Preprints
https://doi.org/10.5194/egusphere-2025-827
https://doi.org/10.5194/egusphere-2025-827
28 Feb 2025
 | 28 Feb 2025
Status: this preprint is open for discussion and under review for SOIL (SOIL).

Combining electromagnetic induction and remote sensing data for improved determination of management zones for sustainable crop production

Salar Saeed Dogar, Cosimo Brogi, Dave O'Leary, Ixchel Hernández-Ochoa, Marco Donat, Harry Vereecken, and Johan Alexander Huisman

Abstract. Accurate delineation of management zones is essential for optimizing resource use and improving yield in precision agriculture. Electromagnetic induction (EMI) provides a rapid, non-invasive method to map soil variability, while the Normalized Difference Vegetation Index (NDVI) obtained with remote sensing captures above-ground crop dynamics. Integrating these datasets may enhance management zone delineation but presents challenges in data harmonization and analysis. This study presents a workflow combining unsupervised classification (clustering) and statistical validation to delineate management zones using EMI and NDVI data in a single 70 ha field of the patchCROP experiment in Tempelberg, Germany. Three datasets were investigated: (1) EMI maps, (2) NDVI maps, and (3) a combined EMI-NDVI dataset. Historical yield data and soil samples were used to refine the clusters through statistical analysis. The results demonstrate that four EMI-based zones effectively captured subsurface soil heterogeneity, while three NDVI-based zones better represented yield variability. A combination of EMI and NDVI data resulted in three zones that provided a balanced representation of both subsurface and above-ground variability. The final EMI-NDVI derived map demonstrates the potential of integrating multi-source datasets for field management. It provides actionable insights for precision agriculture, including optimized fertilization, irrigation, and targeted interventions, while also serving as a valuable resource for environmental modelling and soil surveying.

Competing interests: A co-author (Dave O'Leary) of this article is a member of the guest editorial board for the EGU SOIL Special Issue on AgroGeophysics, to which this article was submitted.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share
Salar Saeed Dogar, Cosimo Brogi, Dave O'Leary, Ixchel Hernández-Ochoa, Marco Donat, Harry Vereecken, and Johan Alexander Huisman

Status: open (until 18 Apr 2025)

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
Salar Saeed Dogar, Cosimo Brogi, Dave O'Leary, Ixchel Hernández-Ochoa, Marco Donat, Harry Vereecken, and Johan Alexander Huisman
Salar Saeed Dogar, Cosimo Brogi, Dave O'Leary, Ixchel Hernández-Ochoa, Marco Donat, Harry Vereecken, and Johan Alexander Huisman

Viewed

Total article views: 114 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
95 15 4 114 2 2
  • HTML: 95
  • PDF: 15
  • XML: 4
  • Total: 114
  • BibTeX: 2
  • EndNote: 2
Views and downloads (calculated since 28 Feb 2025)
Cumulative views and downloads (calculated since 28 Feb 2025)

Viewed (geographical distribution)

Total article views: 122 (including HTML, PDF, and XML) Thereof 122 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 18 Mar 2025
Download
Short summary
Farmers need precise information about their fields to use water, fertilizers, and other resources efficiently. This study combines underground soil data and satellite images to create detailed field maps using advanced machine learning. By testing different ways of processing data, we ensured a balanced and accurate approach. The results help farmers manage their land more effectively, leading to better harvests and more sustainable farming practices.
Share