discharge data throughout the USA and any richly gauged region of the world.

Acknowledgements

The authors are grateful to the NeuralHydrology team for their efforts in democratizing deep learning for
the hydrology community. We thank NEON, NCAR, NWIS, Niwot Ridge LTER, Andrews Forest LTER,
and the USGS for generating the data, and the National Science Foundation for providing the funding that
made this analysis possible. Special thank-yous to Dr. Parker Norton of the USGS for extracting all
NHM-PRMS outputs used in this study.

The National Ecological Observatory Network is a program sponsored by the National Science
Foundation and operated under cooperative agreement by Battelle. This material is based in part upon
work supported by the National Science Foundation through the NEON Program.


https://doi.org/10.6084/m9.figshare.c.6488065
https://macrosheds.org/data/vlah_etal_2023_composites/
https://doi.org/10.5281/zenodo.7976251

References

Addor, N., Newman, A.J., Mizukami, N., Clark, M.P., 2017. The CAMELS data set: catchment
attributes and meteorology for large-sample studies. Hydrology and Earth System Sciences 21,
5293-5313.

Appelhans, T., Detsch, F., Reudenbach, C., Woellauer, S., 2022. mapview: Interactive Viewing of
Spatial Data in R.

Appling, A.P,, Oliver, S.K., Read, J.S., Sadler, J.M., Zwart, J., 2022. Machine learning for
understanding inland water quantity, quality, and ecology.

Arriagada, P., Karelovic, B., Link, O., 2021. Automatic gap-filling of daily streamflow time series in
data-scarce regions using a machine learning algorithm. Journal of Hydrology 598, 126454.

Arsenault, R., Brissette, F., Martel, J.-L., 2018. The hazards of split-sample validation in
hydrological model calibration. Journal of hydrology 566, 346—362.

Arsov, N., Mirceva, G., 2019. Network Embedding: An Overview.
https://doi.org/10.48550/ARX1V.1911.11726

Aschonitis, V.G., Papamichail, D., Demertzi, K., Colombani, N., Mastrocicco, M., Ghirardini, A.,

Castaldelli, G., Fano, E.-A., 2017. High resolution global grids of revised Priestley-Taylor and
Hargreaves-Samani coefficients for assessing ASCE-standardized reference crop
evapotranspiration and solar radiation, links to ESRI-grid files. Supplement to: Aschonitis, VG
et al. (2017): High-resolution global grids of revised Priestley-Taylor and Hargreaves-Samani
coefficients for assessing ASCE-standardized reference crop evapotranspiration and solar
radiation. Earth System Science Data, 9(2), 615-638, https://doi.org/10.5194/essd-9-615-2017.
https://doi.org/10.1594/PANGAEA.868808

Benson, M.A., Dalrymple, T., 1967. General field and office procedures for indirect discharge

measurements. US Govt. Print. Off.,.

Bergstra, J., Bengio, Y., 2012. Random search for hyper-parameter optimization. Journal of machine
learning research 13.

Bukaveckas, P., Likens, G., Winter, T., Buso, D., 1998. A comparison of methods for deriving solute
flux rates using long-term data from streams in the Mirror Lake watershed. Water, Air, and Soil
Pollution 105, 277-293.

Caruana, R., 1998. Multitask learning. Springer.

Chokmani, K., Ouarda, T.B., 2004. Physiographical space-based kriging for regional flood frequency
estimation at ungauged sites. Water Resources Research 40.

DeCicco, L.A., Lorenz, D., Hirsch, R.M., Watkins, W., Johnson, M., 2022. dataRetrieval: R packages
for discovering and retrieving water data available from U.S. federal hydrologic web services.
U.S. Geological Survey, Reston, VA. https://doi.org/10.5066/P9X4L.3GE



https://doi.org/10.48550/ARXIV.1911.11726
https://doi.org/10.48550/ARXIV.1911.11726
https://doi.org/10.1594/PANGAEA.868808
https://doi.org/10.1594/PANGAEA.868808
https://doi.org/10.5066/P9X4L3GE

Durand, M., Gleason, C.J., Pavelsky, T.M., de Moraes Frasson, R.P., Turmon, M.J., David, C.H.,
Altenau, E.H., Tebaldi, N., Larnier, K., Monnier, J., others, 2022. A framework for estimating
global river discharge from the Surface Water and Ocean Topography satellite mission.
Authorea Preprints.

Friedman, J., Tibshirani, R., Hastie, T., 2010. Regularization Paths for Generalized Linear Models
via Coordinate Descent. Journal of Statistical Software 33, 1-22.
https://doi.org/10.18637/jss.v033.i101

Galton, F., 1886. Regression towards mediocrity in hereditary stature. The Journal of the
Anthropological Institute of Great Britain and Ireland 15, 246-263.

Goeman, J., Meijer, R., Chaturvedi, N., 2012. L1 and L2 penalized regression models. cran.
r-project. or.

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., Moore, R., 2017. Google Earth
Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment.
https://doi.org/10.1016/j.rse.2017.06.031

Graf, W.H., 1984. Hydraulics of sediment transport. Water Resources Publication.

Gruber, M., 2017. Improving efficiency by shrinkage: The James—Stein and Ridge regression
estimators. Routledge.

Guo, D., Johnson, F., Marshall, L., 2018. Assessing the potential robustness of conceptual
rainfall-runoff models under a changing climate. Water Resources Research 54, 5030-5049.

Gupta, H.V,, Kling, H., Yilmaz, K.K., Martinez, G.F., 2009. Decomposition of the mean squared
error and NSE performance criteria: Implications for improving hydrological modelling.
Journal of hydrology 377, 80-91.

Hall Jr, R.O., 2016. Metabolism of streams and rivers: Estimation, controls, and application, in:
Stream Ecosystems in a Changing Environment. Elsevier, pp. 151-180.

Harvey, C.L., Dixon, H., Hannaford, J., 2012. An appraisal of the performance of data-infilling
methods for application to daily mean river flow records in the UK. Hydrology Research 43,
618-636.

Hirsch, R.M., 1982. A comparison of four streamflow record extension techniques. Water Resources
Research 18, 1081-1088.

Hochreiter, S., Schmidhuber, J., 1997. Long short-term memory. Neural computation 9, 1735-1780.

Horner, 1., Renard, B., Le Coz, J., Branger, F., McMillan, H., Pierrefeu, G., 2018. Impact of stage
measurement errors on streamflow uncertainty. Water Resources Research 54, 1952—-1976.

Hsu, K., Gupta, H.V,, Sorooshian, S., 1995. Artificial neural network modeling of the rainfall-runoff
process. Water resources research 31, 2517-2530.

Isaacson, K., Coonrod, J., 2011. USGS streamflow data and modeling sand-bed rivers. Journal of
Hydraulic Engineering 137, 847-851.


https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.1016/j.rse.2017.06.031
https://doi.org/10.1016/j.rse.2017.06.031

Johnson, S.L., Rothacher, J.S., Wondzell, S.M., 2020. Stream discharge in gaged watersheds at the
HJ Andrews Experimental Forest, 1949 to present.
https://doi.org/10.6073/PASTA/0066D6B04E736 AF5F234D95D97EE84E3

Kingma, D.P,, Ba, J., 2014. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Knoben, W.J., Freer, J.E., Woods, R.A., 2019. Inherent benchmark or not? Comparing
Nash—Sutcliffe and Kling—Gupta efficiency scores. Hydrology and Earth System Sciences 23,
4323-4331.

Kratzert, F., Gauch, M., Nearing, G., Klotz, D., 2022. NeuralHydrology — A Python library for
Deep Learning research in hydrology. Journal of Open Source Software 7, 4050.

https://doi.org/10.21105/j0ss.04050
Kratzert, F., Herrnegger, M., Klotz, D., Hochreiter, S., Klambauer, G., 2019a.

NeuralHydrology—interpreting LSTMs in hydrology. Explainable Al: Interpreting, explaining
and visualizing deep learning 347-362.

Kratzert, F., Klotz, D., Herrnegger, M., Sampson, A.K., Hochreiter, S., Nearing, G.S., 2019b. Toward
improved predictions in ungauged basins: Exploiting the power of machine learning. Water
Resources Research 55, 11344-11354.

Kratzert, F., Nearing, G., Addor, N., Erickson, T., Gauch, M., Gilon, O., Gudmundsson, L.,
Hassidim, A., Klotz, D., Nevo, S., others, 2023. Caravan-A global community dataset for
large-sample hydrology. Scientific Data 10, 61.

Lunch, C., Laney, C., Mietkiewicz, N., Sokol, E., Cawley, K., NEON (National Ecological
Observatory Network), 2022. neonUtilities: Utilities for Working with NEON Data.

Manning, R., 1891. On the flow of water in open channels and pipes 20, 161-207.

Moore, S.A., Jamieson, E.C., Rainville, F., Rennie, C.D., Mueller, D.S., 2017. Monte Carlo approach
for uncertainty analysis of acoustic Doppler current profiler discharge measurement by moving
boat. Journal of Hydraulic Engineering 143, 04016088.

Moriasi, D., Gitau, M., Pai, N., Daggupati, P., 2015. Hydrologic and Water Quality Models:
Performance Measures and Evaluation Criteria. Transactions of the ASABE (American Society
of Agricultural and Biological Engineers) 58, 1763—1785.
https://doi.org/10.13031/trans.58.10715

Muggeo, V.M.R., 2008. segmented: an R Package to Fit Regression Models with Broken-Line
Relationships. R News 8, 20-25.

Nalley, D., Adamowski, J., Khalil, B., Biswas, A., 2020. A comparison of conventional and wavelet

transform based methods for streamflow record extension. Journal of Hydrology 582, 124503.
Nash, J.E., Sutcliffe, J.V., 1970. River flow forecasting through conceptual models part [—A
discussion of principles. Journal of hydrology 10, 282—-290.


https://doi.org/10.6073/PASTA/0066D6B04E736AF5F234D95D97EE84F3
https://doi.org/10.6073/PASTA/0066D6B04E736AF5F234D95D97EE84F3
https://doi.org/10.21105/joss.04050
https://doi.org/10.21105/joss.04050
https://doi.org/10.13031/trans.58.10715
https://doi.org/10.13031/trans.58.10715

NEON (National Ecological Observatory Network)-NEGN), 2023a. Continuous discharge
(DP4.00130.001), RELEASE-2023. https://doi.org/10.48443/H27ZFE-2F12. Data accessed from
https://data.neonscience.org/data-products/DP1.00130.001/REL.LEASE-2023 on May 5, 2023.

NEON (National Ecological Observatory Network)-NEGN), 2023b. Discharge field collection
(DP1.20048.001), RELEASE-2023. https://doi.org/10.48443/TYS0-ZE83. Data accessed from
https://data.neonscience.org/data-products/DP1.20048.001/RELEASE-2023 on January 31,
2023.

NEON (National Ecological Observatory Network), 2023c. Discharge field collection
(DP1.20048.001), PROVISIONAL. Data accessed from
https://data.neonscience.org/data-products/DP1.20048.001/RELEASE-2023 on January 31,
2023. Data archived at https://dx.doi.org/10.6084/m9.figshare.22344589.

Newman, A., Clark, M., Sampson, K., Wood, A., Hay, L., Bock, A., Viger, R., Blodgett, D., Brekke,
L., Arnold, J., others, 2015. Development of a large-sample watershed-scale
hydrometeorological data set for the contiguous USA: data set characteristics and assessment of
regional variability in hydrologic model performance. Hydrology and Earth System Sciences
19, 209-223.

Newman, A., Sampson, K., Clark, M., Bock, A., Viger, R., Blodgett, D., 2014. A large-sample
watershed-scale hydrometeorological dataset for the contiguous USA. UCAR/NCAR: Boulder,
CO, USA.

Newman, A.J., Mizukami, N., Clark, M.P., Wood, A.W., Nijssen, B., Nearing, G., 2017.
Benchmarking of a physically based hydrologic model. Journal of Hydrometeorology 18,
2215-2225.

Odum, H.T., 1956. Primary production in flowing waters 1. Limnology and oceanography 1,
102-117.

Pantelakis, D., Doulgeris, C., Hatzigiannakis, E., Arampatzis, G., 2022. Evaluation of discharge
measurements methods in a natural river of low or middle flow using an electromagnetic flow
meter. River Research and Applications 38, 1003—1013.

Philip, E., McLaughlin, J., 2018. Evaluation of stream gauge density and implementing the concept
of virtual gauges in Northern Ontario for watershed modeling. Journal of Water Management
Modeling.

Pool, S., Seibert, J., 2021. Gauging ungauged catchments—Active learning for the timing of point
discharge observations in combination with continuous water level measurements. Journal of
Hydrology 598, 126448.

Razavi, T., Coulibaly, P., 2013. Streamflow prediction in ungauged basins: review of regionalization
methods. Journal of hydrologic engineering 18, 958-975.

Read, J.S., Jia, X., Willard, J., Appling, A.P., Zwart, J.A., Oliver, S.K., Karpatne, A., Hansen, G.J.A.,
Hanson, P.C., Watkins, W., Steinbach, M., Kumar, V., 2019. Process-Guided Deep Learning


https://doi.org/10.48443/H2ZE-2F12
https://data.neonscience.org/data-products/DP1.00130.001/RELEASE-2023
https://doi.org/10.48443/tys0-ze83
https://data.neonscience.org/data-products/DP1.20048.001/RELEASE-2023
https://data.neonscience.org/data-products/DP1.20048.001/RELEASE-2023

Predictions of Lake Water Temperature. Water Resources Research 55, 9173-9190.
https://doi.org/10.1029/2019WR024922

Regan, R.S., Juracek, K.E., Hay, L.E., Markstrom, S., Viger, R.J., Driscoll, J.M., LaFontaine, J.,
Norton, P.A., 2019. The US Geological Survey National Hydrologic Model infrastructure:

Rationale, description, and application of a watershed-scale model for the conterminous United
States. Environmental Modelling & Software 111, 192-203.

Rhea, S., 2023. NEON Continuous Discharge Evaluation. HydroShare,
http://www.hydroshare.org/resource/1a388391632f4277992889e2de152163. Accessed
2023-04-14.

Rhea, S., Gubbins, N., DelVecchia, A.G., Ross, M.R., Bernhardt, E.S., 2023a. User-focused
evaluation of National Ecological Observatory Network streamflow estimates. Scientific Data
10, 89.

Rhea, S., Vlah, M., Slaughter, W., Gubbins, N., 2023b. macrosheds: Tools for interfacing with the
MacroSheds dataset.

Sadler, J.M., Appling, A.P., Read, J.S., Oliver, S.K., Jia, X., Zwart, J.A., Kumar, V., 2022. Multi-task
deep learning of daily streamflow and water temperature. Water Resources Research 58,
€2021WRO030138.

Sauer, V.B., 2002. Standards for the analysis and processing of surface-water data and information

using electronic methods. US Geological Survey.

Seibert, J., Beven, K.J., 2009. Gauging the ungauged basin: how many discharge measurements are
needed? Hydrology and Earth System Sciences 13, 883—-892.

Seibert, J., Strobl, B., Etter, S., Hummer, P., van Meerveld, H.J. (Ilja), 2019. Virtual Staff Gauges for
Crowd-Based Stream Level Observations. Frontiers in Earth Science 7.
https://doi.org/10.3389/feart.2019.00070

Seibert, J., Vis, M.J.P., Lewis, E., van Meerveld, H.J. 2018. Upper and lower benchmarks in
hydrological modelling. Hydrological Processes 32, 1120-1125.
https://doi.org/10.1002/hyp.11476

Shen, H., Tolson, B.A., Mai, J., 2022. Time to update the split-sample approach in hydrological
model calibration. Water Resources Research 58, e2021WR031523.

Shen, J., 1981. Discharge characteristics of triangular-notch thin-plate weirs. United States

Department of the Interior, Geological Survey.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, 1., Salakhutdinov, R., 2014. Dropout: a simple
way to prevent neural networks from overfitting. The journal of machine learning research 15,
1929-1958.

Tazioli, A., 2011. Experimental methods for river discharge measurements: comparison among

tracers and current meter. Hydrological Sciences Journal 56, 1314—-1324.


https://doi.org/10.1029/2019WR024922
https://doi.org/10.1029/2019WR024922
http://www.hydroshare.org/resource/1a388391632f4277992889e2de152163
https://doi.org/10.3389/feart.2019.00070
https://doi.org/10.3389/feart.2019.00070
https://doi.org/10.1002/hyp.11476

Thornton, M.M., Shrestha, R., Wei, Y., Thornton, P.E., Kao, S.-C., Wilson, B.E., 2022. Daymet:
Daily Surface Weather Data on a 1-km Grid for North America, Version 4 R1.
https://doi.org/10.3334/ORNLDAAC/2129

Turnipseed, D.P., Sauer, V.B., 2010. Discharge measurements at gaging stations. US Geological

Survey.

Van Rossum, G., Drake, F.L., 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA.

Vlah, M.J., Rhea, S., Bernhardt, E.S., Slaughter, W., Gubbins, N., DelVecchia, A.G., Thellman, A.,
Ross, M.R., 2023. MacroSheds: A synthesis of long-term biogeochemical, hydroclimatic, and
geospatial data from small watershed ecosystem studies. Limnology and Oceanography Letters.

Wang, C.P,, 1988. Laser doppler velocimetry. Journal of Quantitative Spectroscopy and Radiative
Transfer 40, 309-319.

White, A.F., Blum, A.E., 1995. Effects of climate on chemical_ weathering in watersheds.
Geochimica et Cosmochimica Acta 59, 1729-1747.

Whittaker, J., Whitehead, C., Somers, M., 2005. The neglog transformation and quantile regression
for the analysis of a large credit scoring database. Journal of the Royal Statistical Society:
Series C (Applied Statistics) 54, 863—-878.

Zakwan, M., Muzzammil, M., Alam, J., 2017. Developing stage-discharge relations using

optimization techniques. Aquademia: Water, Environment and Technology 1, 05.

Supplemental Tables

Table S1: Methods from this study used in the construction of composite discharge series. Composite
series also incorporate NEON continuous discharge product DP4.001230.001 (NEON 2023a:2023-
release-aceessed-2023-05-0+). “Linreg” = linear regression; “glmnet” = rRidge regression; “lm” = OLS
regression; “segmented” = segmented regression; “abs” = absolute discharge; “spec” = specific discharge;

“pgd]” = process-guided deep learning.

Site KGE linreg [NSE linreg  [Method linreg KGE LSTM [NSE LSTM [Method LSTM
FLNT 0.989 0.980 glmnet_spec 0.664 0.507 generalist
TOMB 0.970 0.993 glmnet_abs

HOPB 0.966 0.937 Im_abs 0.852 0.704 generalist
BLUE |0.962 0.932 Im_spec 0.746 0.567 specialist
REDB  |0.946 0.973 lm_abs 0.511 0.551 generalist_pgdl
KING 0.935 0.888 glmnet_abs

LEWI 0.929 0.875 glmnet_abs 0.848 0.724 specialist
SYCA |0.919 0.938 segmented_spec

MCDI  [0.912 0.897 glmnet_spec

LECO 0.877 0.833 Im_spec
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https://doi.org/10.3334/ORNLDAAC/2129

MCRA |0.868 0.866 glmnet_spec 0.723 0.531 generalist
MART |0.811 0.706 glmnet_spec 0.779 0.566 generalist
POSE 0.803 0.648 glmnet_spec
MAYF  |0.787 0.806 glmnet_abs 0.586 0.666 generalist
BLWA  |0.779 0.892 glmnet_abs
COMO [(0.771 0.806 glmnet_composite

| spec
BLDE [0.744 0.863 glmnet_abs 0.744 0.687 generalist
CARI 0.721 0.637 glmnet_abs
GUIL 0.692 0.653 glmnet_abs
ARIK 0.674 0.596 glmnet_abs
CUPE 0.663 0.728 glmnet_spec
WALK 0.607 0.532 glmnet_spec
BIGC 0.895 0.827 specialist
WLOU 0.778 0.596 generalist_pgdl
TECR 0.711 0.904 generalist
PRIN
OKSR

Table S2. Model input data used in this study.

Resource Description Source/Link

NEON discharge
field collection

Discharge measurements NEON 2023b, NEON 2023c

from field-based surveys

NEON continuous
discharge

Discharge calculated from | NEON 2023a
a rating curve and sensor
measurements of water

level

User-focused 3-tier classification of the | https://www.nature.com/articles/s41597-023-0198
evaluation of NEON | reliability of NEON 3-w

streamflow
estimates

continuous discharge by
site-month

CAMELS dataset

Catchment Attributes,
Meteorology, (and
streamflow) for
Large-sample Studies

https://ral.ucar.edu/solutions/products/camels




Experimental Forest
stream discharge

watersheds, 1949 to
present

National Hydrologic | USGS infrastructure that, https://www.usgs.gov/mission-areas/water-resourc
Model (NHM) when coupled with the es/science/national-hydrologic-model-infrastructu
Precipitation-Runoff re
Modeling System, can
produce streamflow
simulations at local to
national scale
MacroSheds A synthesis of long-term https://portal.edirepository.org/nis/mapbrowse?sco
biogeochemical, pe=edi&identifier=1262
hydroclimatic, and
geospatial data from small
watershed ecosystem
studies
Daymet Gridded estimates of daily | https://developers.google.com/earth-engine/datase
weather parameters ts/catalog/NASA_ORNL_DAYMET_V4
HJ Andrews Stream discharge in gaged | https://portal.edirepository.org/nis/mapbrowse?pa

ckageid=knb-lter-and.4341.33

USGS National
Water Information
System

Streamflow and associated
data for thousands of
gauged streams and rivers
within the USA

https://waterdata.usgs.gov/nwis, e.g.
https://waterdata.usgs.gov/monitoring-location/06
879100/

Table S3. Products of this study.

Product Description Link
Data archive Figshare page linking to each https://doi.org/10.6084/m9.figshare.c.6488065
landing page of four archives described

below
Composite Analysis-ready CSVs https://doi.org/10.6084/m9.figshare.23206592.v1
discharge combining the best available
timeseries discharge estimates across

linear regression and LSTM

approaches from this study, and

NEON?’s published data
Composite Interactive plots of our https://macrosheds.org/data/vlah_etal_2023_com
discharge plots composite discharge product posites




All model Complete predictions from all | https://doi.org/10.6084/m9.figshare.22344589.v1

outputs and linear regression and LSTM
results models, run results, and
diagnostics
All model input | Donor gauge streamflow, https://doi.org/10.6084/m9.figshare.22349377.v1
data training data for LSTMs,

model configurations, etc.

All code Zenodo archive of GitHub https://doi.org/10.5281/zenodo.7976251
associated with repository

this paper

All figures High-resolution images of all https://doi.org/10.6084/m9.figshare.23169362.v1
associated with figures from the main body and

this paper appendix
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m NEON published LSTM generalist ®m | STM process-guided generalist
o Linear regression = | STM specialist ®m | STM process-guided specialist
3 L
S S - .,
s o [
[11] =
‘2 o
£ |
S <
5 o
CII) ]
@
T o
=z |
J . I
o | . = Jn P
OO MrCkEMrCMNM>DWRELCC OWYWFWZXYXOOAR<ZS
2ZEE=2832085525538£E8828838

NEON stream/river site

Figure S1. Efficiency of five stream discharge prediction methods and NEON’s published continuous
discharge product at 27 NEON gauge locations, versus field-measured discharge. Small, white triangles
represent max/min NSE of published discharge by water year (Oct 1 through Sept 30) with at least 5 field
measurements (or 2 for site OKSR). NSE was computed on all available observation-estimate pairs except
those with quality ﬂags (dischargeFinalQF or dischargeFinalQFSciva of 1).P+EeN-esﬁmutes-w-ith-

For the best performmg LSTM method at all sites except TECR, FLNT, REDB, WALK, POSE and
KING, displayed NSE is averaged over 30 ensemble runs with identical hyperparameters. For the sites
just named, performance of a chosen method, after ensembling, dropped below that of at least one other



method’s optimal NSE from parameter search. For all other LSTM site-method pairs, which were not
ensembled, displayed performance is that of the best model trained during the parameter search phase.
Sites are ordered by the NSE of NEON continuous discharge. See Table 3 for LSTM model definitions.
NSE of 1 is a perfect prediction, while NSE of 0 is equivalent in skill to prediction from the mean.
Negative values are truncated at -0.05 in this plot to improve visualization.
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Figure S2. Observed (field) discharge vs. predictions from linear regression on specific discharge (i.e.
scaled by watershed area).
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Figure S3. Observed (field) discharge vs. predictions from linear regression on absolute discharge (i.e. not
scaled by watershed area).
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Figure S4: Marginal relationships between donor and target gauges for regression on specific discharge.
Regression lines are shown only for single-donor regressions, fitted via OLS. Site SYCA, here exhibiting

a breakpoint, was modeled with segmented regression, and thus the regression line shown has no
relevance.
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Figure S5: Marginal relationships between donor and target gauges for regression on absolute discharge.
Regression lines are shown only for single-donor regressions, fitted via OLS. Site SYCA, here exhibiting
a breakpoint, could not be fitted via segmented regression in the context of absolute discharge.
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Figure S6. Observed (field) discharge vs. ensembled L.STM predictions.
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Figure S7. Diagnostic plots for the four sites modeled by OLS regression on specific discharge.
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Figure S8. Diagnostic plots for the four sites modeled by OLS regression on absolute discharge.
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Figure S9. Density of NEON-estimated discharge (blue polygon) relative to field-measured discharge
observations (red marks).
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Figure S10. Durations of missing values (gaps) in NEON’s 2023 release of continuous discharge time
series, illustrating gaps filled or informed by estimates from this analysis. All officially published values
are shown, including those with quality control flags. Sites are ordered as in Figure 2. Gaps smaller than
six hours are not indicated.



