
Comments of Referee #2
Response to Referee #2

Overall comments:

This study conducts a signal detection analysis for global changes in mean and extreme
precipitation using three observational datasets and CMIP6 multi-model outputs. The
authors apply a ridge regression (RR) method to construct fingerprints, which helps increase
a signal-to-noise ratio of precipitation change patterns. Results show a robust detection of
anthropogenic signals in all observations for both mean and extreme precipitation even
when removing global mean trends, further supporting the human-induced intensification of
global hydrological cycle. I find this paper very well written with sufficient details provided
about methods as well as various sensitivity tests and therefore suggest publication after
addressing some minor issues.

Thanks very much for your kind comments and positive judgment of our manuscript.

Major comments:

1. Although method details are provided, it would be useful to explain more clearly what are
benefits of the attribution approaches employed, including ridge regression, EOF-based
metric for target variable, and GMST-based signal estimation. All of these procedures seem
to contribute to increase signal-to-noise ratio but how they do and what step is more
important. The authors provide some associated results from sensitivity tests but an overall
explanation of their method possibly with a schematic would be helpful for readers to
understand the contribution of each step to the final signal detection.

We see that the sequence of steps and their relative function with respect to one another
can lead to confusion. We like the idea of adding a schematic of the methodology, and we
will add this to the supplementary info of a revised paper. We show preliminary drafts of
such flowcharts below.



Flowchart part I: Schematic visualisation of determination of ridge regression targets

Flowchart part II: Schematic visualisation of ridge regression procedure and determination
of observed forced response estimates



In addition, we add a figure to the supplementary information which allows comparison of
the signal-to-noise ratios (SNR) of the procedure performed with

1. EOF based targets (our chosen default) and “optimal” regularisation (𝜆_sel)
2. Global mean based targets and “optimal” regularisation
3. EOF based targets and minimal regularisation (𝜆_0).

Comparing 1 and 2 gives an impression of the SNR-effect of using EOF based targets,
whereas comparing 1 and 3 shows the SNR-effect of ridge regression (relative to
unregularised ordinary least squares).

PRCPTOT Rx1d

Figure 1: SNR of PRCPTOT (left) and Rx1d (right) forced response estimates from all
observational datasets, regressed onto smoothed global mean surfact temperature (GMST)
(as in manuscript), for cases 1, 2, and 3 as above.

Comparing cases 1 and 2: As can be seen in figure 1, the SNR does not necessarily increase
by using the EOF based target instead of the global mean target; for PRCPTOT, the EOF
based target exhibits lower SNR, whereas for Rx1d, it does not make any difference whether
we use the global mean based target or the EOF based target. The choice of using the EOF
based metric for PRCPTOT thus requires some explanation. The global mean based target
leads to higher SNR because the trend in global mean precipitation is stronger than the
trend in the first EOF of mean precipitation, and models are more in agreement on global
mean precipitation change. However, since forced changes in mean precipitation behave
according to a pattern of wetting and drying regions (e.g. Held & Soden (2006)), the global
mean trend in precipitation is not a very refined measure of forced precipitation changes.
The first EOF captures the forced pattern of change, and its corresponding principal
component time series captures the strength of that pattern. The first principal component is
thus a reflection of the forced pattern strength (e.g. Marvel & Bonfils, 2013), meaning the
forced response in all regions is somewhat reflected in this timeseries, and not averaged out
as in the global mean. In addition, individual models’ deviations from the multi-model



pattern due to uncertainties in e.g. the forced response in circulation, are reflected in the
projections of the EOF on the model ensemble means which serve as our model-specific
forced response targets. We argue that including the uncertainties in the forced response,
reflected by uncertainties in the first principal component, has preference and may prevent
overconfident detection of a signal. We argue this is a more balanced reflection of the forced
response.

Since the EOF-based target metric has a weaker trend and more variability for PRCPTOT, the
ridge model and the forced response estimates are “pushed” in a more conservative
direction. We argue that this is the better approach, given that the goal is not to construct a
ridge model that generates the strongest forced response estimate, but one that is most
likely to predict the true forced response given the observations that are available. We
therefore use the more conservative estimates, which implicitly include pattern information
and uncertainties, by default. We point out, however, that the main conclusions, which are
detection of a forced response but disagreement among observational datasets on the
observed forced response relative to the simulated forced response, are insensitive to the
choice of target metric.

Comparing cases 1 and 3: This comparison indicates the benefit of using regularised
regression. 𝜆_0 is not equivalent to ordinary least squares, in that 𝜆 is not set to 0, but it is
the smallest 𝜆 used in the training procedure, and in all cases at least two orders of
magnitude smaller than 𝜆_sel. A smaller 𝜆 increases the variability in the forced response
estimate, but, likely, also the trend. Therefore, when it comes to SNR, the effect of 𝜆 is a
trade-off between the increased variability and the increased trend. For Rx1d, we see that a
smaller 𝜆 deteriorates the detectability → overfitting leads to large variability increase
without reducing a low trend bias. In PRCPTOT, the effect is messier. For HadEX3, the SNR
clearly decreases for smaller 𝜆, but for GHCNDEX and GPCC this is not the case. Analysis
shows that the strong uptick at the end of the GHCNDEX record (referred to in L283 of the
manuscript) is somewhat dampened by larger 𝜆s. When 𝜆 is minimised, the GHCNDEX forced
response estimate shows this strong increase in the last few years of the record, which
amplifies the overall trend, and therefore high SNRs are seen. For this 𝜆, however, physical
consistency of the fingerprints is strongly impaired, as can be seen below, comparing 𝜆_sel
and 𝜆_0.

Figure 3a: GHCNDEX detection fingerprint
for 𝜆_sel

Figure 3b: GHCNDEX detection fingerprint
for 𝜆_0



For GPCC, the low coverage leads to generally very high variability in the forced response
estimate, as also witnessed by the low SNRs.  A smaller 𝜆 leads to a slightly larger increase
in trend relative to the increase in variability, however, the fingerprints no longer reflect any
physical consistency, as shown below.  Polson et al. (2013) also found it is difficult to detect
forced responses in GPCC.

Figure 4a: GPCC detection fingerprint for
𝜆_sel

Figure 4b: GPCC detection fingerprint for
𝜆_0

The above shows that it is important to assess the complete result of fingerprints, forced
response estimates, and SNRs to judge the quality of the detection model and the detected
response. PRCPTOT is generally a more difficult variable to detect forced trends in, due to
the spatial pattern of change and high internal and model variability in the representation of
this pattern. This was also found by e.g. Fischer & Knutti (2014). For the most recent,
higher-resolution and higher-coverage HadEX3 dataset, however, ridge regression also has
clear benefits for the detection of forced trends in PRCPTOT, besides the fingerprint
interpretability advantages which we see in all three observational datasets.

2. An important motivation of considering different periods and datasets is opposing
conclusions by previous studies about model overestimation or underestimation of the
observed trends. I am wondering if the authors can go further and compare their results
with some previous studies. For instance, if studies based on the latter half of 20th century
trends find model underestimation, the authors can assess their model trends for the
same/similar periods. Another point here is that the present study uses absolute units of
precipitation while most of previous studies considered relative changes or aggregated
values. It would be good to discuss possible influences of this difference.

Thanks for these very valid comments. We identify two main comments here - one being the
comparison with previous studies and the other being the comparison between absolute
versus relative units of precipitation. We address these two issues separately below, in
reverse order.



Comparison of different precipitation metrics
To address this, we intend to add a section to the supplement with a concise description of
the comparison presented below.

Some studies define precipitation change as a percentage change relative to climatological
precipitation levels per degree of global temperature change. One can determine relative
precipitation changes at the gridpoint level (normalised w.r.t. climatological gridpoint-mean
precipitation) or at the global level (most common - underlying numbers such as ~2%/K and
~7%/K for PRCPTOT and Rx1d). Determining relative precipitation changes at the gridpoint
level ensures that e.g. the tropics - a region with high absolute precipitation changes due to
high climatological precipitation (Clausius-Clapeyron) - do not dominate the overall response.
However, it could also lead to inflation of trends at grid points with very low climatological
precipitation levels (e.g. desert areas into which precipitating bands shift, where local
relative precipitation metrics approach infinity due to dividing by close-to-zero climatological
levels), which is why we do not use gridpoint-level relative precipitation change.

Whereas we thus use absolute units in our predictors, our forced response metric (the
model projections onto the first multi-model mean EOF) does not have meaningful physical
units, but reflects a time series that includes pattern information, as mentioned above (it is a
linear transformation of the raw data in original units). Implicitly, this already partially
accounts for the regional differences in the expected absolute trends, since the pattern has
higher loading in regions where precipitation is climatologically high. Note also that our
forced response estimates do not have meaningful physical units in terms of mm/s, and
reflect the strength of the forced response pattern, rather than the absolute change in
precipitation in mm. Nonetheless, differences in overall precipitation level between different
models and observations, which can affect the found strength of the forced pattern, are not
accounted for.

Hence, to allow comparison with studies that use global relative precipitation change in %
(which do not suffer from the approach toward division-by-zero that can occur at some
gridpoints when local relative change is used), we have normalised our forced response
estimate trends and model target trends with respect to their corresponding global mean
precipitation levels (average over the gridpoints in the observational masks). We assess the
model forced response targets (EOF-based) and the observational forced response
estimates, since this allows assessing whether the answer to the question “do models over-
or underestimate observed forced change?” depends on the unit of precipitation (absolute
vs. normalised). Note that we normalise our forced response estimate trends, which are
unitless. The resulting trend unit is thus mm-1.

Figure 5 shows the results. Note that these plots represent three points (start years 1951,
1971, and 1991, from left to right) in Figure 2 in the manuscript. The different start years,
as in the manuscript, allow for assessment of changing relative trends depending on trend
period. Comparing the left and right half of each plot reveals the difference between the
original trends as in the manuscript (left) and the normalised ones (right).



For PRCPTOT, we see that normalising trends w.r.t. climatological mean precipitation shifts
the modelled forced trends down relative to observations, consistent with the models
exhibiting slightly higher climatological PRCPTOT levels - a known persistent systematic bias
(e.g. Stephens et al., 2010). Despite slight decreases in model forced trends,  it remains the
case that the relative magnitude of model forced trends and observed forced trend
estimates depends on the period and observational dataset.

Figure 5a: Comparison of original PRCPTOT trends (as in manuscript) and trends
normalised by the model’s/observation’s corresponding climatological PRCPTOT level; the
1951-2014 mean, averaged over the observational masks. Trends of single-model targets
(points and corresponding boxplot indicating the interquartile range), and observed forced
response estimates (X-marks). Non-physical units, black dashed line indicates 0.

Figure 5b: As 5a but for Rx1d

For Rx1d (Figure 5b), on the contrary, normalising trends w.r.t. climatological mean Rx1d
increases forced model trends relative to observed forced trend estimates, suggesting
climatological mean levels of Rx1d are lower in models than in observations, which is also a
known model bias (e.g. Sillmann et al., 2013, Bador et al., 2020). Nonetheless, again, main
conclusions on the relative model vs. observational trend magnitudes do not change. These
opposing findings regarding PRCPTOT and Rx1d, align well with the findings of Fischer &
Knutti (2016), who suggest PRCPTOT changes are overestimated by models, whereas Rx1d
changes are underestimated.



Some studies assess precipitation change as a function of global mean temperature change,
e.g. in %/K. Given the relationship between temperature and specific humidity/saturation
vapour pressure (Clausius-Clapeyron), this can in fact make a large difference, since
different models, as well as observations, warm at different rates (different climate
sensitivity). Although our forced response metrics, as said above, represent strength of
forcing, we can still normalise the strength of forcing w.r.t. global mean warming to account
for differences in climate sensitivity.

Therefore, we further normalise the relative trends shown above, by dividing by the
temperature change over the trend period. This results in trends that are independent of the
model’s and observations' differences in climatological precipitation levels and warming rate
(climate sensitivity).

Model targets are normalised w.r.t. their specific model’s mean global mean surface air
temperature (GSAT) change over the corresponding trend period, and observational forced
responses are normalised w.r.t. the GMST change from the Cowtan & Way (2014)
temperature dataset. We determine GMST change by simply computing the difference
between the 2020 value and the values in 1951, 1971, and 1991 of the 21-year
LOWESS-smoother GMST.

The comparison between original trends, as in the manuscript, and relative
GMST-normalised trends (in mm-1K-1) is shown in the figures below for PRCPTOT (6a) and
Rx1d (6b). Comparing the left and right column in each panel shows that normalising the
forced relative trends from Figure 5 w.r.t. their corresponding temperature change reduces
model spread, which is to be expected. For PRCPTOT (Figure 6a), GMST-normalisation
further reduces model trend magnitude relative to observed forced trend estimates, since
model warming rate in CMIP6 is higher than in observations. Therefore, for Rx1d (Figure
6b), GMST-normalisation reduces model trends as well, and offsets some of the effect of
normalising w.r.t climatological Rx1d levels seen in figure 5b.

However, more importantly, figure 5 and 6 show that, compared to the original trends, the
relative magnitude of model and observational trends changes somewhat in response to
normalising w.r.t climatology and warming rate, but the main picture does not change -
relative trend magnitudes still differ between periods and observational datasets. The main
conclusion of our study – forced trends are detected, but observations lie on different ends
of the model-projected spectrum – holds also for normalised trends.



Figure 6a: Comparison of original PRCPTOT trends (as in manuscript) and trends
normalised by the model’s/observation’s corresponding climatological PRCPTOT level; the
1951-2014 mean, averaged over the observational masks. Trends of single-model targets
(points and corresponding boxplot indicating the interquartile range), and observed forced
response estimates (X-marks). Non-physical units, black dashed line indicates 0.

Figure 6b: As 6a but for Rx1d

The table below contains an overview of whether the model trend interquartile range lies
higher than (+) lower than (-), or contains (0) each observational time series. As can be
seen, the full range from under- to overestimation of observed trends by models is covered
across trend periods and observational datasets, both for original as well as normalised
trends.



In addition, to complete the comparison, we assessed trends in %/K (i.e. physical units),
which are obtained by using the forced response estimates based on the ridge model with
the global mean target (supplementary information section S2.2). The main conclusion still
does not change qualitatively - relative model and observational trends remain dependent on
observational dataset and trend period. Normalising even suggests larger differences across
different observational datasets.

This check also shows that global mean based ridge regression also reproduces numbers in
the range of the well-known 2-3%/K change in global mean PRCPTOT. For Rx1d, the ~5%/K
change we find is lower than the ~7%/K change prescribed by Clausius-Clapeyron, which
has been found for CMIP models of different generations before (e.g. Allan & Soden, 2008,
Kotz et al. (preprint)). Note that we are restricted to normalising with respect to a
climatological precipitation value that is based on the mean over the grid cells with
observational coverage, in order to “treat” model and observational data the same.
Therefore, the percentages may be off, since the global mean differs from the mean we use.
(Note - these numbers only apply to global mean changes, not to local gridpoint changes.)

Figure 7a: Comparison of original PRCPTOT trends (as in manuscript) and trends
normalised by the model’s/observation’s corresponding baseline (1951-2014) PRCPTOT
level and global mean surface temperature (GMST) change for three different periods
(1951-2020, 1971-2020, 1991-2020). Target trends (points/boxplot) and forced response
estimates are based on the global mean in this case, leading to physical units.

Figure 7b: As 7a but for Rx1d.



Comparison to previous studies
We suggest addressing this by adding a few relevant references to previous studies in the
discussion of the results, as well as by adding a table to the supplementary information. This
table contains an overview of a set of recent papers that have attempted detection of either
PCRPTOT or extreme indices (Rx1d or e.g. Rx5d) and that have made assertions on model
vs. observational trends. This provides an overview of the (dis)agreement regarding over- or
underestimation of observed forced changes in precipitation by models. See a preliminary
version of the table below.

From this table, several interesting comparisons result. First of all, scaling factors obtained
through optimal fingerprinting for PRCPTOT often lead to the result that models
underestimate observed change. Assessing the spatial distribution of trends, however, shows
that models in fact produce positive PRCPTOT trends over a larger land fraction than
observations do. In our study, models also underestimate PRCPTOT trends in GHCNDEX, but
agree better with, or overestimate, HadEX3. HadEX3 has considerably higher coverage and
resolution than GHCNDEX, and also than HadEX2. Also GPCC estimates much lower global
forced response trends than model projections, whereas Knutson & Zeng (2018) find higher
local trends in GPCC compared to CMIP5 models. Model underestimation of local internal
variability in mean precipitation may partly cause this. This also aligns well with the findings
of Fischer & Knutti (2014), since they assess trends in units of local standard deviation. The
higher PRCPTOT trends in models may be an artefact of underestimation of local PRCPTOT
variability (standard deviation) in models.

For Rx1d, optimal fingerprinting studies often use a probability index (PI), meaning
effectively that trends in percentiles are assessed (an increasing prevalence of Rx1d values
that lie further to the right on the local GEV-distribution of Rx1d values). An interesting
finding is that this approach leads to the conclusion that models overestimate Rx1d changes
based on scaling factors, whereas normalising changes by warming rate and computing
trends, leads to the conclusion that models underestimate trends in Rx1d with warming
(Paik et al, 2020). We showed above that our method does not lead to fundamentally
different results depending on the metric used (non-normalised changes or relative changes
as a function of warming). Primarily, we can conclude that the observational dataset seems
to have a large influence on the results. Where e.g. GPCC did not allow detection in any of
the assessed cases in Polson et al. (2013), GHCNDEX often seems to suggest models
underestimate observations. HadEX3, with highest coverage and resolution, lies in between
these two extremes in our study. Overall, these comparisons suggest that observational
uncertainty is still large and may be highly relevant as to whether models over- or
underestimate precipitation trends. This is consistent with Bador et al. (2020), who find that
observational uncertainty can be partly as large as uncertainty across climate models.





3. The lower detectability in GHCNDEX observations are suggested to be due to the poorer
spatial coverage. Regarding this issue, I would suggest using Rx5d. As I understand, Rx5d
has larger spatial coverage than Rx1d and comparison with Rx1d-based results may provide
a way to support the authors’ interpretation. Another way would be to compare detection
results from using a selected model run but with different spatial coverages applied.

We assessed the effect of coverage by masking HadEX3 as GHCNDEX and running the ridge
regression and detection procedure. This resulted in higher consistency between HadEX3
and GHCNDEX, but did not reconcile the differences fully. Therefore, coverage only explains
part of the differences. We will make this more clear in the text (L318-320).

Also, our primary motivation for using PRCPTOT and Rx1d is to assess mean and extreme
precipitation separately; Rx5d would not accomplish this goal as well as Rx1d because it is
less extreme and thus more similar to PRCPTOT (Pendergrass & Knutti, 2018). Furthermore,
to our knowledge, Rx5d does not have higher coverage in GHCNDEX than does Rx1d, see
below: all the white cells have no coverage. The difference between 1951-2020 coverage of
GHCNDEX for Rx5d versus Rx1d is shown in figure 7c - the dark red cells have coverage for
Rx5d but not in Rx1d, yellow cells have coverage for both. Given that the coverage increase
is minor and only in areas where there is reasonable coverage already, we anticipate that
this would not make much of a difference.



Figure 8a: Rx1d trend from climdex.org,
white cells have no coverage

Figure 8b: Rx5d trend from climdex.org,
white cells have no coverage

Figure 8c: Coverage differences GHCNDEX Rx5d and Rx1d: red cells are added in Rx5d w.r.t
Rx1d.



Minor comments:

L8: Indicating analysis period or trend period with signal detection would be useful here.

In a revised manuscript we will changes this to “[...] to assess the degree of forced change
detectable in the real-world climate in the period 1951-2020.”

L17-19, L58-64: Better comparisons can be made by applying the same periods as those
used in previous studies. See my major comment above.

See reply to major comment above: both previous studies as well as we assess multiple
trend periods. Disagreements across studies and observational datasets remain.

L20-21: Is this confirmed by repeating detection analysis using NH-extratropics only?

Yes, see supplementary information.

L34: “discrepancies with respect to observations”. Its meaning is unclear.

We hope this will be resolved by changing the sentence to “[...] model representation of the
water cycle has also been shown to disagree with observations.”

L69-71: Need to explain what the previous studies have found additionally using these
“data-science methods”. Also, what’s the novelty of this study compared with them? Is it
detection based on spatial pattern information alone?

As the sentence reads: these studies have detected forced signals. Since the main purpose
of the D&A field is to answer the question “can we detect and attribute effects of forcing in
observations”, this is the finding that matters. Our method fits in these recent data science
developments in D&A that move towards mapping multidimensional data onto a
one-dimensional detection space. Studies based on neural networks and deep learning for
detection and attribution, employ non-linear methods - as opposed to our linear ridge
regression method - but use a very similar framework with similar goals. We do not argue
that ridge regression is fundamentally better than any of the older or newer methods, but
we are convinced that the intuitive, physical outputs combined with high SNR can be
valuable for trend detection and attribution. (See also response to referee #1.)

L108-109: “Trend biases due to this structural difference … negligible”. But the cited
reference considered south-east Australia only?

This is true, however, the study investigates the effects of data operations on time series.
The temperature and precipitation time series of course differ per region, but the effects of
operations on the long term trends is not expected to differ greatly from region to region.
Nonetheless, we will add the reference to Dunn et al. (2020) (also referenced in L107), who
also makes this statement more generally.

L201: How to define S when global means are removed?



The definition of S stays the same. To obtain the results for the detrended case, global
means are removed from the predictor data in training of the ridge model. The ridge model
is however still trained to predict the same forced response target. Therefore, the forced
response estimates, based on the detrended observations, still contain the forced trend (if
the method works). These forced response estimates are regressed onto GMST to obtain S
in the same way as for the default case. We hope this clarifies things.

L212: “CMIP6 ssp245” should be “CMIP6 historical”?

Yes, thanks for noticing this.

L227: “virtually identical”. adding spatial correlation would help with this.

That is a good point, we will add the correlation value in a revised manuscript. Pearson
correlations between linear trends and EOFs over the full historical-ssp245 period for both
PRCPTOT and Rx1d, on both the coarser GHCNDEX and the finer HadEX3 grid, are > 0.99.

L314-316: This suggests possible dependence of Rx1d FRE on temperature, resembling
global warming slowdown due to PDO influence?

Potentially, although we do not have enough evidence to claim that the levelling off of the
trends is not simply due to shorter trend length and internal variability. Attributing changes
in trend slope to lange scale modes of variability is outside the scope of this study.

L331-332: “results … hold when the global mean is used as FR target”. Then what are
benefits of using EOF-based metric for target variable?

See above discussion of using the EOF-based target metric. We will add a sentence or two
to the method section to further justify this choice of target.

L382-383: “accuracy of the CMIP6 climate models in simulating the processes …”. It’s
unclear how the authors get this conclusion. Observation-model agreement in residual
variability? More explanation would be useful.

Precisely. As we mention in the manuscript, removing the mean trend from the predictor
data implies that only the relative pattern of precipitation can be used by the ridge
regression model to predict the forced trend (note: the area-mean trend is removed from
every grid point time series, meaning that spatial pattern information (how local
precipitation differs from the area-mean) is retained in the predictors). The ridge regression
detection model is trained to predict the (model) forced response from simulated spatial
precipitation patterns, meaning it finds the simulated relationship between spatial
precipitation patterns and forced precipitation change. Applying the detection model to
observations, results in detection of a forced trend in observations, which implies that the
relationship between spatial precipitation patterns and the forced response that the ridge
model learnt from models, also holds in observations. This thus implies accuracy of the
models in representing the spatial patterns related to the forced response. We hope
changing the last sentence and splitting it into two as below solves the confusion:



“ Taken together, the above shows, first, detection of forced change in mean and extreme
precipitation beyond a global mean trend, second, the power of RR for signal extraction from
high-dimensional noisy data, and third, the accuracy of the CMIP6 climate models in
simulating the processes relevant to the spatial pattern of forced change in mean and
extreme precipitation.” → “ Taken together, the above shows, first, detection of forced
change in mean and extreme precipitation beyond a global mean trend, and second, the
power of RR for signal extraction from high-dimensional noisy data. Also, the fact that the
relationship between relative spatial precipitation patterns and the forced precipitation trend
learnt from climate model simulations by the ridge model holds in observations, suggests
accuracy of the CMIP6 climate models in simulating the processes relevant to the spatial
pattern of forced change in mean and extreme precipitation.”

L394-395: “(not shown)”. This looks important and I suggest showing them in the
supplement.

We will add these plots to the supplementary information.

L428: “value of RR-based fingerprint construction”. What happens in detection or SNR
without applying RR? See my major comment above.

See reply to major comment above. Overfitting leads to high variability in forced response
estimates, and low SNRs.
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