
Response to reviewers 

Response to comments and suggestions from Reviewer 1 

General comments 

The paper presents a relevant contribution to precision agriculture by coupling NDVI and EMI for 
management zones’ delineation. The methodology is generally sound, especially the use of the 
SOM and MCASD for cluster optimisation. The study presents a robust workflow that could 
inform both research and practice. However, some aspects need clarification  to improve 
generalisability and interpretability. 

We thank the reviewer for the positive assessment, and are happy to provide the requested 
clarifications. 

Specific Comments 

● Lines 64-122: The review of EMI and NDVI is largely descriptive. It would be stronger if the 
authors synthesised how of the previous studies succeed or failed in integrating these data 
types. I suggest adding a short synthesis paragraph summarising what’s missing in prior work 
and how this study fills the gap. (DONE) 

We thank the reviewer for this helpful suggestion. In response, we have now included the 
following statement in section 1 (lines 118-125): 

“… Overall, previous studies have made important contributions towards integrating EMI and 
NDVI data for improved management zone delineation (Corwin and Scudiero, 2019; Ciampalini 
et al., 2015). However, the results can be influenced by data resolution and acquisition timing as 
well as by local management and soil-plant interactions, with some studies suggesting that EMI 
alone can offer sufficient insights into soil patterns (Esteves et al., 2022; von Hebel et al., 2021). 
Nonetheless, the added value of NDVI holds unexplored potential due to the higher spatial and 
temporal resolution of recent satellite platforms (Breunig et al., 2020; Georgi et al., 2018). 

● Lines 304- 309: the use of min-max scaling prior to clustering is appropriate for ensuring 
feature comparability. However, the authors should briefly justify this choice over 
alternatives (e.g., standardisation, robust scaling), especially given the potential presence of 
outliers in EMI and NDVI data. Min-max is sensitive to extreme values, which may distort the 
input space and affect cluster geometry in SOM. (DONE) 

We thank the reviewer for pointing out this important consideration. In our study, EMI data were 
already filtered to remove outliers from a variety of sources. In particular, the combination of min-
max filtering, histogram filtering, and ECa variation filtering effectively remove outliers from the 
EMI data, as shown in previous research. We therefore are confident that the resulting 
distribution of ECa values, combined with the use of z-transform normalization, is appropriate 
for a min-max scaling. Similarly, NDVI maps were pre-processed by PlanetScope to remove 
atmospheric artifacts, and we manually excluded data from periods with low vegetation signal 
(lines 452-457). Moreover, the extent of the area and the amount of pixels in the NDVI images 
assures that the distribution is free from outliers that would affect the min-max scaling. 
Nonetheless, we understand that this may not be the case in other areas or when different data 
sources are used. Thus, we now addressed these topics in section 3.5 (lines 693- 701), where the 
new text reads: 



“Regarding data process, min-max scaling was a suitable method in this study due to the 
relatively smooth and filtered input data, both for EMI and NDVI. However, this scaling approach 
is known to be sensitive to outliers and data range extremes (Pedregosa et al., 2011). For datasets 
with greater variability or different preprocessing methods, alternative scaling approaches such 
as standardization or robust scaling could be more appropriate (de Amorim et al., 2023). Another 
factor was the proper application of data normalization prior to clustering, which was essential 
for obtaining meaningful results in this study (see Appendix A). Future studies should assess the 
impact of different scaling and normalization strategies on clustering outcomes, especially in 
settings with noisier or unfiltered sensor data.” 

● Lines 431-351: the authors perform 100 SOM runs per candidate cluster number and use the 
MCASD to select the optimal k. While this addresses compactness, there is no assessment 
of cluster stability. Please clarify whether variability across SOM runs was quantified (ARI or 
some cluster overlap metrics). (DONE) 

We thank the reviewer for this valuable comment. While we did not explicitly compute clustering 
overlap metrics such as the Adjusted Rand Index (ARI), our approach used the Multi-Cluster 
Average Standard Deviation (MCASD) inherently reflects variability across SOM runs. 
Specifically, MCASD quantifies the stability of cluster centers by averaging their standard 
deviation over multiple iterations. During preliminary testing, we observed that most datasets 
stabilized in terms of variability between 70 and 80 iterations. To ensure consistency and 
reproducibility, we adopted 100 runs per cluster number. This approach provided a reliable 
means to assess both compactness and relative stability of clusters in a computationally 
efficient manner. We have clarified this in the manuscript and added a note in the Limitations 
section (Section 3.5, lines 704- 708) to suggest the use of additional stability metrics like ARI in 
future work. The new text reads:  

“While cluster variability was addressed using the Multi-Cluster Average Standard Deviation 
(MCASD) across 100 SOM runs to a large extent, future studies may benefit from incorporating 
additional stability metrics such as the Adjusted Rand Index (ARI) or cluster overlap measures to 
better assess classification consistency.” 

● To enhance the clarity of the manuscript. The authors should consider including a workflow 
diagram summarizing the complete methodology. (DONE) 

We thank the reviewer for this helpful suggestion. To enhance clarity, we have added a workflow 
diagram (Figure 2) in Section 2.2 (lines 191- 194) that summarizes the complete methodology, 
including the classification and validation steps. The diagram visually outlines the integration of 
EMI and NDVI data, the clustering process using SOMs and MCASD, and the post-hoc validation 
using yield and soil data. 

The overall methodology of this study is summarized in Figure 2. This flowchart highlights the role 
of EMI and NDVI datasets in the clustering process and the use of multi-year yield maps and soil 
samples for validation and refinement of the resulting management zones. More details are 
provided in the subsequent sections. 



 

Figure 2. Workflow diagram showing the integration of proximal (EMI) and remote sensing (NDVI) data for 
unsupervised clustering using MCASD and SOMs. Yield and soil datasets were used for post-hoc validation and 
refinement of management zones. 

● Lines 93-96: while NDVI is common vegetation index, it is well-known to saturate under 
high biomass or dense canopy conditions, which may limit its ability to capture within 
field variability during peak crop growth. The authors should justify why NDVI was 
selected over alternatives such as EVI or SAVI. (DONE) 

We thank the reviewer for the insightful comment. We acknowledge that NDVI can exhibit 
saturation under high biomass or dense canopy conditions, which may limit its sensitivity during 
peak growth. However, we used NDVI as: a) it can directly and reliably be derived from the 
PlanetScope sensor as well as from many other sensors (e.g. satellite-, aerial- and drone-based), 
b) the focus of our study was on capturing relative spatial variability within the field, not absolute 
vegetation productivity, and c) NDVI remains a widely accepted, validated, and simple index for 
evaluating vegetation vigour across phenological stages. In fact, other indices like EVI and SAVI 
can require specific calibration parameters (e.g., soil brightness correction factor or coefficients 
tied to aerosol resistance), which were not feasible to constrain accurately within our satellite 
dataset and field setting. We thus preferred to use NDVI, which does not require additional 
computation or calibration. We think that this makes for a simpler, ready to use, and 
transferrable approach. To avoid extending an already long manuscript, we would prefer to not 
provide additional justification in the manuscript.  



● Lines 370-395: The initial presentation of yield maps provides useful spatial context. 
However, since the 2012 and 2013 data are acknowledged to be lower in quality, the authors 
should discuss whether these data were weighted differently or excluded from statistical 
validation to avoid introducing bias in zone validation. (DONE) 

We thank the reviewer for this important point. The 2012 and 2013 yield data were presented 
because they showed relevant spatial trends, despite lower data quality. To avoid introducing 
bias, these years were not weighted differently in the statistical validation. Instead, we relied on 
multi-year averages and year-by-year comparisons to assess the robustness of zone delineation. 
This clarification has now been added to the end of the yield data subsection 3.1.3 (Lines 482–
486). The new text reads: 

“… they were retained for spatial context as they still exhibited consistent patterns with other 
years, and the maps successfully captured the general spatial yield trends and heterogeneity of 
the field. These years were not weighted differently during validation, and the potential influence 
of this lack of weighting was mitigated by evaluating multi-year trends and conducting year-by-
year comparisons (see Section 3.4).” 

● Given the spatial nature of EMI and NDVI data and the use of kriging interpolation, spatial 
autocorrelation is likely present in the dataset. While the current clustering is sound, the 
authors may consider briefly acknowledging the presence of spatial structure and its 
potential influence on post-hoc tests. 

We thank the reviewer for this comment. We agree that kriging interpolation introduces spatial 
structure in the EMI and NDVI datasets, which can influence the assumptions underlying post-
hoc statistical tests such as ANOVA and t-tests. While we did not explicitly correct for spatial 
autocorrelation, we believe its impact was mitigated through the use of multi-year yield data and 
non-interpolated soil sampling in the validation process. We have now included an explicit 
acknowledgment of this point in the Limitations section 3.5 (lines 718- 720). The new text reads: 

“This may influence statistical outcomes or lead to less spatially coherent clusters in some 
cases. For instance, kriging interpolation introduces a spatial structure that may challenge the 
assumption of independence underlying post-hoc statistical tests.” 

 

 

 

 

 

 

 

 

 

 

 



Response to comments and suggestions from Reviewer 2 
 
This paper proposes a proximal and remote sensing data harmonisation framework for input into 
a Self-organizing map (SOM)-based classification for determining field management zones. It is 
worthy of publication once the following points are considered and addressed. 
 
We thank the reviewer for the positive evaluation. In the following, we describe how we have 
addressed the points raised by the reviewer.  
 
1. Materials/Methods: The four sub-sections of section 2.2 need re-ordering to demonstrate the 
workflow: (1) EMI/EC data, (2) RS/NDVI data, (3) Yield data, (4) Soils data. As only the first two are 
inputs for the SOM/MCASD clustering. The second two are used to ‘validate’ and refine the 
clusters. (DONE) 
 
We thank the reviewer for this helpful suggestion. We agree that reordering the subsection in 
Section 2.2 improves the clarity and logical flow of the methodology, particularly in distinguishing 
between input data for clustering (EMI, NDVI) and data used for validation and refinement (yield, 
soil). We have revised the manuscript accordingly by placing the subsections in the suggested 
order.  
 
2. Materials/Methods: A table would be useful to summarise each of these four datasets and 
their use in the study. The table can list: (a) the period of collection (e.g., 2011-19 for yield data); 
(b) whether the patchCROP experiment was in operation or not, (c) data processing steps taken 
(e.g. kriging or some other interpolation, normalisation etc. – see also that stated in section 3), 
and (d) whether used for SOM/MCASD inputs or used for the (ANOVA-based) validation of SOM 
clusters (with subsequent merging of clusters) etc.  (DONE) 
 
We thank the reviewer for this very helpful suggestion. We agree that summarizing the role and 
processing of the four datasets enhances clarity. In response to a similar suggestion from 
Reviewer 1, we have added a workflow diagram (Figure 2 in the manuscript, Figure R1 below) that 
provides an overview of all data sources, their processing steps, and their roles in both the 
clustering and validation stages. We believe this figure addresses the intent of the suggested 
table in a more integrated and visual format, and improves the overall readability of the Materials 
and Methods section. 
 
 



 
Figure R1. Summary of workflow showing the integration of proximal (EMI) and remote sensing (NDVI) data for 
unsupervised clustering using MCASD and SOMs. Yield and soil datasets were used for post-hoc validation and 
refinement of management zones. 
 
 
3. Results: Maps and workflow narratives should be in this order: (1) EMI/EC data (Figs. 3, 4), (2) 
RS/NDVI data (Fig. 5), (3) Yield data (Fig. 2), (4) Soils data graphic (new), (5) SOM/MCASD 
clustering maps of EMI/RS plus refinements via yield/soils (Fig. 6). (DONE) 
 
We thank the reviewer for this helpful recommendation regarding the logical flow of the Results 
section. We agree that reordering the narrative and associated figures to match the data 
processing workflow enhances clarity. As suggested, we have revised the Results section to 
follow this order: (1) EMI/ECa maps, (2) NDVI maps, (3) Yield data, and (4) SOM/MCASD 
clustering and refinement maps. 
 
We decided not to add a new figure presenting the soil data, as we prefer to present them as part 
of the validation of the zonation. 
 
  



4. Limitations: When describing the caveats to the methodology (section 3.5), refer to the new 
Table suggested in (2) for challenges due to different data collection timeframes, patchCROP, 
data processing, etc. (DONE) 
  
We thank the reviewer for this observation. The methodological caveats related to differences in 
data collection timeframes, patchCROP implementation, and dataset-specific processing steps 
are already discussed in the Limitations section (Lines 666–696). While we did not include a table 
as initially suggested, we opted to incorporate a workflow diagram (Figure 2), which summarizes 
the sequence and role of each dataset. We believe that the combination of this figure and the 
existing discussion adequately addresses the reviewer’s concern. 
 
5. Limitations: What would be the likely consequences of using free, 10m resolution imagery from 
sentinel 2 say, to that used with the 3m resolution of Planetscope for the NDVI data? (DONE) 
  
We thank the reviewer for raising this interesting point. The 3 m spatial resolution of PlanetScope 
imagery provided a more detailed representation of within-field variability, which was essential 
for our study’s goal of delineating high-resolution management zones. In contrast, using 10 m 
resolution data from Sentinel-2 would likely result in a less detailed representation of the 
horizontal heterogeneity in NDVI, which could obscure narrow or patchy features, especially in 
highly heterogeneous fields like that of this study. This could reduce the sensitivity of the 
clustering algorithm to subtle spatial transitions and affect the precision of zone delineation. 
However, for larger fields or regions with less spatial variability, Sentinel-2 could be a valuable, 
freely available alternative. We have now included these considerations in section 3.5 (lines 670-
680). The new text reads:  
 
“Similarly, the NDVI dataset was limited to the 2019 growing season as a) PlanetScope imagery 
became accessible for this region only in 2019 and b) the subdivision of the field in differently 
cultivated patches from 2020 prevented the use of later satellite products. Nonetheless, the 
choice of PlanetScope imagery (3 m resolution) enabled to capture detailed within-field 
variability in NDVI, which was particularly important in this study area due to the spatial 
heterogeneity introduced by soil variation. If coarser-resolution imagery such as Sentinel-2 (10 
m) were used instead, smaller-scale patterns in crop development or soil-related variation would 
have been less detectable due to spatial averaging. This could have reduced the effectiveness of 
the SOM clustering in identifying distinct management zones. However, for more homogeneous 
or large-scale fields, Sentinel-2 data could be a practical and freely accessible alternative (Kaya 
et al., 2025).” 
 
6. Limitations: More on the sensitivity of the SOM-based clusters and their refinements using 
yield and soil information – from no data available to that available here (as shown in rows 3 and 
4 in Fig.6). (DONE) 
  
We thank the reviewer for raising this point. It is true that the availability of yield and soil data can 
influence the refinement of the SOM-based clusters. In our study, these datasets were used to 
validate and occasionally merge clusters that were not clearly different in terms of agronomic 
performance. While such validation improves the interpretability of the zones, we acknowledge 
that in cases where such data are not available or are sparse, the clustering process can still be 
applied—although some clusters may remain less interpretable. We have now included these 
considerations in section 3.5 (lines 708-714). The new text reads: 



  
“The availability of yield and soil data supported the refinement of SOM-based clusters, enabling 
the merging of groups that were not agronomically distinct. These datasets helped to ensure that 
the final management zones were both data-driven and interpretable. However, in scenarios 
where such ground-truth data are limited or unavailable, the initial clusters may still offer useful 
insights, albeit with greater uncertainty in their agronomic interpretation. Thus, the presented 
post-hoc validation step added confidence in the results, but is not strictly required.” 
 
7. Limitations: For the clustering methods described (in the introduction) and the SOM method 
applied (p.6 to p.7) – none implicitly capture spatial effects, such as spatial autocorrelation. 
Further, the statistical analyses using ANOVAs/Tukey’s HSD and t-tests are similarly non-spatial. 
What are the consequences of this? What methods could be applied for future work to 
investigate this? (DONE) 
 
We thank the reviewer for this thoughtful observation. It is true that the clustering and statistical 
validation methods used in this study do not explicitly consider spatial autocorrelation, which 
may influence both the clustering output and the interpretation of statistical significance. While 
our use of multi-year yield data and soil samples helped support the robustness of the final 
zones, we recognize that spatial dependence remains an important factor. We have now 
included a paragraph in the Limitations section suggesting that future work could apply spatially-
aware clustering methods or spatial statistical approaches to better account for this aspect 
(Section 3.5, lines 716-726). The new text reads: 
 
“The SOM algorithm and the statistical methods used in this study (ANOVA, Tukey’s HSD, and t-
tests) do not explicitly account for spatial autocorrelation, which is inherently present in the 
interpolated geospatial datasets used here. This may influence statistical outcomes or lead to 
less spatially coherent clusters in some cases. For instance, kriging interpolation introduces a 
spatial structure that may challenge the assumption of independence underlying post-hoc 
statistical tests. However, the use of multi-year yield trends and high-resolution soil data helped 
reduce uncertainty in post-hoc validation. Future studies may benefit from incorporating 
spatially explicit methods, such as spatially constrained clustering, variogram-based 
diagnostics, or spatial ANOVA, to better account for spatial dependence during both 
classification and validation stages. In addition to these methodological considerations, future 
studies should focus on improving the temporal consistency of data collection and increasing 
the density and depth of soil sampling.” 
 
8. Limitations: Given all the above - something on the capture of uncertainty in the demarcation 
of the management zones for current and future work? (DONE) 
  
We thank the reviewer for raising this relevant point. While this study did not explicitly quantify 
uncertainty in the delineation of management zones, we agree that this represents an important 
direction for future work. A sentence has been added to the Limitations section 3.5 (lines 726-
728) to acknowledge this. The new text reads: 
 
“… The quantification of uncertainty in management zone delineation could be also investigated, 
for example through ensemble clustering or by incorporating uncertainty from spatial inputs 
such as EMI interpolation.” 
 



9. Conclusion: More should be said on the choice made for the proximal sensing and the choice 
made for the satellite remote sensing. For the former, EMI/EC essentially does soil physics / 
structure / water, while for latter, NDVI does crop health. This is OK but what of the alternatives? 
For example, using indices from radar-based missions (e.g., sentinel 1) rather than imagery 
based missions (e.g., sentinel 2).   Insights on how the choice of sensors will ultimately affect the 
SOM/MCASD clustering and resultant management zones would be useful. For example, in some 
cases, the precision management of soil water may be more of a focus than the precision 
management soil nutrients – each requiring specific sensing technologies, etc. Essentially 
expand discussions in the introduction (p.5-6) and conclusions.  (DONE)  
 
We thank the reviewer for this interesting point and we agree that the choice of sensing 
technology (e.g. optical, radar-based, or thermal imagery) can significantly influence the types of 
variability captured and the resultant management zones. It is also clear that the zones of 
management may depend on the type of management considered. However, we do not feel that 
a repetition of these points is fruitful in the conclusions. The objective of this study was to 
evaluate a harmonized, scalable workflow using widely available and well-established data 
sources: EMI for subsurface soil properties and NDVI for above-ground crop performance. 
Exploring the use of alternative sensors such as Sentinel-1 radar or hyperspectral imagery would 
indeed be valuable, but was beyond the scope of the present work.  We prefer to not elaborated 
on this further in the conclusion section, as different sensors are now also addressed while 
discussing the limitations of the present study. 
 
10. Consider changing the title to either: ‘Combining Proximal and Satellite Remote Sensing Data 
for Improved Determination of Management Zones for Sustainable Crop Production’ or 
‘Combining Electromagnetic Induction and Satellite Sensed NDVI Data for Improved 
Determination of Management Zones for Sustainable Crop Production’ – the former is general, 
while the latter is specific. (DONE) 
 
We thank the reviewer for the helpful suggestions regarding the title. We agree that a more 
descriptive title improves clarity and scope. Accordingly, we have revised the title to: “Combining 
Electromagnetic Induction and Satellite-based NDVI Data for Improved Determination of 
Management Zones for Sustainable Crop Production.” This title reflects the specific sensing 
methods used in our study and aligns with the reviewer recommendation. 
 

 


