Supplementary information
Robust global detection of forced changes in mean and extreme precipitation despite
observational disagreement on the magnitude of change

S1 Methodological details

S1.1 Data

The CMIP6 models and members used for ridge regression (RR) are listed in table [ST] Historical and SSP245 scenario runs
of these models are used, and piControl for the selection as indicated in the last column.

SI Table S1: CMIP6 models and members used for RR model training and model FR estimation. Models for which 450 years of unforced piControl data was
available are indicated.

Model Member piControl y/n
ACCESS-CM2 rlilplfl, r2ilp1fl, r3ilplfl y
ACCESS-ESM1-5  rl0ilplfl, r15ilplfl, rlilplfl y
CanESM5 r10ilplfl, r10ilp2fl, r11ilplfl 'y
EC-Earth3 r10ilplfl, r12ilplfl, r14ilplfl n
EC-Earth3-Veg rlilplfl, r2ilplfl, r3ilplfl n
FGOALS-g3 rlilplfl, r3ilplfl, rdilplfl n
IPSL-CM6A-LR r10ilplfl, r11ilplfl, r14ilplfl 'y
KACE-1-0-G rlilplfl, r2ilplfl, r3ilplfl y
MIROC-ES2L r10ilplf2, r1lilplf2, r12ilplf2 'y
MIROC6 rlilplfl, r2ilplfl, r3ilplfl y
MPI-ESM1-2-LR  rl0ilplfl, rlilplfl, r2ilplfl y
NorESM2-LM rlilplfl, r2ilplfl, r3ilplfl y
UKESM1-0-LL r10ilplf2, r1lilplf2, r12ilplf2 'y

S1.2 Ridge regression forced response targets

Figure [ST] shows the first empirical orthogonal function (EOF) of the multi-model mean of PRCPTOT (left) and Rx1d (right)
over the full historical and SSP245 future period (1850-2100). The corresponding principal components (PCs) are shown
in the bottom panel, where the black line represents the multi-model mean principal component, and the coloured lines the
projection of the shown EOF onto individual model ensemble means. These coloured lines make up the effective forced
response (FR) targets in the RR training procedure. The PRCPTOT targets are particularly noisy, which is found to be induced
by tropical variability primarily, as zonal-region EOFs that exclude the tropics show less variable behaviour. This is due to
the high contribution of the tropics to total annual precipitation, and the large variations in the tropics due to e.g. ENSO and
variations in the location of the ITCZ.

The correlations between the EOF-based targets and the global means are shown per model in figure Although the
correlations are not perfect due to higher spread of the EOF-based targets, they still show large values. In combination with
the pattern information enclosed in the EOF, this suggests the EOF-based targets are a suitable choice.
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SI Figure S1: First EOF patterns for CMIP6 multi-model mean PRCPTOT (a) and Rx1d (b) over the 1850-2100 period with historical orcing up to 2014
and SSP245 thereafter [Eyring et al| (2016). Corresponding multi-model mean (black) and model ensemble mean (coloured) principal component timeseries
(PCs) are shown in ¢ and d. Model ensemble mean principal components are the projection of the multi-model mean EOF (shown) onto individual model
ensemble means. These serve as targets in the RR training procedure.
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SI Figure S2: Correlations of model-specific EOF-based targets and area-weights global means, both based on model ensemble means of the models indicated
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(b) Rx1d correlation EOF-based target with global mean

in the subplot headers. Numbers in the upper left corners indicate Pearson correlation coefficients.
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S1.3 Ridge regression details

Lambda selection

As mentioned in the main text, the regularisation parameter X is equal to \4; in the default case we show. This A selection is
based on the consideration of three possible As in the optimisation process. These four options depend on the cross-validated
error (CVE), or on the post-crossvalidation mean squared error w.r.t. the multi-model mean forced response best estimate
(FRBE), referred to as MME, and defined as in equation m

Y. (Y — FRBE)?

¥ (M

=1

The CVE represents the mean squared error of out-of-fold predictions — i.e. the mean squared error of the FR predicted
for a model that was not included in RR training. The A that results in the smallest CVE is A,;,. A common method for
A-selection, however, is to choose the largest A (more regularisation) with a CVE within one standard error (SE) from the
minimum CVE. This A option is referred to as A1s.. The MME is defined as the mean squared error of all model predictions
made with the final RR model, i.e. after cross validation, w.r.t. the multi-model mean first PC: the FRBE. This error thus
represents the ability of the RR model to predict one common target — the mean of the training targets — from data from
different climate models. It demands relatively high generalisability and thus high regularisation, which is expected to be
beneficial when applying the model to observations. The A that leads to the smallest MME is referred to as Apspz.

We reason that the most regularised RR model with good performance is a good choice for the detection model, as mentioned
in the main text. As both A4 and A\p;p/s lead to generalisable models and perform well, we select the highest of these two
(this differs per case) as our default 4.

Cross-validation and application
As discussed in the main text, RR models are applied to the same model data as they have also been trained on using cross-
validation. To validate that this application does not significantly influence the model forced response estimates (FREs), and
therefore does not jeopardise the relevance of the model FREs, we show model specific correlation plots in figure [S3] that
include both the pre-crossvalidated FREs (predicted model not in training: out-of-fold prediction) and the post-crossvalidated
ones (predicted model in training: in-fold prediction). Besides the comparison of in-fold versus out-of-fold prediction, the
correlation plots also show the performance of the RR model for ensemble mean FR prediction in individual models in
general. Clearly, the effect of the models being seen in the training is negligible, judging from the similarity of pre- and
post-crossvalidation results. The numbers in the upper right corner indicate the Pearson correlation coefficient of the post-
crossvalidated predictions with their model specific targets. Note that the horizontal spread of the point clouds is quite large
due to the high variability of the EOF-based targets (figures and Nonetheless, correlations are high, indicating good
performance and generality of the RR models for model FR prediction, although a few individual models have particularly
high target spread and/or trends and therefore lower correlations.
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(b) Rx1d correlation of EOF-based target with prediction
SI Figure S3: Correlations of model-specific EOF-based targets and the FREs obtained from applying the RR model to individual model realisations. The
FREs are shown for RR models applied in-fold: i.e. RR models which have been trained and validated on all models (post-crossvalidation), and also for

RR-models which have been trained on all-but-one model and are applied out-of-fold, to the model not seen in training (pre-crossvalidation). Numbers in the
upper left corners indicate Pearson correlation coefficients.
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SI Figure S4: Top panel: correspondence in shape between observed FREs (coloured lines) and smoothed observed GMST (black line) from |[Cowtan and
'Way| (2014) in PRCPTOT (a) and Rx1d (b) as a function of year. Bottom panel: PRCPTOT and Rx1d FREs as a function of smoothed GMST, including

linear fits (dashed).

Signal-to-noise ratio determination
The relationship between the 21-year LOWESS-filtered global mean surface temperature(GMST) and the FREs for the default
PRCPTOT and Rx1d cases are given in figure[S4] Here, the top panel shows qualitatively how the GMST and the PRCPTOT
and Rx1d FREs are proportional to one another, particularly for Rx1d (right). The bottom plot shows the linear fit of PRCPTOT
and Rx1d onto smoothed GMST, used for time of emergence assessment. Note that the GMST curve does not exactly
correspond to any of the FRE fits: the FRE fit onto GMST differs between the different datasets. The GMST values shown
here are scaled by adjusting the right y-axis manually for visual purposes only, to compare the general long term trends.
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S2 Additions to section 3

S2.1 Observational dataset and residual consistency

Default case

Figure [S5] shows the RR fingerprints for the two observational datasets not shown in the main text: GHCNDEX and GPCC.
When compared with figure 2 in the main text, the similarities in coefficient signs are evident. The coverage map of GPCC
can be seen to be more scattered, which might interfere to some degree with the extraction of larger-scale patterns using
regularised regression.

Figure [S6] shows the standard deviations of the residuals of the linear trend fits to the FREs over the full period 1951-
2014. The standard deviation of the residuals for the observational datasets are shown as vertical lines. For the model FREs,
slightly smoothed probability density plots of the residuals standard deviation for all individual realisations are shown, for
each coverage mask and for both the forced and the piControl conditions. For both PRCPTOT and Rx1d, all observational
datasets’ residuals standard deviations lie within the model-derived distributions on their corresponding coverage masks,
which validates the consistency of the method used in its application to models and observations. In addition, we also see that
the coverage mask influences the spread in a way that corresponds to observations — e.g. GHCNDEX observed FRE residuals
are higher than for HadEX3, and model FRE predictions on the GHCNDEX coverage mask also show larger residuals than
model FREs on the HadEX3 coverage mask.

Generally, the residuals of model FREs and observed FREs agree better for Rx1d than for PRCPTOT, which is in line with
the higher uncertainty in PRCPTOT detection seen throughout this study. For PRCPTOT we also see generally lower FRE
residuals for piControl compared to forced model FREs, whereas Rx1d FRE residuals of piControl and forced FREs are more
consistent. This potentially results from an already measurable increase in variability in PRCPTOT in the forced simulations.
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SI Figure S5: RR fingerprints for PRCPTOT (a, c), and Rx1d (b) as in main figure 2, for resolution and coverage masks of GHCNDEX and GPCC
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SI Figure S6: Slightly smoothed distribution of standard deviations of the residuals of the linear trend fits to the FREs over the full period 1951-2014 for
FREs determined from piControl and forced model simulations on all observational masks (shaded density plots, corresponding FREs are those shown in
main figure 2). Standard deviation of the residuals of the linear fit to observed FREs are shown by coloured vertical lines. PRCPTOT (a) and Rx1d (b).
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Detrended case
Also for the mean removed case, figure the similarities show. For GHCNDEX Rx1d, however, it can also be seen that
the missing coverage in South-East Asia, South America and South Africa, as compared to HadEX3, is detrimental for the
RR model’s ability to estimate the FR (compare to main figure 3d). The residuals for the detrended case are consistent across
models and observations too, as figure @] shows, apart from GHCNDEX PRCPTOT. The fact that GHCNDEX PRCPTOT
FREs show considerably higher variance than model PRCPTOT FREs, implies that the very high FRE trend seen in this case
is unreliable.
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SI Figure S7: RR fingerprints for PRCPTOT (a, c), and Rx1d (b) as in main figure 3, for resolution and coverage masks of GHCNDEX and GPCC, trained
on model data from which the global mean was subtracted (detrended).
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SI Figure S8: As ﬁgure@but for RR models trained on data from which the global mean is subtracted (detrended). Corresponding FREs are those shown in
main figure 3.
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S2.2 Alternative FR target: global mean

In figure [S9] the results of the RR procedure with area-weighted annual global means (model ensemble means) as targets
is shown. Comparing figure [S9|to its counterpart, main figure 2, shows that the choice of target metric only has negligible
impact on the results of this study. In the figure below, the target metric (black lines) are smoother than in the default case,
especially for PRCPTOT, however, the fingerprints and trends are virtually identical. This also leads to nearly identical times
of emergence (not shown). A reason to choose the EOF-based target rather than the global mean based one shown here, is
the effect of non-GHG forcings. In the global mean, these effects of large volcanic eruptions or aerosols might have a larger
and long-term effect on the trend of the FRBE than in an PC dominated by GHG forcing. A more direct way to isolate the
GHG-forced response would be by using single-forcing ensembles.
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SI Figure S9: As main figure 2 but for RR models trained with area-weighted global mean PRCPTOT and Rx1d as FR target
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S3 Regional and seasonal analysis

As mentioned in the main text, the Northern Hemisphere (NH) signals make up the largest contribution to primarily to the total
FRE. To exemplify this we show fingerprints and FREs for three separate regions, namely the extratopical NH (30N-90N),
extratropical Southern Hemisphere (SH) (30S-90S) and the tropics (30S-30N). In the season-free tropical region, we continue
to use the annual timescale. The two extratropical regions, however, have distinct seasons with season-specific climatological
patterns, meaning that seasonal timescales provide more specific information than annual timescales. We therefore assess
December-January-February (DJF) and June-July-August (JJA) in the extratropical regions.

For the figures shown, the FR targets used for RR model training are once again the projections of the multi-model mean
first EOF onto ensemble means, following the procedure described in main section 2. Separate EOFs and corresponding FR
targets were determined for each region, to capture the region-specific FR in the target.

Tropics, annual
Figure [ST0|shows the fingerprints for the annual tropics case, all observational coverage masks are shown for comparison, as
well as the corresponding FREs. For PRCPTOT, the topical signal is clearly very noisy, and despite the generous definition
of the tropics, including almost all of Australia and South Africa, this region alone does not contain robust enough signals to
construct an RR model that can extract the forced tropical PRCPTOT signal from observations. This reflects the high internal
variability in the tropics, but also the high degree of model disagreement on the pattern of forced change to total precipitation.
For Rx1d, the more uniform increase in the tropics does enable signal isolation from observations that is consistent with
models for HadEX3 (IS__RTgI) The RR model trained on the very limited GHCNDEX data, however, cannot do better than
predicting the time average.
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SI Figure S10: RR fingerprints on all observational coverage masks (a, b, c, d, ) and forced response estimates (f, g) as in main figure 2 but for tropical
annual PRCPTOT and Rx1d.
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Extratropical Northern Hemisphere, seasonal

Figure [STI| shows the fingerprints and FREs for NH winter (DJF). As mentioned above, the extratropical FR target (black
line) is much less noisy than the tropical one, reflecting lower internal variability and higher model agreement. The higher
granularity of the fingerprints, especially for PRCPTOT, might be a consequence of this smoother target; the smoothness
results in relatively smaller FRE errors and less of an error increase when variance of the FRE increases, leading to lower
regularisation parameters. Nonetheless, the general large scale patterns can still be distinguished in the form of mostly positive
weights in mid to high latitudes, and negative weights in regions with lower projected changes or drying. For Rx1d, the
primarily positive response is clearly represented in the fingerprint, as well as small regions of lower extreme precipitation,
such as the Mediterranean. From the FREs (lowermost panel) it is evident that the forced signal in both PRCPTOT and Rx1d
can be extracted from the observational datasets when only NH winter is addressed.
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SI Figure S11: RR fingerprints on all observational coverage masks (a, b, ¢, d) and forced response estimates (e,f) as in main figure 2 but for winter (DJF)
extratropical NH PRCPTOT and Rx1d.

The fingerprints for extratropical NH summer (JJA), figure [ST2]are physically interpretable, picking up the Mediterranean
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drying and Northern European wettening signal (especially for Rx1d), associated with northward stormtrack displacement.
PRCPTOT GPCC looks highly overfit, however, due to the low and spatially discontinuous coverage. Despite the interpretabil-
ity, the FREs from observations (S12¢]and[ST2]) do not show strong consistent trends that can be distinguished from the noise.
This is found consistently in other studies as well. A potential explanation for this is the nature of summer precipitation being
mostly convective: the models used are not convection-permitting, and the spatial RR fingerprints thus also do not represent
the regions where changes in convective precipitation are strong. It would be instructive to find out if convection permitting
simulations can be used in combination with RR to detect forced changes in summer precipitation in the NH. In addition, the
GHG-signal in NH summer precipitation is likely to be obscured by changing precipitation-inhibiting aerosol effects. Partic-
ularly summer convective precipitation is negatively affected by aerosols due to their decreasing effect on surface temperature
and increasing effect on droplet number concentrations (Undorf et al.|[2018;|Stjern and Kristjansson, [2015). Between roughly
1951 and 1975 industrial aerosol emissions in Europe and the US reached their peak and inhibited convective precipitation
increases. From 1975 onwards, aerosol concentrations over Europe and the US decreased, in concert with increases in con-
vective precipitation, while they continued to rise in (South-)East Asia leading to more convective precipitation (Stjern and
Kristjanssonl [2015). The spatial and temporal changes in aerosol forcing compromise the appropriateness of one fingerprint
to detect these forced changes, and call for an approach that separates individual forcings (and regions).
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JJA PRCPTOT extratropical NH JJA Rx1d extratropical NH
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SI Figure S12: RR fingerprints on all observational coverage masks (a, b, ¢, d) and forced response estimates (e,f) as in main figure 2 but for summer (JJA)
extratropical NH PRCPTOT and Rx1d.
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Extratropical Southern Hemisphere, seasonal

For both PRCPTOT and RX1d, and both DJF and JJA in the Southern extratropics the coverage (and perhaps also simply the
landmass) is too low to construct RR fingerprints that can predict the FR; both FREs from models as well as from observations
do not capture the multi-model FRBE (target). The multi-model FRBE does in fact show a clear long term increasing trend,
meaning that forced changes in PRCPTOT and Rx1d in the SH are expected (to be present already), however, these may be
apparent over oceans primarily. The very low coverage of GHCNDEX leads to an RR model without nonzero coefficients,

and only an intercept to approach the time mean.
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SI Figure S13: RR fingerprints on all observational coverage masks (a, b, ¢, d) and forced response estimates (e,f) as in main figure 2 but for summer (DJF)

extratropical SH PRCPTOT and Rx1d.
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SI Figure S14: RR fingerprints on all observational coverage masks (a, b, ¢, d) and forced response estimates (e,f) as in main figure 2 but for winter (JJA)

extratropical SH PRCPTOT and Rx1d.
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