Preprints
https://doi.org/10.5194/egusphere-2022-568
https://doi.org/10.5194/egusphere-2022-568
13 Jul 2022
 | 13 Jul 2022

Robust global detection of forced changes in mean and extreme precipitation despite observational disagreement on the magnitude of change

Iris Elisabeth de Vries, Sebastian Sippel, Angeline Greene Pendergrass, and Reto Knutti

Abstract. Detection and attribution (D&A) of forced precipitation change is challenging due to internal variability and limited spatial and temporal coverage of observational records. These factors result in a low signal-to-noise ratio of potential regional and even global trends. Here, we use a statistical method – ridge regression – to create physically interpretable fingerprints for detection of forced changes in mean and extreme precipitation with a high signal-to-noise ratio. The fingerprints are constructed using CMIP6 multi-model output masked to match coverage of three gridded precipitation observational datasets – GHCNDEX, HadEX3, and GPCC –, and are then applied to these observational datasets to assess the degree of forced change detectable in the real-world climate.

We show that the signature of forced change is detected in all three observational datasets for global metrics of mean and extreme precipitation. Forced changes are still detectable from changes in the spatial patterns of precipitation even if the global mean trend is removed from the data. This shows detection of forced change in mean and extreme precipitation beyond a global mean trend, and increases confidence in the detection method's power, as well as in climate models' ability to capture the relevant processes that contribute to large-scale patterns of change.

We also find, however, that detectability depends on the observational dataset used. Not only coverage differences but also observational uncertainty contribute to dataset disagreement, exemplified by times of emergence of forced change from internal variability ranging from 1998 to 2004 among datasets. Furthermore, different choices for the period over which the forced trend is computed result in different levels of agreement between observations and model projections. These sensitivities may explain apparent contradictions in recent studies on whether models under- or overestimate the observed forced increase in mean and extreme precipitation. Lastly, the detection fingerprints are found to rely primarily on the signal in the extratropical Northern Hemisphere, which is at least partly due to observational coverage, but potentially also due to the presence of a more robust signal in the Northern Hemisphere in general.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.

Journal article(s) based on this preprint

26 Jan 2023
| Highlight paper
Robust global detection of forced changes in mean and extreme precipitation despite observational disagreement on the magnitude of change
Iris Elisabeth de Vries, Sebastian Sippel, Angeline Greene Pendergrass, and Reto Knutti
Earth Syst. Dynam., 14, 81–100, https://doi.org/10.5194/esd-14-81-2023,https://doi.org/10.5194/esd-14-81-2023, 2023
Short summary Chief editor
Iris Elisabeth de Vries, Sebastian Sippel, Angeline Greene Pendergrass, and Reto Knutti

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2022-568', Anonymous Referee #1, 02 Sep 2022
    • AC1: 'Reply on RC1', Iris de Vries, 08 Sep 2022
  • RC2: 'Comment on egusphere-2022-568', Anonymous Referee #2, 06 Sep 2022
    • AC2: 'Reply on RC2', Iris de Vries, 12 Oct 2022

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2022-568', Anonymous Referee #1, 02 Sep 2022
    • AC1: 'Reply on RC1', Iris de Vries, 08 Sep 2022
  • RC2: 'Comment on egusphere-2022-568', Anonymous Referee #2, 06 Sep 2022
    • AC2: 'Reply on RC2', Iris de Vries, 12 Oct 2022

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
ED: Reconsider after major revisions (13 Oct 2022) by Gabriele Messori
AR by Iris de Vries on behalf of the Authors (23 Nov 2022)  Author's response   Author's tracked changes   Manuscript 
ED: Referee Nomination & Report Request started (24 Nov 2022) by Gabriele Messori
RR by Anonymous Referee #1 (06 Dec 2022)
RR by Anonymous Referee #2 (09 Dec 2022)
ED: Publish subject to minor revisions (review by editor) (09 Dec 2022) by Gabriele Messori
AR by Iris de Vries on behalf of the Authors (19 Dec 2022)  Author's response   Author's tracked changes   Manuscript 
ED: Publish as is (22 Dec 2022) by Gabriele Messori
AR by Iris de Vries on behalf of the Authors (29 Dec 2022)  Manuscript 

Journal article(s) based on this preprint

26 Jan 2023
| Highlight paper
Robust global detection of forced changes in mean and extreme precipitation despite observational disagreement on the magnitude of change
Iris Elisabeth de Vries, Sebastian Sippel, Angeline Greene Pendergrass, and Reto Knutti
Earth Syst. Dynam., 14, 81–100, https://doi.org/10.5194/esd-14-81-2023,https://doi.org/10.5194/esd-14-81-2023, 2023
Short summary Chief editor
Iris Elisabeth de Vries, Sebastian Sippel, Angeline Greene Pendergrass, and Reto Knutti
Iris Elisabeth de Vries, Sebastian Sippel, Angeline Greene Pendergrass, and Reto Knutti

Viewed

Total article views: 501 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
324 160 17 501 36 3 6
  • HTML: 324
  • PDF: 160
  • XML: 17
  • Total: 501
  • Supplement: 36
  • BibTeX: 3
  • EndNote: 6
Views and downloads (calculated since 13 Jul 2022)
Cumulative views and downloads (calculated since 13 Jul 2022)

Viewed (geographical distribution)

Total article views: 452 (including HTML, PDF, and XML) Thereof 452 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 01 Sep 2024
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Detecting and attributing forced precipitation changes is a long-standing challenge in climate science. This study proposes an approach to efficiently extract information on forced precipitation changes from climate data and models, which can be valuable both from a scientific and policy-making perspective.
Short summary
Precipitation changes are an important consequence of climate change. We use a method based on models and observations to detect changes in mean and extreme precipitation caused by external influence. We detect forced change in three observational datasets for global mean and extreme precipitation, but different observational datasets show different magnitudes of forced change. It is thus uncertain how large the change is, which is important for prediction of future changes and adaptation.