
Robust global detection of forced changes in mean and extreme
precipitation despite observational disagreement on the magnitude
of change
Iris Elisabeth de Vries1, Sebastian Sippel1, Angeline Greene Pendergrass2,3, and Reto Knutti1

1Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Zurich, Switzerland
2Earth and Atmospheric Sciences, Cornell University, Ithaca, NY, USA
3National Center for Atmospheric Research, Boulder, CO, USA

Correspondence: Iris de Vries (iris.devries@env.ethz.ch)

Abstract. Detection and attribution (D&A) of forced precipitation change is challenging due to internal variabilityand
:
, limited

spatial and temporal coverage of observational records,
::::
and

:::::
model

::::::::::
uncertainty. These factors result in a low signal-to-noise

ratio of potential regional and even global trends. Here, we use a statistical method – ridge regression – to create physically

interpretable fingerprints for detection of forced changes in mean and extreme precipitation with a high signal-to-noise ratio.

The fingerprints are constructed using CMIP6 multi-model output masked to match coverage of three gridded precipitation5

observational datasets – GHCNDEX, HadEX3, and GPCC –, and are then applied to these observational datasets to assess the

degree of forced change detectable in the real-world climate
:
in

:::
the

::::::
period

:::::::::
1951-2020.

We show that the signature of forced change is detected in all three observational datasets for global metrics of mean and

extreme precipitation. Forced changes are still detectable from changes in the spatial patterns of precipitation even if the global

mean trend is removed from the data. This shows detection of forced change in mean and extreme precipitation beyond a global10

mean trend
::
is

:::::
robust, and increases confidence in the detection method’s power, as well as in climate models’ ability to capture

the relevant processes that contribute to large-scale patterns of change.

We also find, however, that detectability depends on the observational dataset used. Not only coverage differences but also

observational uncertainty contribute to dataset disagreement, exemplified by times of emergence of forced change from internal

variability ranging from 1998 to 2004 among datasets. Furthermore, different choices for the period over which the forced trend15

is computed result in different levels of agreement between observations and model projections. These sensitivities may explain

apparent contradictions in recent studies on whether models under- or overestimate the observed forced increase in mean and

extreme precipitation. Lastly, the detection fingerprints are found to rely primarily on the signal in the extratropical Northern

Hemisphere, which is at least partly due to observational coverage, but potentially also due to the presence of a more robust

signal in the Northern Hemisphere in general.20
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1 Introduction

Precipitation changes may be among the most important consequences of anthropogenic climate change. Yet, robust detection

and attribution (D&A) of forced change in the water cycle is impaired by low signal-to-noise ratios. The concept of detection

and attribution is to use climate model simulations in which the applied forcings are known and noise
:::::::
internal

::::::::
variability

:
can be

reduced by averaging multiple realisations, to estimate a so-called fingerprint that represents the effect of the applied forcings25

on climate variables of interest. Subsequently, the degree to which this fingerprint can be detected in observations is assessed;

if the fingerprint signal is significant and in agreement with the models, the forcing signal is said to be detected and attributed to

the applied forcings. The low signal-to-noise ratios of precipitation D&A result from many factors (Balan Sarojini et al., 2016).

First, internal variability of precipitation and related processes is high (Deser et al., 2012; Hoerling et al., 2010; Balan Sarojini

et al., 2012). Second, models show relatively large disagreement in water cycle simulations due toe.g.
:
,
:::
for

::::::::
example, struc-30

tural uncertainties such as parametrised convection, and differing climate and hydrological sensitivities (Pendergrass, 2020).

Therefore, models also show discrepancies with respect to
::::
There

::::
can

::::
also

::
be

::::::::::::
discrepancies

:::::::
between

::::::
model

:::::::::::::
representations

::
of

:::
the

:::::
water

::::
cycle

::::
and

:
observations (Mehran et al., 2014; Wehner et al., 2020). Lastly, signal robustness suffers from limited

spatial and temporal coverage of observations, and biases can be introduced by changing coverage and station density over

time, as well as gridding procedures (Balan Sarojini et al., 2012; Dunn et al., 2020). Here we present a detection method based35

on regularised linear regression
:
–
:::::
ridge

:::::::::
regression

:
–
:

that is suitable to detect forced changes in global metrics of mean and

extreme precipitation with high signal-to-noise ratio, despite the listed challenges.

Models and observations roughly agree on a rate of specific humidity increase with global mean temperature (GMT) of

≈7%K−1, following theoretical relationships (Held and Soden, 2006; Dai, 2006). Extreme precipitation scales approximately

with this rate of increased precipitable water and increases over most of the global land, albeit atmospheric dynamics modulate40

the increase in some regions (O’Gorman and Schneider, 2009; Fischer and Knutti, 2016; Pfahl et al., 2017). Changes in global

mean precipitation are associated with the atmospheric energy balance, resulting in a smaller increase of ≈1-3%K−1, with

an underlying spatial pattern of hydrological cycle intensification (Allen and Ingram, 2002; Allan et al., 2014; Pendergrass

and Hartmann, 2014; Douville et al., 2021). Changes in mean precipitation over land are not well described by this pattern

intensification, though, and are expected to be lower and more complex due to effects of water availability and relatively45

higher warming rates over land compared to oceans (Douville et al., 2021; Byrne and O’Gorman, 2015; Roderick et al., 2014).

Besides local climatology, changes in factors such as large-scale atmospheric circulation, water availability and the vertical

structure of the atmosphere play a role in the local precipitation response to forcing (Byrne and O’Gorman, 2015; O’Gorman

and Schneider, 2009; Pfahl et al., 2017).

For mean precipitation, anthropogenically forced changes have been detected and attributed on a global land level and for re-50

gions defined by latitude bands (Fischer and Knutti, 2014; Knutson and Zeng, 2018; Noake et al., 2012; Marvel and Bonfils, 2013)

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Fischer and Knutti, 2014; Knutson and Zeng, 2018; Noake et al., 2012; Polson et al., 2013; Marvel and Bonfils, 2013). Anthro-

pogenic aerosols and GHGs have opposing influences on on the hydrological cycle (Wu et al., 2013; Bonfils et al., 2020)

::::::::::::::::::::::::::::::::::::::::::::
(Wu et al., 2013; Bonfils et al., 2020; Salzmann, 2016), implying that continued increase of GHGs and decrease of aerosol
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emissions will lead to stronger GHG signatures in mean precipitation. Although studies agree on the presence of a signal in ob-55

servations, they disagree on the strength. Models have been suggested to overestimate (Fischer and Knutti, 2014) as well as un-

derestimate them (Noake et al., 2012; Wu et al., 2013)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Noake et al., 2012; Wu et al., 2013; Polson et al., 2013; Knutson and Zeng, 2018)

observed trends.

For extreme precipitation, optimal fingerprinting methods and spatial aggregation approaches have led to detection and attri-

bution of anthropogenically forced changes over global land and for distinct Northern Hemispheric regions (e.g. Min et al., 2011; Zhang et al., 2013; Fischer and Knutti, 2014; Paik et al., 2020; Kirchmeier-Young and Zhang, 2020; Sun et al., 2022)60

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Min et al., 2011; Zhang et al., 2013; Fischer and Knutti, 2014; Paik et al., 2020; Kirchmeier-Young and Zhang, 2020; Sun et al., 2022; Fischer and Knutti, 2016)

. However, for extreme precipitation there is also disagreement regarding the strength of the forced signal in observations. A

subset of studies finds CMIP multi-model ensembles generally underestimate changes compared to observations (Min et al., 2011; Fischer and Knutti, 2014; Borodina et al., 2017)

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Min et al., 2011; Fischer and Knutti, 2014, 2016; Borodina et al., 2017), whereas others find the opposite (Zhang et al., 2013;

Paik et al., 2020; Sun et al., 2022).65

Hence, the degree to which model simulations accurately represent the responses of precipitation relevant processes to

forcing, and thus accurately simulate past and future changes in precipitation remains up for debate. Knowledge of the severity

of current climate change effects on the water cycle, as well as the congruence of modelled and observed historical forced

changes in the water cycle is important for adaptation policies and improvement of future projections.

Recent studies using data-science methods of varying complexity for the purpose of reducing the signal-obscuring effects70

of uncertainties and internal variability have detected forced signals in temperature as well as mean and extreme precipitation

(Sippel et al., 2020; Barnes et al., 2019, 2020; Madakumbura et al., 2021). Here, we show that regularised linear regression

can construct high signal-to-noise ratio fingerprints of the forced response in mean and extreme precipitation, reducing the

influence of internal variability and structural model error on the results. We generate fingerprints for detection and apply these

to several station-based observational datasets to assess whether significant forced changes are detected and have emerged from75

internal variability, and how modelled and observed forced changes compare. We analyse forced signals in annual precipitation

anomalies, and also in anomalies from which the global mean trend is removed, relying on spatial pattern information alone.

The latter approach highlights relative regional responses to forcing, and tests whether spatial pattern changes in models are in

accordance with observations.

2 Methodology80

In our detection procedure ridge regression (RR) models are trained on simulated spatial patterns of precipitation with known

forcings to determine fingerprints of the modelled forced response (FR) of annual mean total precipitation (PRCPTOT) and

annual extreme precipitation (Rx1d: precipitation accumulation on the day with most precipitation each year). The fingerprints

are such that they predict the FR
:::::
global

::::::
forced

::::::::
response from the spatial locations where observational data are available.

The RR-fingerprints are applied to observations to isolate an estimate of the real-world FR
:::::
forced

::::::::
response

:
from internal85

variability. Several data processing and regression steps are needed to achieve this. We describe the general procedures here;

supplementary Sect. S1 contains additional details.
:
,
:::
and

::::::::::::::::
Sippel et al. (2020)

::::::::
describes

:::
the

::::::
method

::::
used

::::
here

::
in
::::::
detail.
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2.1 Model simulations and observational data

The used model simulations come
:::
Our

:::::::
method

::::
bears

:::::::::
similarity

::
to

:::::::::::
(non-)optimal

::::::::::::
fingerprinting

:::::::
methods

:::
for

:::::
D&A

:::::
which

:::::
have

::::
been

::::::::
developed

::::
over

:::
the

::::
past

:::::::
decades.

:::::
From

::::::
Klaus

:::::::::::
Hasselmann’s

:::::::
seminal

:::::
paper

::
on

:::::::::::::
signal-to-noise

::
in

::::::::
detecting

:::::
forced

:::::::
climate90

::::::::
responses

::::::::::::::::
(Hasselmann, 1979)

:
,
::::::
optimal

::::::::::::
fingerprinting

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Hegerl et al., 1996; Allen and Stott, 2003; Ribes et al., 2013; Ribes and Terray, 2013)

:::
and

::::::::
detection

:::::::
methods

:::::
based

:::
on

::::::
pattern

:::::::::
similarity

::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Santer et al., 1995, 2013; Marvel and Bonfils, 2013)

::::
have

:::::::
evolved.

:::
In

::::::
optimal

::::::::::::
fingerprinting,

:::::::::::
observations

:::
are

:::::::::
regressed

::
on

::
a
::::::
“guess

:::::::
pattern”

:::
of

:::
the

::::::
forced

:::::::
response

:::::::
derived

:::::
from

:::::::
models,

:::::
using

::
an

:::::::
estimate

:::
of

:::::::
internal

:::::::::
variability,

::::::::
resulting

::
in

::::::
scalars

::::::::
(“scaling

::::::::
factors”)

::::::::::
representing

:::
the

::::::::
strength

::
of

:::
the

:::::
guess

:::::::
patterns

:::
in

:::::::::::
observations.

:::
Our

:::::
ridge

:::::::::
regression

:::::
based

::::::::
detection

::::::
method

::::::
differs

:::::
from

:::
this

::::::::
approach

::
in

::::
that

:::
we

::
do

:::
not

::::::
regress

::::::::::::
observational95

:::
data

:::
on

:::::::::
simulated

::::::::
estimates

::
of

:::
the

::::::
forced

::::::::
response,

:::
but

:::::::::
determine

::
a
::::::::
detection

::::::
model

:::::
based

:::
on

:::::
model

::::
data

:::::
only.

::
It

::
is

:::::
more

::::::
closely

::::::
related

::
to

:::::::
pattern

::::::::
similarity

::::::::
methods,

::::::
where

::
an

::::::::::
EOF-based

::::::
signal

::::::
pattern

::
is

:::::::
referred

::
to
:::

as
:::
the

::::::::::
fingerprint,

::::
and

:::
the

::::::::
projection

::
of

:::::::::::::
spatiotemporal

::::::::::
observations

::::
onto

:::
this

::::::
pattern

::::::
yields

:
a
::::::::::::::
one-dimensional

:::::::::
(temporal)

:::::::
estimate

::
of

:::
the

:::::
forced

::::::::
response

::
in

:::::::::::
observations.

:::
Our

:::::::
method

:::::
builds

:::
on

:::
this

::
in
::

a
:::::::::::::
straightforward

::::
way

::
by

::::::
adding

::
a
:::
step

:::
to

:::::::
optimise

:::::::::::::
signal-to-noise

::::
ratio.

::
In
::::

our

:::::::
method,

:::
we

::::::
project

:::::::::::
observations

:::
not

::::
onto

:::
the

::::::
signal

::::::
pattern

:::::::
directly,

:::
but

::::
onto

:
a
:::::::::
regression

:::::::::
coefficient

::::::
pattern

::::
that

::::::::::
“optimally”100

:::::::
(linearly,

:::::::::
optimised

::
by

::::::::::::
regularisation)

:::::::
projects

:::::::::
simulated

::::::::::::
spatiotemporal

:::::
Rx1d

::
or

:::::::::
PRCPTOT

:::::::
patterns

::::
onto

::
a
::::::::::::::
one-dimensional

:::::::
detection

:::::
space

:::::
based

:::
on

::
the

::::::
signal

::::::
pattern

:::
(see

:::::
Sect.

:::
2.2

:::
and

:::
2.3

::
for

:::::::
details).

::::::::::::
Regularisation

::::::::
optimises

:::
the

:::::::::
regression

:::::::::
coefficient

::::::
pattern

::
for

::::
high

:::::::::::::
signal-to-noise

::::
ratio

::::::
across

::::::
models

:::
and

::::
thus

::::::::
improves

:::::::::::::
generalisability.

::::
The

::::::::
detection

:::::
metric

::
is
::::
then

:::::::
applied

::
to

:::
map

:::::::::::::
spatiotemporal

:::::::::::
observations

::::
onto

:::
the

::::::::::::::
one-dimensional

::::::::
detection

:::::
space,

::::
thus

:::::::::
extracting

:::
the

::::::
forced

::::::::
response

::::::::
signature

::
in

::
the

:::::::::
real-world

:::::::
climate.

:
105

:::
We

::::::
believe

:::
the

:::::::::
advantages

:::
of

:::
our

:::::::
method

::
lie

::
in
:::

(1)
:::

its
::::::
relative

:::::::::
simplicity

::::
and

::::
close

:::::
links

::
to

::::::
pattern

::::::::
similarity

::::::
based

:::::
D&A

:::::::
methods,

:::::
while

:::::
going

::::::
beyond

:::::::::::
comparisons

::
to

:::
the

:::::
signal

::::::
pattern

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Santer et al., 2013; Marvel and Bonfils, 2013; Bonfils et al., 2020)

::
or

:::::
spatial

::::::::::
aggregation

:::::::::
techniques

:::::::::::::::::::::::::::::::::::::::::::
(e.g. Fischer and Knutti, 2014; Borodina et al., 2017),

:::
(2)

:::
the

::::::::::
interpretable

::::
and

:::::::
intuitive

::::::::
fingerprint

::::::
(spatial

:::::::::
coefficient

:::::
map)

::::
that

::::::
reflects

:::::::
regions

:::::::::
exhibiting

::::
high

:::::::::::::
signal-to-noise

::::
ratio

:::::::
climate

::::::
change

:::::::
signals,

:::
(3)

:::
the

::::
fact

::::
that

::
the

::::::::
estimate

:::
of

:::
the

::::::::
observed

::::::
forced

::::::::
response

::
is

::
a
::::
time

::::::
series,

::::::::
allowing

:::
for

:::::::
analysis

:::
of

::::::
trends

::::
and

:::
(4)

:::
the

:::::::::
possibility

:::
to110

::::::::::::::
straightforwardly

::::::::
introduce

:::::::::
additional

:::::::::
constraints

:::
to,

:::
for

::::::::
instance,

:::::::
increase

:::::::::
robustness

:::
of

::::::::
detection

::::
with

:::::::
respect

::
to

:::::::
specific

::::::
climate

:::::::::::
uncertainties,

::::
such

:::
as

:::::::::::
decadal-scale

:::::::
internal

:::::::::
variability

::::::::::::::::
(Sippel et al., 2021)

:
.
::::
This

::::::
method

:::
fits

:::
in

:::::
recent

::::::::::::
developments

::
in

:::::
D&A

:::
that

:::::
move

:::::::
towards

::::::::
mapping

::::::::::::::
multidimensional

::::
data

::::
onto

::
a

::::::::::::::
one-dimensional

:::::::
detection

::::::
space.

::::::
Studies

::::::
based

::
on

::::::
neural

:::::::
networks

::::
and

::::
deep

:::::::
learning

::
for

:::::
D&A

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Barnes et al., 2019, 2020; Labe and Barnes, 2021; Madakumbura et al., 2021),

:::::::
employ

::::::::
non-linear

:::::::
methods

:::
but

:::
use

::
a
::::
very

::::::
similar

:::::::::
framework

::::
with

::::::
similar

:::::
goals.

:::
We

:::
do

:::
not

::::
argue

::::
that

::::
ridge

:::::::::
regression

::
is

::::::::::::
fundamentally115

:::::
better

::::
than

:::
any

:::
of

:::
the

:::::::::
mentioned

:::::::::
methods,

:::
but

:::
we

:::
are

:::::::::
convinced

::::
that

:::
the

::::::::
intuitive,

::::::::
physical

::::::
outputs

:::::::::
combined

::::
with

:::::
high

::::::::::::
signal-to-noise

::::
ratio

:::
can

:::
be

:::::::
valuable

:::
for

::::
trend

::::::::
detection

::::
and

:::::::::
attribution.

2.1
:::::

Model
::::::::::
simulations

::::
and

::::::::::::
observational

::::
data

:::
We

:::
use

:::::
model

::::::::::
simulations

:
from thirteen CMIP6 models with at least three members with historical and SSP245 data (Eyring

et al., 2016). For models that have more than three of such members, the first three are selected. As unforced control data,120
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450-year piControl simulations for ten out of the thirteen models are available and used, i.e. 4500 years of unforced data. See

table S1 in the supplement for an overview of CMIP6 data used.

In an effort to address observational uncertainty, three observational datasets are used: for Rx1d HadEX3 (Dunn et al., 2020)

(1.875◦×1.25◦, 1951-2018), and GHCNDEX (Donat et al., 2013) (2.5◦×2.5◦, 1951-2020) are used. For PRCPTOT, HadEX3,

GHCNDEX and GPCC (Schneider et al., 2017) (2.5◦×2.5◦, 1951-2019) are used. GPCC does not provide extreme indices and125

is therefore only used for PRCPTOT. All three observational datasets are gridded data derived from station observations (Dunn

et al., 2020; Donat et al., 2013; Schneider et al., 2017). HadEX3 and GHCNDEX only provide values for gridcells where three

stations are available within the decorrelation length scale of the gridding procedure, leading to spatially incomplete maps.

GPCC, on the other hand, interpolates to all land gridcells. In order to create a reliable GPCC record comparable to the other

datasets, we mask this data to include only gridcells in which data from three stations were available, as per the station density130

data provided in GPCC as well.

For each timestep within each dataset, coverage differs. In order to generate time-independent fingerprints, we create one

single coverage mask for each dataset representative of 1951-present. Gridcells for which a maximum of 3 time steps (years)

is missing are included, the missing time steps are set to the time mean of the gridcell in question. This implies that the total

fraction of filled-in datapoints (gridcells×timesteps) ranges from 0.4-0.9 %.135

We note that the nature of model and observational gridded data differs, as model precipitation values are spatial gridcell

averages whereas methods to grid station-based point observations onto a regular grid result in values representative of gridcell

centres (Dunn et al., 2020). This can affect precipitation (extreme) indices in particular, and may reduce the direct comparability

of model and observational absolute values(Dunn et al., 2020; Avila et al., 2015). Trend biases due to this structural difference

have been shown to be negligible, however, justifying the comparison between models and observations made in this study140

(Avila et al., 2015)
::::::::::::::::::::::::::::::
(Dunn et al., 2020; Avila et al., 2015).

2.2 Data processing

Rx1d is determined as the maximum daily amount of precipitation per year for each location on the original grid. We regrid

modelled PRCPTOT and Rx1d fields onto the grids of HadEX3 and GHCNDEX. As the GPCC grid is nearly identical to the

GHCNDEX grid, we regrid GPCC to the GHCNDEX grid so that the GHCNDEX-regridded CMIP6 simulations can be used.145

PRCPTOT and Rx1d annual anomalies w.r.t.
:::
with

::::::
respect

:::
to the 1951-2014 reference period are determined per gridcell. For

CMIP6 data, anomalies of individual members are computed w.r.t.
::::
with

::::::
respect

::
to

:
the annual mean of the ensemble mean of

the model in question. For these ensemble means, all available model members are used to reduce noise where possible, even

though only three members are used in the RR model training. This removes potential systematic model biases in absolute

precipitation levels, which is required for meaningful prediction of forced trends.150

These fields of single-model ensemble member anomalies, masked to observational coverage, serve as predictors to train the

RR model, with the goal of predicting the FR
:::::
forced

::::::::
response, and are used as RR inputs to obtain model FR estimates(FREs)

:::::
forced

:::::::
response

::::::::
estimates. The observational anomalies serve as input to the trained RR model to determine the observed FRE

:::::
forced

:::::::
response

:::::::
estimate. In a second application of the method, we subtract the masked, area-weighted spatial mean from the pre-

5



dictors and observational data for each time step. These detrended predictors thus only contain the relative pattern changes in155

precipitation.

The RR model’s purpose is to predict the forced response (FR) from predictors (anomaly maps), hence the RR model is

trained with a FR
:::::
forced

::::::::
response proxy as target variable (predictand). Different RR models are trained for PRCPTOT and

Rx1d – each has their own FR
:::::
forced

:::::::
response

:
proxy as target variable. In order to include the pattern of change, the main

FR
:::::
forced

::::::::
response

:
metric used in this study is based on empirical orthogonal function (EOF) analysis of the unmasked160

multi-model mean anomaly maps, conceptually similar to a traditional way of extracting FRs
:::::
forced

:::::::::
responses (e.g. Santer

et al., 1995; Hegerl et al., 1996). In supplementary Fig. S2
::
S3

:
we show a comparison between the EOF-based targets and

the multi-model global mean, and Fig. S9
:::
S10

:
shows that using this multi-model global mean as FR

:::::
forced

::::::::
response target

for detection does not lead to different conclusions. Multi-model mean anomalies are determined by taking the mean of the

single-model ensemble means and centring this on the 1951-2014 reference period. By first computing single-model ensemble165

means, all models contribute equally to the multi-model mean regardless of ensemble size. The first EOF of the data represents

the spatial pattern that explains most of the variance in the data, and its corresponding first principal component (PC) is a

timeseries reflecting the strength of that pattern in the data. We perform the EOF analysis over the entire length (1850-2100)

of the multi-model mean record. Given that the response to external GHG forcing is much larger in amplitude than internal

variability, the first EOF can be assumed to reflect GHG-caused variance (Hegerl et al., 1996). The PC corresponding to this170

first EOF
:::
first

:::::::
principal

::::::::::
component is therefore set to be the multi-model forced response best estimate. Each model’s ensemble

mean data is projected onto the first EOF of the multi-model mean to obtain model-specific FRs
:::::
forced

::::::::
responses, which form

the targets for RR training. The model-specific FRs
:::::
forced

::::::::
responses

:
correlate highly with each model’s area-weighted global

mean change; the average Pearson correlation coefficient is 0.9 for PRCPTOT, and 0.99 for Rx1d. EOF
:::
We

:::::::::
nonetheless

::::::
prefer

::
to

:::
use

:::
the

::::::::::
EOF-based

:::::
target

:::
as

:
a
:::::::
default,

:::::
since

:::
the

::::
first

::::
EOF

::::::::
captures

:::
the

::::::
forced

::::::
pattern

::
of

:::::::
change,

::::
and

:::
its

::::::::::::
corresponding175

:::::::
principal

::::::::::
component

::::
time

:::::
series

:::::::
captures

:::
the

:::::::
strength

::
of

::::
that

:::::::
pattern.

:::
The

::::
first

::::::::
principal

:::::::::
component

::
is

::::
thus

:
a
::::::::
reflection

:::
of

:::
the

:::::
forced

::::::
pattern

:::::::
strength

::::::::::::::::::::::::::
(e.g. Marvel and Bonfils, 2013)

:
,
:::::::
meaning

:::
the

::::::
forced

::::::::
response

::
in

:::
all

::::::
regions

::
is
:::::::::
somewhat

::::::::
reflected

::
in

:::
this

:::::::::
timeseries,

:::
and

:::
not

::::::::
averaged

:::
out

::
as

::
in
:::
the

::::::
global

:::::
mean.

:

:::
The

:::::::::
procedure

::::::::
described

::::::
above

::
is

:::::::::
visualised

::
in

::
a

::::::::
flowchart

::
in

:::::::::::::
supplementary

::::
Fig.

:::
S1,

::::
and

:::
the

::::
EOF

:
patterns and model

specific targets are shown in supplementary Fig. S1
::
S2. The EOF-derived targets are relatively noisy, however, smoothing the180

FR
:::::
forced

::::::::
response targets with a 21-year LOWESS

:::::
lowess

:
filter before RR model training yields virtually identical results,

indicating that the low frequency components of the targets govern the RR model configurations.

2.3 Ridge regression

The detection fingerprint is generated by regressing the FR
:::::
forced

:::::::
response

:
targets onto the spatiotemporal predictors using

ridge regression, referred to as training. The resulting fingerprint is a spatial map of coefficients reflecting the relationship185

between predictors and FR
:::::
forced

:::::::
response

:
targets in model simulations. For the RR training procedure, we store the predictors

in a 2D matrix X of size n× p (rows × columns), where each column corresponds to a gridcell in the coverage mask, and

the concatenated time series of three members per model make up the rows. The target variable is a vector Y of length n
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consisting of a concatenation of the targets matching the predictors, i.e. the model member predictors predict their “own”

model ensemble mean FR
:::::
forced

:::::::
response

:
target, to retain within-model physical consistency. The output of the RR training190

procedure is a coefficient vector β of length p such that:

Y =Xβ+β0 + ϵ (1)

Effectively, β – the fingerprint – consists of coefficients for each gridcell in the coverage mask. Applying β to model output

(Xmod) or observational data (Xobs) then gives:

Ŷmod =Xmodβ+β0 (2)195

Ŷobs =Xobsβ+β0 (3)

in which Ŷmod and Ŷobs are statistical predictions of the modelled and observed FR
:::::
forced

::::::::
response; referred to as forced

response estimates(FRE). In order to assess whether the external forcing has an effect that is distinct from internal variability,

the fingerprint is applied to piControl model simulations to generate an unforced control FRE
:::::
forced

:::::::
response

:::::::
estimate; Ŷmod,pi.

All piControl data (4500 years) are input into the RR model to have a control distribution as large as possible.200

β is obtained numerically in R using the package glmnet for k-fold cross-validated ridge regression (Friedman et al., 2010;

Simon et al., 2011). To determine β, the sum of squared residuals plus the sum of squared coefficients times a parameter λ is

minimised (see equation 4 for the objective function). The regularisation parameter λ can be tuned: the higher λ, the stronger

the regularisation. This regularisation is the key characteristic of ridge regression.

arg min
∑

(Yi −βXi)
2 +λ

∑
β2 (4)205

The RR cost function is minimised for a set of λs through k-fold cross-validation, in which each fold contains data from one

model. The simultaneous training and cross-validation on all models ensures that the resulting RR-fingerprint generalises well

across models, reflecting where they agree and avoiding overfitting to any particular model. Training on many climate reali-

sations ensures that the resulting RR-fingerprint leads to FREs
::::::
forced

:::::::
response

::::::::
estimates

:
that are robust to internal variability.

This means higher coefficients are given to gridcells where internal variability is smaller relative to the long-term trend, reflect-210

ing where signal-to-noise ratios and thus predictive value for the FREs
:::::
forced

::::::::
response

::::::::
estimates are higher.

::::::
Figure

:
1
::::::
shows

:
a
:::::::::::
visualisation

::
of

:::
the

:::::
ridge

::::::::
regression

:::::::::
procedure,

::
to
:::::::::

intuitively
::::::
clarify

:::
the

:::::::
relative

::::
roles

::
of

:::::::::
simulated

:::
data

::::
and

:::::::::::
observations

::
in

:::
this

::::::::
approach.

:
For a more detailed description of RR with glmnet, see (Friedman et al., 2010; Simon et al., 2011; Sippel et al.,

2020).

Regularisation is used since the high number of predictors may otherwise lead to overfitting and unphysical coefficient fin-215

gerprints in whiche.g. ,
:::
for

::::::::
example, high positive coefficients are offset with adjacent negative coefficients. Regularisation acts

to reduce overfitting, and results in a more homogeneous and smoother fingerprint, which more closely resembles the spatial
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Figure 1.
::::::::
Flowchart

::
of

::::
ridge

:::::::
regression

:::::
model

::::::
training

::::::::
procedure

::
as

::::
well

::
as

::::::::
application

::
of

:::::::
detection

:::::
model

::
to

::::::::::
observations.

scales of precipitation change patterns. It also increases generalisability of the fingerprint, and thus improves performance

when applied to data that have not been seen in the training, such as observations.

There is no objective best approach to select the regularisation parameter λ. Smaller λs reduce bias but increase variance220

(overfitting) whereas larger λs do the opposite (Friedman et al., 2010; Simon et al., 2011). There are several common options

for λ selection, as default we use λsel, of which the definition and selection procedure are described in supplementary Sect.

S1
::
.3. We reason that the most regularised RR model with good performance is a good choice for the detection model, since

model performance is very similar within the range of common λs, whereas fingerprint interpretability decreases for λs on the

low end of the range. Sensitivities to λ selection are addressed in Sect. 3.4.225

Note that all the model simulations we use serves
::::
serve

:
as input for RR training - i.e. the model FREs

:::::
forced

::::::::
response

:::::::
estimates

:
shown in Sect. 3 are not out-of-sample application. Since the purpose of the RR model is to estimate the observed FR

:::::
forced

::::::::
response from observational data that was not used in training, no independent model data sample for model FR

:::::
forced

:::::::
response estimation is needed. Figure S3

::
S4

:
in the supplement shows that pre-cross-validation results of the RR model applied

to out-of-fold data are nearly identical to results of the final cross-validated model.230
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2.4 Forced trends and signal time of emergence

To assess the strength of the observed FREs
:::::
forced

::::::::
response

::::::::
estimates, we compare linear trends in Ŷobs for the different

observational datasets to linear trends in the multi-model FR
:::::
forced

::::::::
response

:
best estimate Y , as well as to the range of

unforced trends given by the piControl FREs
:::::
forced

:::::::
response

::::::::
estimates

:
Ŷpi. In this study, we consider forced change to be

detected if Ŷobs trend magnitudes lie outside the 95% confidence interval
:::::
range of trends from control simulations (Ŷpi). The235

magnitude of the observed FRE
:::::
forced

::::::::
response

:::::::
estimate

:
Ŷobs trends relative to the multi-model FR

:::::
forced

::::::::
response

:
best

estimate Y trends indicates whether CMIP6 models over- or underestimate the real-world forced signals in PRCPTOT and

Rx1d.

Besides linear trends, we also assess the signal-to-noise ratio (SNR) of the observed FREs
:::::
forced

::::::::
response

::::::::
estimates. We

define SNR based on Hawkins et al. (2020), but we note that the signals here are global, as opposed to local signals in Hawkins240

et al. (2020). In order to separate the signal from the noise in FREs, FREs
:::::
forced

::::::::
response

:::::::::
estimates,

::::
they are related to a

smoothed, long-term forcing proxy as a covariate. Since global precipitation change scales with global temperature change, as

described in the introduction, the long term trend in precipitation FREs
:::::
forced

:::::::
response

::::::::
estimates can be isolated using the long

term trend in global temperature (see supplementary Fig. S4
::
S5). Hence, the signal S is defined as the observed FRE

:::::
forced

:::::::
response

:::::::
estimate

:
regressed onto smoothed global mean surface temperature (GMST) from Cowtan and Way (2014). GMST245

:::::
Global

:::::
mean

:::::::
surface

::::::::::
temperature

:
is smoothed with a 21-year LOWESS-filter

:::::
lowess

::::
filter

:
to remove interannual variability

while keeping the long term trend
:::::::::::::::::
(Hawkins et al., 2020). The noise N is defined as the standard deviation (σ) of the residuals

of this linear fit, i.e. σ(Ŷobs−S). The SNR ( S
N ) thus relates the observed FRE

:::::
forced

::::::::
response

:::::::
estimate signal to observed FRE

:::::
forced

::::::::
response

:::::::
estimate

:
noise, providing a measure of signal emergence. The mean signal is centred to zero in the 21-year

period 1951-1971, as we see minimal measurable forcing effects in precipitation metrics up to then. Between the 1951-1971250

period and the present, the signal and thus the SNR increases. This allows us to determine the time of emergence (ToE) of a

forced climate signal in mean and extreme precipitation, defined as the year after which the SNR consistently remains higher

than 2.

3 Discussion of results
:::::::
Results

:::
and

:::::::::
discussion

3.1 Context: Precipitation change in model simulations and observations255

In order to put the detection results in context, we first assess the general characteristics of historical precipitation trends

in models and observations. Figure 2 shows maps of annual linear trends for PRCPTOT and Rx1d from the CMIP6 ssp245

:::::::
historical

:
multi-model mean and the observational datasets over the 1951-2014 period.

For PRCPTOT (left panel) the model trend map (Fig. 2a) shows the well-established mean precipitation forced change

spatial pattern, including a net global increase and an intensification of the global water cycle pattern (Douville et al., 2021).260

All observational datasets (figures 2c, e and g) contain features that resemble the multi-model mean forced patterns such as

wettening in high latitudes. There are also some regions, such as Southeast Asia and West Africa, where observed and simulated
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Figure 2. Mean total precipitation (PRCPTOT, left) and extreme precipitation (Rx1d, right) 1951-2014 annual linear trends in the CMIP6

multi-model mean (a, b); in HadEX3 observational data (c, d); in GHCNDEX observational data (e, f); and in GPCC observational data (g).
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trends have opposite signs. Uncertainties in the net precipitation response to the opposing forcing effects of greenhouse gases

and aerosols in the second half of the 20th century, as well as internal variability, likely play a role in these discrepancies

(Bonfils et al., 2020). The different observational datasets generally agree with one another, but a stronger trend over western265

North America in GHCNDEX (Fig. 2e) stands out. For HadEX3, GHCNDEX, and GPCC, models and observations agree on

the sign of the PRCPTOT trend for 74%, 85%, and 68% of gridcells. For Rx1d (right panel) model trends (Fig. 2b) also reflect

well-known changes, which are predominantly positive, especially over land. Observational records (figures 2d and 2f) agree

in that they also feature mostly positive trends. For HadEX3 and GHCNDEX, models and observations agree on the sign of

the Rx1d trend for 71% and 75% of gridcells. The fact that simulated trend patterns appear smoother and smaller in magnitude270

than observational trend patterns is primarily due to multi-model mean averaging.

The first EOFs underlying the RR targets look virtually identical to the simulated trend patterns
:
–
::::::
spatial

::::::::::
correlation

:::::::::
coefficients

::::::
exceed

::::
0.99

::
–, which implies that the first EOFs capture the forced trend signals (see supplementary Fig. S1

::
S2).

3.2 Detection fingerprints and observed FRE
:::::
forced

::::::::
response

::::::::
estimates

Figure 3 shows the detection fingerprints, FREs
::::::
forced

:::::::
response

::::::::
estimates

:
and forced trends for models and observations275

obtained with RR.

The top panel of Fig. 3 shows the regression coefficient fingerprints that best predict the FR
:::::
forced

:::::::
response

:
while minimising

variance due to internal variability and model disagreement, as described in Sect. 2. Only the fingerprint on the HadEX3-mask

is shown here, GHCNDEX-masked and GPCC-masked fingerprints feature similar patterns where coverage overlaps, as shown

in supplementary Fig. S5
::
S6, increasing confidence in the generated RR-patterns and the method.280

For both PRCPTOT (3a) and Rx1d (3b), large coefficients indicate changes with a high SNR and a time evolution that

corresponds to the global FR
:::::
forced

::::::::
response time evolution. Positive coefficients indicate changes with the same sign as the

global FR
:::::
forced

::::::::
response, whereas negative coefficients indicate changes with opposite sign. RR tends to rely on regions with

smaller but more robust changes for FR
::::::
forced

:::::::
response

:
prediction, whereas some regions with larger changes such as the

tropics contribute less to the prediction, due to their high internal variability and uncertainty (Kent et al., 2015). Regions with285

very small coefficients coincide with where CMIP6 models have been shown to disagree strongly on the sign of change, e.g.

::
for

::::::::
example the location of the transition from negative (south) to positive (north) coefficients in Europe for PRCPTOT, and

central America and the whole of Australia for both PRCPTOT and Rx1d (Douville et al., 2021; Giorgi et al., 2014; Westra

et al., 2013; Sun et al., 2022; Kotz et al., 2022; Kent et al., 2015). For many of these regions, the disagreement among models

about precipitation change can be traced back to the influence of circulation changes on precipitation changes, which are290

particularly uncertain; for example, expansion of subtropical dry zones.

Several specific features that reflect the FR
:::::
forced

::::::::
response

:
pattern of PRCPTOT and Rx1d can be distinguished in the

fingerprints. The PRCPTOT fingerprint features negative coefficients in southern Europe and northern Africa, as well as South-

Africa and Australia, which reflect the drying pattern corresponding to expected forced change in the hydrological cycle

(Douville et al., 2021). Additionally, the climatologically wet Pacific Northwest exhibits positive coefficients as the air that295

rains out due to orographic lift by the Cascade, Coastal, and Olympic mountain ranges becomes increasingly moist with
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Figure 3. Annual mean total precipitation (PRCPTOT) and extreme precipitation (Rx1d) ridge regression detection fingerprints for HadEX3 coverage (top),

corresponding forced response estimates (FRE) (middle), and linear forced response estimate trends as a function of trend period (bottom). In (c) and (d),

black lines represent the multi-model forced response (FR) best estimate, coloured shading the full range of model forced response estimates, coloured lines

the observed forced response estimate, grey dashed lines the unforced internal variability of the forced response pattern (piControl forced response estimate

95% range (2.5% to 97.5% quantile range). In (e) and (f), black lines represent the multi-model forced response best estimate trend, coloured shading the 95%

range of model forced response estimate trends, coloured lines the observed forced response estimate trends, grey shading the piControl trends, black boxplots

the model ensemble mean target trends. Trends are computed from a variable start year until the end year of the observational time series (2018 for HadEX3,

2019 for GPCC, 2020 for GHCNDEX, 2018 for multi-model forced response best estimate and model ensemble mean trend). Start years vary between 1951

and 1991 with increments of 5. piControl trends are computed over periods equally long as the corresponding forced trends. All linear trends are normalised

with respect to the multi-model forced response best estimate 1951-2018 trend, i.e. the leftmost point on the black line.
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climate change. The rain shadow on the lee side features negative coefficients. The Rx1d fingerprint looks more homogeneously

positive than for PRCPTOT, reflecting the expectation of a positive trend in Rx1d over almost all land regions, as seen in Fig.

2 (Pfahl et al., 2017). The strong positive coefficients in Northern Europe and the North-American West Coast can likely be

explained by the systematic nature of extreme precipitation in these regions – wet ocean westerlies making landfall –, which300

results in a consistent response to increased atmospheric moisture and thus high predictive value for the global FR
:::::
forced

:::::::
response

:
(Pfahl and Wernli, 2012). The smaller positive or even negative coefficients in the tips of South America and South-

Africa correspond to regions where dynamical changes are known to mask thermodynamic increases in Rx1d (Pfahl et al.,

2017; Kotz et al., 2022; Li et al., 2021).

The similarities in the maps for PRCPTOT and Rx1d indicate that the signs of change in PRCPTOT and Rx1d correspond305

in most regions, pointing towards a precipitation distribution shift to higher mean and extreme precipitation levels. As men-

tioned, however, the magnitude of the increase is larger for Rx1d than for PRCPTOT, and regions where negative changes in

PRCPTOT exist in combination with positive changes in Rx1d are also found. This corresponds to widening of the precipita-

tion distribution and complies to the expected forced increase in precipitation variability (Zittis et al., 2021; Pendergrass et al.,

2017). From an impacts perspective, this could imply that the background climate in some regions dries while wet extremes310

become more intense, which can increase both drought and flood risks (Tramblay et al., 2019).

The middle panels of Fig. 3 show the FREs
:::::
forced

:::::::
response

::::::::
estimates for PRCPTOT (3c) and Rx1d (3d), which are the result

of applying the RR-fingerprints to model simulations and observational data. The green/blue shading shows the range of FREs

:::::
forced

::::::::
response

:::::::
estimates

:
from CMIP6 individual member data for all observational masks. The consistency of the trend in the

model FRE
:::::
forced

::::::::
response

:::::::
estimate

:
envelopes and the multi-model FR

:::::
forced

::::::::
response

:
best estimate (black line) confirms315

that the RR-fingerprints are indeed suited to capture the global climate change signal in PRCPTOT and Rx1d from spatially

incomplete model data. The model FREs
:::::
forced

::::::::
response

::::::::
estimates show a slight high bias in early years where the target is at

the low end of its range, and a slight low bias in late years where the target is at the high end of its range. This effect is expected

since the regularisation “trades” some goodness of fit for generalisability, and makes the FRE
::::::
forced

:::::::
response

::::::::
estimates

:
more

conservative.320

The coloured lines show FREs
:::::
forced

::::::::
response

::::::::
estimates from observations. The observed FREs

:::::
forced

::::::::
response

::::::::
estimates

lie well within the model FRE
:::::
forced

::::::::
response

:::::::
estimate range, exhibit similar variance, and follow the trend of the multi-model

FR
:::::
forced

::::::::
response best estimate. These trends in the observed PRCPTOT and Rx1d FREs

:::::
forced

::::::::
response

::::::::
estimates indicate

that the strength of the forcing pattern increases in observations indeed, and generally agrees with model projections.

The grey dashed lines show the 95% confidence interval of the FRE
:::::
range

::
of

:::
the

::::::
forced

:::::::
response

::::::::
estimate from unforced325

piControl data, and the piControl FRE
:::::
forced

:::::::
response

:::::::
estimate

:
distribution is also shown as a point cloud to the right of the

timeseries, reflecting the internal variability range of the detection pattern. Over the historical period, observed FREs
:::::
forced

:::::::
response

::::::::
estimates

:
have moved from the middle towards the upper bound of the piControl range, and the multi-model FR

:::::
forced

::::::::
response best estimate and model FREs

:::::
forced

::::::::
response

::::::::
estimates leave the piControl range still in the first half of the

21st century. All of the above points to the unambiguous detection of forced climate change in annual PRCPTOT and Rx1d in330

all observational datasets used.
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We note that the GHCNDEX FRE
:::::
forced

:::::::
response

::::::::
estimate for PRCPTOT shows a distinct uptick towards the end of the

record, which likely is related to the coverage of GHCNDEX being almost exclusively in the higher Northern latitudes (more

so than for the other datasets), which contribute disproportionately in these particular years. However, based on the analysis

here, we cannot differentiate whether this is an artefact, internal variability, or indicative of an increasing forced rate of change335

in PRCPTOT.

Besides visual inspection of FRE
:::::
forced

::::::::
response

:::::::
estimate

:
timeseries, quantitative detection statements can be made based

on the trends in these timeseries. For lack of evidence for a particular FR
:::::
forced

::::::::
response polynomial, the high amount of noise

in observed FREs
:::::
forced

::::::::
response

::::::::
estimates, and ease of interpretation, linear trends are assumed. The trends in PRCPTOT and

Rx1d, however, are not constant with time in the period of interest, so we also include the dependence of forced trend estimates340

on the length and start year of the trend period. Figures 3e and 3f show a quantitative overview of the linear trends of targets

and FREs
:::::
forced

:::::::
response

::::::::
estimates

:
as a function of start year and trend length. Findings are normalised with respect to the

1951-2018 multi-model FR
:::::
forced

:::::::
response

:
best estimate trend.

Since forced trends in both PRCPTOT and Rx1d only begin to appear around 1975, the multi-model FR
:::::
forced

:::::::
response

:
best

estimate trends are larger in more recent trend periods that omit earlier years (toward the right side of the x-axis). The model345

FRE
:::::
forced

::::::::
response

:::::::
estimate trend 95% confidence intervals

:::::
ranges

:
(green/blue shading) are reasonably symmetric around the

multi-model FR
:::::
forced

:::::::
response

:
best estimate and include the majority of the ensemble mean target trends (black boxplots).

This agreement of model FRE trends with FR
:::::
forced

:::::::
response

:::::::
estimate

::::::
trends

::::
with

:::::
forced

::::::::
response target trends shows that the

RR-model does well in estimating the forced trend magnitudes. Part of the intermodel spread in both FR
::::::
forced

:::::::
response targets

(boxplots) and model FREs
:::::
forced

::::::::
response

::::::::
estimates is explained by the different climatological levels of precipitation among350

models and their different climate sensitivities, and in part by model uncertainties in temperature-independent precipitation

adjustments (Fläschner et al., 2016). Despite the large spread, there is only little overlap of the model FRE trend confidence

interval
:::::
forced

:::::::
response

::::::::
estimate

::::
trend

:::::
range

:
and the piControl trend confidence interval

:::::
range (grey shading), implying that

almost the entire range of model FRE
:::::
forced

::::::::
response

:::::::
estimate trends lies outside the range of trends possible in an unforced

climate. This confirms once again that there is a robust forced signal in mean and extreme precipitation.355

The observed FRE
:::::
forced

::::::::
response

:::::::
estimate trends for both PRCPTOT and Rx1d (coloured lines) exceed zero, lie within the

model FRE trend confidence interval
:::::
forced

::::::::
response

:::::::
estimate

::::
trend

:::::
range

:
and outside the piControl confidence interval

:::::
range

for all trend lengths (apart from GPCC trends over the most recent 40 years or shorter), confirming detection of forced change

in observations. Although forced change is unambiguously detected in all datasets, the degree of observed change depends on

the observational dataset considered.360

GHCNDEX yields higher observed FRE
:::::
forced

::::::::
response

:::::::
estimate

:
trends than the multi-model FR

:::::
forced

::::::::
response

:
best

estimate trend for PCRPTOT whereas HadEX3 and GPCC yield lower observed forced trends. Hence, GHCNDEX suggests

that CMIP6 models underestimate the forced change in PRCPTOT, whereas HadEX3 and GPCC suggest CMIP6 models

overestimate it. The higher trends in GHCNDEX PRCPTOT are partly caused by the few high outliers towards the end of the

GHCNDEX timeseries mentioned earlier, but also persist when these are removed from the timeseries.365
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For Rx1d, GHCNDEX and HadEX3 FREs
:::::
forced

::::::::
response

::::::::
estimates show more similar trends, although GHCNDEX trends

again exceed HadEX3 trends for trends that include years before 1975. For more recent periods, GHCNDEX shows smaller

trends than HadEX3. In general, FRE
::::::
forced

:::::::
response

:::::::
estimate

:
trend increases in both observational datasets flatten out for

periods from 1975 to the present, where trends smaller than the multi-model FR
:::::
forced

::::::::
response

:
best estimate are found. By

contrast, periods including years prior to 1975 suggest observed trends larger than in the multi-model FR
::::::
forced

:::::::
response

:
best370

estimate.

Whereas the magnitudes of the observed FRE
::::::
forced

:::::::
response

:::::::
estimate

:
trends differ considerably among the observational

datasets in some cases, as highlighted above, the relative trend fluctuations over time resemble each other in all datasets. This

increases confidence in the consistency of the method, and suggests that differences in spatial coverage and data operations

among observational datasets are the main sources of uncertainty in observed forced trend estimation.375

Although these results are sufficient to conclude that the detection of forced change in global mean and extreme precipitation

is unequivocal, internal variability and short record length preclude our ability to conclude whether the observed change is

weaker or stronger than models suggest. The use of multiple observational datasets and the time-dependent view of the forced

trends in observations shows that the magnitude of forced change detected in precipitation observations is sensitive to choices

on the specifics of the analysis. In previous studies, opposing conclusions have been drawn as to the magnitude of forced380

precipitation change in observations relative to model simulations, as noted in the introduction. Our results show that both

conclusions can be true, depending on the observational dataset and the forced trend metric used.

Confidence in these results is strengthened by the consistency of the variability in the model FREs and observed FREs.

:::::
forced

::::::::
response

::::::::
estimates

:::
and

::::::::
observed

:::::
forced

::::::::
response

::::::::
estimates.

:
The residuals of the linear fit to the observed and modelled

FREs
:::::
forced

::::::::
response

::::::::
estimates

:
have comparable distributions, shown in supplementary Fig. S6

::
S7. This residual variance385

consistency justifies the use of the model-derived RR-fingerprint on observations, and decreases the likelihood of spurious

detection. Confidence in the method is also enhanced by its robustness to target metric; the results above also hold when the

global mean is used as FR
:::::
forced

:::::::
response

:
target, as shown in supplementary Fig. S9.

::::
S10.

::
In

:::::::
addition,

:::
the

:::::
main

::::::
finding

::::
that

::
the

::::::::::
magnitude

::
of

:::::::
detected

::::::
forced

:::::::
changes

::
in

:::::::::::
precipitation

:::::::::::
observations

::::::
relative

::
to
:::::::::

simulated
::::::
forced

:::::::
changes

:::::::
depends

:::
on

:::
the

::::::
dataset,

:::::
holds

::::
also

::::
when

:::::::
relative

::::::::::
precipitation

:::::::
metrics

::::
such

::
as

:::::::::
percentage

::::::
change

::
or

:::::::::
percentage

:::::::
change

:::
per

::::::::::
temperature

::::::
change390

::
are

::::::::
assessed,

::::::
shown

::
in

::::::::::::
supplementary

:::::
Sect.

::::
S2.3.

:

3.3 Detection based on relative spatial patterns of precipitation alone

It is not surprising that forced change in mean and extreme precipitation can be detected on a global scale, given the consensus

on global mean increases in PRCPTOT and Rx1d with increasing global temperatures. A more powerful detection statement

can potentially be made, however, if forced change can be detected in the spatial pattern of precipitation observations alone,395

excluding the global mean trend. Therefore we attempt to construct RR-models based on training data from which the global

mean trend is removed (detrended) by subtracting the coverage-masked, area-weighted spatial mean for each time step. The

resulting fingerprints are then applied to observations which are detrended in the same way.
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Figure 4. As Fig. 3 but for detrended predictors. Detrending implies removing the masked, area-weighted spatial mean from the model

member data and observational data for each time step.

Figure 4 (top) shows the RR-fingerprints for detrended predictors on the HadEX3 mask for mean and extreme precipitation

(GHCNDEX and GPCC masked fingerprints look similar where coverage overlaps, see supplementary Fig. S7
::
S8). In these400

fingerprints, negative coefficients indicate a change that is in phase with the FR
:::::
forced

::::::::
response but of opposite sign, which can

point to a decrease, but also to an increase with a smaller slope than the (coverage-masked) global mean increase. The latter is

the case when coefficients flip sign from positive in Fig. 3, where the trend is included, to negative in Fig. 4. Positive coefficients

16



in Fig. 4, on the other hand, indicate increases with slopes larger than the global mean increase. As for the fingerprints in Fig.

3, large coefficient magnitudes in Fig. 4 signify high SNR but not necessarily large changes in an absolute sense.405

Inspection of the detrended fingerprints leads to several interesting insights. Both for PRCPTOT and Rx1d we see that

some regions with large regression coefficients flip sign. As stated above, this reflects high-SNR changes of the same sign

but with a smaller rate of change than the global mean. This again shows that RR relies to a large degree on
:::::
regions

:::::
with

small but consistent changes, e.g.
:::
for

:::::::
example

:
the Tibetan plateau for PRCPTOT. This effect is even more strongly visible in

the Rx1d fingerprint, since continental Europe and western North-America – the regions with strong positive coefficients in410

the fingerprint with global mean included – flip sign. Rx1d increases in these regions are thus smaller than global mean, yet

strong indicators of forced change in the context of internal variability and uncertainty among models. Rx1d increases likely

are dominated by large tropical rainfall increases, as indicated by persistent positive coefficients in tropical regions and the

North-American and Asian east coasts.

For both PRCPTOT and Rx1d, the regions of primary importance largely remain the same between the two fingerprint types.415

This implies that the fingerprint with the global mean trend included picks up on high SNR forced signals beyond the large

scale mean increase.

The observed FREs
:::::
forced

::::::::
response

::::::::
estimates

:
for detrended PRCPTOT and Rx1d (coloured lines) in figures 4c and 4d

show a clear positive trend that is in agreement with the multi-model FR
::::::
forced

:::::::
response

:
best estimate (black line). Recall

that the FREs
:::::
forced

::::::::
response

::::::::
estimates in figures 4c and 4d are derived from observations from which the global mean is420

removed, meaning that the relative spatial patterns of PRCPTOT and Rx1d alone exhibit a clearly detectable forced long term

trend. However, the larger spread in the observed FREs
:::::
forced

:::::::
response

::::::::
estimates

:
compared to figures 3c and 3d shows that

detrending of the predictors – i.e. removing part of the signal – results in larger variability of the observed FREs
:::::
forced

::::::::
response

:::::::
estimates, which reduces the SNR ratio of the trends.

The model FREs
:::::
forced

::::::::
response

::::::::
estimates

:
also exhibit larger variability, which causes the forced and piControl trend425

confidence intervals
:::::
ranges

:
(green/blue and beige/gray) to overlap more (figures 4e and 4f), indicating a lower detectability

of forced change in detrended model data. Particularly for GHCNDEX-masked Rx1d data (green shading in Fig. 4f), the low

coverage in combination with detrending removes so much information that FR
:::::
forced

:::::::
response

:
estimation from model data is

substantially impaired. With weaker regularisation the forced trend still cannot be estimated from detrended GHCNDEX data.

Despite the reduced information given to the RR-model in the detrended case, figures 4e and 4f show that forced change430

is still detected using the spatial pattern alone. The observed forced trends lie outside the piControl confidence interval
:::::
range

and are in reasonable agreement with the multi-model FR
:::::
forced

:::::::
response

:
best estimate trends for longer trend lengths. For

shorter trend lengths, the higher variability in the FREs
:::::
forced

::::::::
response

::::::::
estimates

:
leads to higher trend variability as well.

Consistent with figures 3e and 3f, we see that HadEX3 and GPCC show smaller PRCPTOT trends than the multi-model FR

:::::
forced

::::::::
response best estimate, whereas GHCNDEX shows larger trends. We note that very high GHCNDEX PRCPTOT FRE435

:::::
forced

::::::::
response

:::::::
estimate trends seen here are untrustworthy given that GHCNDEX residual consistency in the detrended setup

is insufficient (see supplementary Fig. S8
::
S9). HadEX3 Rx1d trends agree very well with the multi-model FR

:::::
forced

::::::::
response

best estimate trends.
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A possible interpretation of the forced change detection in HadEX3 Rx1d but lack thereof in GHCNDEX Rx1d, is that the FR

:::::
forced

::::::::
response in Rx1d can be detected in absence of the global mean, but that sufficient coverage is necessary. The seemingly440

higher sensitivity of Rx1d to detrending is likely because the Rx1d FR
:::::
forced

:::::::
response

:
is more spatially homogeneous, which

implies that global mean detrending removes much more of the signal than for the spatially heterogeneous PRCPTOT FR
:::::
forced

:::::::
response. Taken together, the above shows, first, detection of forced change in mean and extreme precipitation beyond a global

mean trend,
:::
and

:
second, the power of RR for signal extraction from high-dimensional noisy data, and third, the .

:::::::
Finally,

:::
the

:::
fact

:::
that

:::
the

::::::::::
relationship

::::::::
between

::::::
relative

::::::
spatial

::::::::::
precipitation

:::::::
patterns

::::
and

:::
the

:::::
forced

:::::::::::
precipitation

::::
trend

:::::::
derived

::::
from

:::::::
climate445

:::::
model

::::::::::
simulations

:::
(the

:::::
ridge

::::::
model)

:::::
holds

::
in

:::::::::::
observations,

::::::::
suggests accuracy of the CMIP6 climate models in simulating the

processes relevant to the spatial pattern of forced change in mean and extreme precipitation.

3.4 Time of emergence

The FREs
:::::
forced

:::::::
response

::::::::
estimates

:
and trends in figures 3 and 4 provide evidence that the observed forced trends are larger

than the unforced piControl trend distribution, both with and without global mean signal. Figure 5 provides the SNR as a450

quantitative assessment of the observed FRE
:::::
forced

:::::::
response

::::::::
estimate

:
signal strength relative to the observed FRE

:::::
forced

:::::::
response

:::::::
estimate

:
variability, as defined in Sect. 2.4. Besides the default case (solid lines, corresponding to the FREs

:::::
forced

:::::::
response

::::::::
estimates

:
in figures 3c and 3d), the detrended SNR (dotted, corresponding to the FREs

:::::
forced

::::::::
response

::::::::
estimates in

figures 4c and 4d) as well as the SNR for less regularised RR-models with minimal cross-validated mean squared error (λmin)

(dashed) are shown (Friedman et al., 2010; Simon et al., 2011).
::
SI

:::::
Sect.

::::
S2.4

::::::
shows

:::
the

:::::::::
sensitivity

::
of

::::
time

::
of

::::::::::
emergence

::
to455

::::::::
additional

::::::
method

:::::::
choices.

:

Time of emergence (ToE) – the time after which the SNR consistently is higher than
:::
lies

:::::
above 2 – is indicated by the vertical

lines. We consider the ToE definition above
:::::
above

::::::::
definition

::
of

::::
time

:::
of

:::::::::
emergence

:
a consistent measure of effective SNR in

the real climate, since both signal and noise are derived from observations. To assess the effects of possible autocorrelation

within observational residuals as well as possible biases due to the relatively small sample size, we also compute SNRs w.r.t.460

::::
with

::::::
respect

::
to a noise measure derived from FREs

:::::
forced

::::::::
response

::::::::
estimates of control simulations, as in Hawkins and Sutton

(2012)
:
. This definition of SNR results in similar outcomes (not shown).

Overall, figures 5a and 5b show emergence of forced change within four years of 2000 in both PRCPTOT and Rx1d in GHC-

NDEX and HadEX3 for the default setup (solid lines). The nearly identical ToE
::::
time

::
of

:::::::::
emergence

:
for PRCPTOT and Rx1d

obtained using our method of FR
::::::
forced

:::::::
response

:
estimation is noteworthy, given earlier suggestions of a later emergence of465

PRCPTOT due to higher uncertainties and internal variability (Fischer et al., 2014)
::::::::::::::::::::::::::::::::::::::
(Fischer et al., 2014; Fischer and Knutti, 2014)

. The exact ToE
::::
time

::
of

:::::::::
emergence

:
differs between datasets, as expected given the different trends seen in Fig. 3, and GPCC

PRCPTOT does not show emergence at all due to its weaker trend combined with high variability. We note that GPCC is con-

structed using a different gridding procedure than HadEX3 and GHCNDEX, and also our handling of GPCC is different due

to the need to speficy a coverage mask based on station density, whereas HadEX3 and GHCNDEX provide their own coverage470

masks. Interestingly, Rx1d ToE
:::
time

::
of

:::::::::
emergence

:
is earlier in HadEX3, despite larger long-term linear trends in GHCNDEX.
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Figure 5. SNRs of mean total precipitation (PRCPTOT) (a) and extreme precipitation (Rx1d) (b) FREs
:::::
forced

:::::::
response

:::::::
estimates in GHC-

NDEX, HadEX3 and GPCC, including senstivities to regularisation parameter (dashed) and global mean detrending (dotted). Exceedance

of an SNR of 2 implies emergence. Signal is defined as FRE
:::::
forced

:::::::
response

::::::
estimate

:
regressed onto 21-year LOWESS

:::::
lowess

:
filtered

GMST
:::::
global

::::
mean

:::::
surface

::::::::::
temperature, noise as residuals of this fit.

This reflects the higher efficiency of RR in reducing variance while capturing the signal for the higher spatial coverage of

HadEX3.

The benefit of regularisation becomes evident when comparing the default case to the λmin setup, where regularisation is

such that the training cross validation error is smallest (see supplementary Sect. S1.3 for a more extensive definition). For λmin475

FREs
::::::
forced

:::::::
response

::::::::
estimates, SNR is lower and ToE

::::
time

::
of

:::::::::
emergence

:
is later (despite slightly larger FRE

:::::
forced

::::::::
response

:::::::
estimate trends), due to the increased variance in the λmin FREs

:::::
forced

::::::::
response

::::::::
estimates caused by overfitting on the training

data. For GPCC this effect is not seen, since the regularisation for GPCC in the default case is weak, i.e. λsel and λmin are not

far apart and variance in the FRE
:::::
forced

::::::::
response

:::::::
estimate hardly increases for λmin.

Lastly, the effect of removing the global mean from the data (detrended), discussed in the previous section, is shown in the480

dotted lines. Due to the increased variance in the FREs
::::::
forced

:::::::
response

::::::::
estimates, SNRs decrease and ToEs

:::::
times

::
of

:::::::::
emergence

increase. Yet, signals have emerged or are close to emergence in all detrended cases except for GHCNDEX Rx1d, once again

confirming the detection of forced climate change in spatial patterns of PRCPTOT and Rx1d.

All of the above points to detection and emergence of a forced response in observations of mean and extreme precipitation,

robustness of the detection method, and representation accuracy of forced and internal variability patterns of precipitation in485

climate models.
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4 Conclusions and outlook

We demonstrated the detection and emergence of forced change in mean and extreme precipitation beyond internal variabil-

ity using a recently-introduced detection method based on regularised linear regression. We generate regression models for

detection of forced change based on climate simulations, consisting of physically interpretable fingerprints that optimise
:::
the490

signal-to-noise ratio. We detect forced trends in both mean and extreme precipitation that lie outside the piControl confidence

interval
::::
range

:
of unforced variability in three different observational datasets. The unequivocalness of the detection of forced

change is further demonstrated by the sustained detection from the spatial pattern of precipitation alone, after subtracting the

global mean trend from the data. A similar result was shown earlier for mean precipitation (Barnes et al., 2019), and is extended

here to extreme precipitation. This finding also reinforces confidence in the ability of CMIP6 models to respresent processes495

that govern the (large-scale) spatial distribution of precipitation. Simultaneous emergence of the forced signal from internal

variability in both PRCPTOT and Rx1d demonstrates the value of RR-based fingerprint construction for high signal-to-noise

ratio estimation of forced responses.

Despite the robustness of the results, the
::::::
relative

:
magnitude of forced trends in observations and models depends on the

period over which trends are calculated, as well as on the observational dataset.
:::
We

::::
show

::
in
:::::::::::::
supplementary

::::
Sect.

::::
S2.3

::::
that

:::
the500

::::::::::
dependency

::
of

::::
trend

::::::::::
magnitudes

:::
on

:::::
trend

:::::
period

::::
and

::::::
dataset

:::::::
remains

:::::
when

:::
we

:::
use

:::::::
different

:::::::
metrics

::
of

:::::::::::
precipitation,

::::
such

:::
as

:::::::::
percentage

::::::
change

:::
per

::::::
degree

::
of

::::::::
warming. These sensitivities emphasise the difficulty associated with quantitative assessment

of observed changes
:
in
::::::::::
precipition, as demonstrated by apparent contradictions in recent studies on whether models under- or

overestimate the observed changesin precipitation. In addition to methodology, model
:
.
:::::
Figure

::::
S14

::
in

:::
the

::::::::::
supplement

:::::::
contains

::
an

::::::::
overview

::
of

:::::
D&A

:::::::
studies

::
on

::::::
mean

:::
and

:::::::
extreme

::::::::::::
precipitation,

:::::::
showing

:::
the

::::
lack

:::
of

::::::::
consensus

:::
on

::::::::
observed

::::::
forced

:::::
trend505

::::::
strength

::::::
across

:::::::
studies.

::::
This

::::::::
overview

::::::
reveals

:::::
that,

::
in

::::
line

::::
with

:::
our

::::::
study,

:::::
model

::::
and

:::::::::::
observational

:
uncertainties, changing

observation station densities, internal variability
:
, and structural differences between model simulations and observational data

also affect the estimation of the forced response (Noake et al., 2012; Dunn et al., 2020)
:::
lead

::
to

::::::::
different

::::::
results,

:::::
even

:::::
when

::::::
similar

::::
time

::::::
periods

:::
and

:::::::::::
precipitation

::::::
metrics

:::
are

::::::::::
considered.

::::::
Against

:::
the

::::::::
backdrop

::
of

::::
such

::::::::::
uncertainty,

::::::
further

:::::::::::
development

::
of

:::::::
methods

::::
such

::
as

:::::
ours,

:::
that

:::::::
optimise

:::
for

::::
high

:::::
SNR

:::
and

:::::::
support

:::::::
intuitive

:::::::
physical

:::::::::::
interpretation

::
of

::::::
results

:::
can

:::
be

::
of

::::
great

:::::
value.510

It is important to note that the influence of Northern Hemisphere (NH) precipitation is disproportionately strong in this

analysis. Part of this larger NH contribution may be due to stronger or earlier emergence of a forced response, which has been

found in other studies (King et al., 2015). However, the uneven distribution of measurement stations over the global land plays

a large role as well. Therefore, the global detection found in this study may not be representative for smaller sub-regions,

especially outside of the NH. Furthermore, preliminary results suggest that detection is sensitive to seasonal process specifics515

– we find that forced change is not detected in June-July-August (NH summer), on both global and NH specific scales (see

supplementary Fig. S12
:::
S21). This is potentially related to the convective nature of precipitation in NH summer. We provide

a preliminary application of the method to regional and seasonal scales in supplementary Sect. S3. Extending the approach to

D&A of precipitation changes on regional and seasonal spatiotemporal timescales is of great importance to increase practical

relevance of the results for risk assessment and adaptation.520
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In this study we do not explicitly separate the effects of different forcings (GHG, aerosols, natural). We assume, however,

that the analysis primarily pertains to GHG-forcing since the RR fingerprint is based on SSP245
::::::::::::::
historical-SSP245

:
projections

through 2100, when GHG forcing dominates (Chen et al., 2021). Nonetheless, an extension of the present study explicitly

separating different forcings would be insightful to further characterise the effects of different forcing agents in the real climate,

and potentially identify sources of disagreement between models and observations. This is important as Wu et al. (2013) shows525

that different models may agree on the simulated response to all forcings combined, while they differ greatly on separate

responses to GHG and aerosol forcings alone. Correct simulation of the relative effects of different forcing agents is important

for scenario development and climate action targets, meaning further investigation of these model discrepancies is imperative.

RR-based analyses may enable establishment of observational constraints on the precipitation response to different drivers,

which can help constrain projections of near term changes in mean and extreme precipitation.530
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