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Abstract 26 

Accurate delineation of management zones is essential for optimizing resource use and improving 27 

yield in precision agriculture. Electromagnetic induction (EMI) provides a rapid, non-invasive 28 

method to map soil variability, while the Normalized Difference Vegetation Index (NDVI) 29 

obtained with remote sensing captures above-ground crop dynamics. Integrating these datasets 30 

may enhance management zone delineation but presents challenges in data harmonization and 31 

analysis. This study presents a workflow combining unsupervised classification (clustering) and 32 

statistical validation to delineate management zones using EMI and NDVI data in a single 70 ha 33 

field of the patchCROP experiment in Tempelberg, Germany. Three datasets were investigated: (1) 34 

EMI maps, (2) NDVI maps, and (3) a combined EMI-NDVI dataset. Historical yield data and soil 35 

samples were used to refine the clusters through statistical analysis. The results demonstrate that 36 

four EMI-based zones effectively captured subsurface soil heterogeneity, while three NDVI-based 37 

zones better represented yield variability. A combination of EMI and NDVI data resulted in three 38 

zones that provided a balanced representation of both subsurface and above-ground variability. 39 

The final EMI-NDVI derived map demonstrates the potential of integrating multi-source datasets 40 

for field management. It provides actionable insights for precision agriculture, including optimized 41 

fertilization, irrigation, and targeted interventions, while also serving as a valuable resource for 42 

environmental modelling and soil surveying. 43 

  44 
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1 Introduction 45 

Reliable and accurate agricultural management zones that capture within-field variability affecting 46 

crop development can play a pivotal role in sustainable agriculture. Management zones can be 47 

used in the context of precision agriculture to optimize farming practices, increase yields, and 48 

reduce the use of available resources (Gebbers and Adamchuk, 2010; Janrao et al., 2019). This is 49 

not only valuable for profit maximization (Adhikari et al., 2022), but is also vital to meet future 50 

climate change and food security challenges (Antle et al., 2017; Chartzoulakis and Bertaki, 2015; 51 

Bongiovanni and Lowenberg-Deboer, 2004), such as Goal 2 (Zero Hunger) and Goal 15 (Life on 52 

Land) of the United Nations Sustainable Development Goals (SDGs) (Hou et al., 2020; UN, 2021). 53 

Generally, management zones aim to consider the impact of various factors that can influence crop 54 

productivity and result in yield gaps, a key one being soil heterogeneity and health (Licker et al., 55 

2010). Soil systems can be relatively static in time (Arshad et al., 2015) and are fundamental due 56 

to their multifunctional role and impact on ecosystem services (Hamidov et al., 2018). Within these 57 

systems, soil properties such as texture, organic matter content, cation exchange capacity, and bulk 58 

density greatly influence soil moisture dynamics, salinity, nutrient availability, and other variables 59 

affecting crop yield (Kibblewhite et al., 2008; Dobarco et al., 2021) and are thus a good target for 60 

management zone delineation. However, soil heterogeneity is not solely responsible for yield 61 

losses, and effective management zones should also incorporate other influencing factors to 62 

provide a comprehensive and holistic management solution. 63 

 64 

Traditional methods for soil characterization to support management zone delineation (Brogi et 65 

al., 2021; Geologischer Dienst NRW) generally rely on laborious in-situ sampling and laboratory 66 

analysis, which may fail in capturing soil variability with sufficient detail (Kuang et al., 2012). In 67 
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recent years, advances in proximal soil sensing, defined as methods that utilize sensors positioned 68 

near or in direct contact with the soil (Adamchuk et al., 2017), have provided valid alternatives to 69 

direct soil sampling (Pradipta et al., 2022). In particular, non-invasive agro-geophysical methods 70 

such as electromagnetic induction (EMI) have proven suitable for management zone delineation 71 

due to the high mobility (Binley et al., 2015; Garré et al., 2021) and the fact that the measured 72 

apparent electrical conductivity (ECa) of the soil is related to key soil properties, such as soil 73 

salinity, soil water content, texture, compaction, and organic matter content (Corwin and Lesch, 74 

2003; Abdu et al., 2008; Altdorff et al., 2017; Jadoon et al., 2015; Robinet et al., 2018; Zhu et al., 75 

2010; von Hebel et al., 2018). Modern EMI devices are able to efficiently provide soil information 76 

for multiple depth ranges thanks to multi-coil instrumentation (Rudolph et al., 2015; von Hebel et 77 

al., 2014; Blanchy et al., 2024; Lueck and Ruehlmann, 2013; Corwin and Scudiero, 2019), 78 

especially when supported by a moderate amount of ground truth data (Brogi et al., 2019). 79 

However, the use of EMI alone can show limitations in capturing local aspects that have an impact 80 

on yield but that are not strongly influenced by soil variability. For instance, pest and weed 81 

infestations can drastically reduce crop productivity, and these factors may not correlate directly 82 

with soil variability (Becker et al., 2022; López‐Granados, 2011). Additionally, climate change 83 

impacts, such as altered precipitation patterns and temperature fluctuations, can affect crop health 84 

and yield in ways that EMI cannot detect (Pradipta et al., 2022). Finally, it is also important to 85 

stress that accurate EMI mapping generally requires optimal conditions like bare soil, favourable 86 

weather, and absence of confounding factors (James et al., 2003). 87 

 88 

An alternative to proximal soil sensing for the delineation of management zones is the use of 89 

remote sensing approaches, which enables efficient large-scale data acquisition without the need 90 
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for direct physical access to the investigated area (Weiss et al., 2020). By using sensors mounted 91 

on satellites, airplanes, or drones, remote sensing monitors parameters related to crop health and 92 

development (Jin et al., 2019; Liaghat and Balasundram, 2010). For example, vegetation indices 93 

such as the Normalized Difference Vegetation Index (NDVI) are generally well-established, 94 

simple, and effective proxies for crop health (Carfagna and Gallego, 2005; Stamford et al., 2023; 95 

Wang et al., 2020; Xue and Su, 2017). High-resolution (<5 m) data products from satellites are 96 

being increasingly used in precision agriculture (Mohammed et al., 2020; Trivedi et al., 2023). 97 

Also, remote sensing platforms like PlanetScope, Sentinel-2, and Landsat offer frequent revisit 98 

times, thus providing sufficient temporal resolution to track changes in plant health throughout the 99 

growing season (Hunt et al., 2019; Skakun et al., 2021). Despite these advantages, remote sensing 100 

data are affected by cloud cover or other sub-optimal meteorological conditions (Wilhelm et al., 101 

2000) and primarily capture above-ground information on plant health and biomass, and can thus 102 

struggle to provide direct information about the interplay between soil conditions and crop 103 

development. 104 

 105 

Several studies have explored a combination of EMI and remote sensing methods for the 106 

delineation of management zones. For example, von Hebel et al. (2021) combined EMI and drone-107 

based NDVI measurements and found that EMI-based management zones offered consistent 108 

insights into soil texture and water content, while the added value of NDVI greatly varied, mostly 109 

due to the timing of the drone measurements and thus on the specific crop conditions. In a similar 110 

study, Esteves et al. (2022) showed that integration of EMI and NDVI from Sentinel-2 (10 m 111 

resolution) effectively provided zones with distinct soil and crop nutrient characteristics. However, 112 

they reported a negative relationship between ECa and NDVI due to local magnesium imbalances 113 
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and vegetation stress. In addition to EMI and remote sensing, historical yield maps can help in 114 

identifying yield trends across years and different cultivated crops. For example, Ali et al. (2022) 115 

integrated seven years of yield data with Landsat-based NDVI and soil sampling over a 9 ha field, 116 

but ultimately could obtain only a limited subdivision of the field into two management zones with 117 

a relatively low resolution of 30 m. Overall, previous studies have made important contributions 118 

towards integrating EMI and NDVI data for improved management zone delineation (Corwin and 119 

Scudiero, 2019; Ciampalini et al., 2015). However, the results can be influenced by data resolution 120 

and acquisition timing as well as by local management and soil-plant interactions, with some 121 

studies suggesting that EMI alone can offer sufficient insights into soil patterns (Esteves et al., 122 

2022; von Hebel et al., 2021). Nonetheless, the added value of NDVI holds unexplored potential 123 

due to the higher spatial and temporal resolution of recent satellite platforms (Breunig et al., 2020; 124 

Georgi et al., 2018).  125 

 126 

 127 

As obtaining management zones from spatial datasets based on EMI or remote sensing data can 128 

be challenging, mMachine learning clustering algorithms have been widely used to delineate 129 

management zones from spatially distributed datasets such as EMI or NDVI (Saifuzzaman et al., 130 

2019; Castrignanò et al., 2018; Chlingaryan et al., 2018; Zhang and Wang, 2023). For example, 131 

Wang et al. (2021) used supervised Random Forest classification for combining EMI data with 132 

environmental covariates to predict soil salinity. Similarly, Brogi et al. (2019) employed supervised 133 

learning to combine EMI with soil sampling and generate high-resolution soil maps for a 1 km² 134 

agricultural area. However, the results of supervised classification approaches may depend on the 135 

interpreter and often need expert knowledge as well as extensive ground-truth data for training 136 
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(Liakos et al., 2018; Usama et al., 2019). K-means and ISODATA clustering are unsupervised 137 

methods used to delineate management zones (Bijeesh and Narasimhamurthy, 2020; Ylagan et al., 138 

2022; Tagarakis et al., 2013) but these approaches can be sensitive to initial conditions and struggle 139 

to handle non-linear relationships in datasets (Geng et al., 2020; Li et al., 2018). Thus, more 140 

advanced methods such as self-organizing maps (SOM) have been successfully used to analyse 141 

complicated data structures provided by proximal and remote sensing data (Romero‐Ruiz et al., 142 

2024; Moshou et al., 2006; Taşdemir et al., 2012). A remaining key challenge of unsupervised 143 

methods is the definition of the optimal number of clusters. Widely used approaches such as the 144 

elbow and silhouette method (Saputra et al., 2020) often struggle when applied to non-linearly 145 

distributed or spatially complex datasets (Schubert, 2023), and may thus require subjective 146 

judgment or expert knowledge (Liang et al., 2012). To address this challenge, the Multi-Cluster 147 

Average Standard Deviation (MCASD) approach that relies on an evaluation of the intra-cluster 148 

variability has recently been introduced (O’Leary et al., 2023) and successfully applied to the 149 

integration of complex spatial datasets (O’Leary et al., 2024). However, many of these novel 150 

approaches have seen limited applications in agricultural contexts (Khan et al., 2021) and the added 151 

value of delineating management zones from datasets of different origin remains unaddressed 152 

(Koganti et al., 2024). 153 

 154 

Within this context, this study expands on previous research  by combining high- resolution multi-155 

coil EMI and satellite-based NDVI data within a harmonized framework, applying consistent 156 

normalization, and validating the resulting zones with multi-year yield data and dense soil 157 

sampling. In this study, Tthe potential of delineating management zones by integrating multi-coil 158 

EMI data and with satellite-based NDVI is explored for a single 70 ha agricultural field near Berlin, 159 
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Germany. Management zones were derived using three data sources: i) ECa maps from nine 160 

different depths of investigation (DOI) obtained with EMI between 2022 and 2024, ii) seven NDVI 161 

images obtained from PlanetScope in 2019, and iii) a combination of EMI and NDVI data. 162 

Management zones were delineated using SOM while the optimal number of clusters was obtained 163 

with the MCASD method. In a following step, the number of clusters was refined using post-hoc 164 

analysis using a large dataset of soil samples and yield maps at 10 m resolution from 2011 to 2019. 165 

Finally, it was evaluated to what extent management zones derived from EMI, NDVI, or a 166 

combination of both represent soil characteristics and yield patterns using visual inspection and 167 

statistical analysis.  168 

 169 

2 Materials and Methods 170 

2.1 Study area 171 

The study site is part of the patchCROP (patchCROP, 2020) landscape laboratory of the Leibniz 172 

Centre for Agricultural Landscape Research (ZALF) near Tempelberg, Brandenburg, Germany 173 

(52.4426 N, 14.1607 E, altitude 68 m). It is located in the transition zone between humid oceanic 174 

and dry continental climate. The long term average temperature from 1980 to 2020 was 8.3°C and 175 

the mean annual precipitation for the same period was 533 mm (DWD, 2021; Koch et al., 2023). 176 

The investigated field has an area of approximately 70 ha (Fig. 1). Until 2020, this field was 177 

managed as a single unit. In March 2020, the patchCROP experiment was established to study the 178 

impact of landscape diversification through the use of smaller field sizes, site-specific crop 179 

rotations, different field management practices, and the use of new technologies including 180 

proximal soil sensing, remote sensing, and robotic technologies (Grahmann et al., 2021). For this, 181 

thirty patches of 72 x 72 m were established within the investigated field (Donat et al., 2022) (Fig. 182 
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1). In terms of geomorphology, the site is described as a young moraine landscape shaped by past 183 

glaciations, and characterized by an undulating relief and heterogeneous soil characteristics (Koch 184 

et al., 2023; Öttl et al., 2021; Meyer et al., 2019). The topsoil is predominantly sandy, but a more 185 

clayey layer is present at different depths in the subsoil (Hernández-Ochoa et al., 2024).  186 

 187 
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 188 

Figure 1. Overview of the patchCROP sStudy aArea in Tempelberg, Brandenburg (ESRI, 2020). 189 

The yellow border indicates the boundary of the investigated field, whereas the green boxes 190 

indicate the thirty patches of the patchCROP landscape experiment. The inset map shows the 191 

location of the study site within Germany; the red dot indicates the site location in Tempelberg. 192 

 193 
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 194 

 195 

2.2 Data collection and processing 196 

The overall methodology of this study is summarized in Figure 2. This flowchart highlights the 197 

role of EMI and NDVI datasets in the clustering process and the use of multi-year yield maps and 198 

soil samples for validation and refinement of the resulting management zones. More details are 199 

provided in the subsequent sections. 200 
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 201 

Figure 2. Workflow diagram showing the integration of proximal (EMI) and remote sensing 202 

(NDVI) data for unsupervised clustering using MCASD and SOMs. Yield and soil datasets were 203 

used for post-hoc validation and refinement of management zones. 204 

2.2.12 Electromagnetic Induction (EMI) measurements 205 

Frequency-domain EMI devices generate a fixed-frequency alternating current in a transmitter 206 

coil, which produces a primary magnetic field. This primary magnetic field induces eddy currents 207 
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in the soil, thus generating a secondary magnetic field. The primary and secondary magnetic fields 208 

are sensed by a receiver coil. The quadrature component of the ratio between the primary and 209 

secondary magnetic fields is directly proportional to the apparent electrical conductivity (ECa) of 210 

the ground (Keller and Frischknecht, 1966; Ward and Hohmann, 1988; McNeill, 1980). The 211 

measured ECa is strongly affected by soil properties such as salinity, water content, clay content 212 

(and thus texture), compaction, and to a lesser degree organic matter content and cation exchange 213 

capacity (Corwin and Lesch, 2005; Robinet et al., 2018). The depth sensitivity of EMI 214 

measurements depends on coil spacing and coil orientation. Larger spacing results in increased 215 

depths of investigation (DOI), while the coil orientation influences the sensitivity to shallow or 216 

deep subsurface (Lavoué et al., 2010; Simpson et al., 2009). 217 

 218 

In this study, two EMI devices were used simultaneously: a CMD-Mini Explorer (GF Instruments, 219 

Brno, Czech Republic) with three receiver coils oriented in a vertical coplanar configuration 220 

(VCP), and a custom-made CMD-Mini Explorer – Special Edition equipped with six receiver coils 221 

oriented in a horizontal coplanar configuration (HCP). The VCP configuration is most sensitive to 222 

the shallow subsurface, with decreasing sensitivity as depth increases. In contrast, the HCP 223 

configuration is less sensitive to the shallow subsurface, with sensitivity peaking at a depth of 224 

approximately 0.4 times the coil separation (McNeill, 1980). As a rule of thumb, the DOI for the 225 

VCP setup is approximately 0.75 times the coil separation. For the HCP setup, the DOI is 226 

approximately 1.5 times the coil separation. For the set-up used here, the resulting DOI ranges 227 

from 0-24 to 0-270 cm. Details of the EMI set-up are summarized in Table 1. 228 

 229 

 230 
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 231 

 232 

 233 

 234 

 235 

 236 

 237 

Table 1. Details of the two EMI devices with coil number, orientation, separation, DOI, and 238 

frequency. 239 

EMI device Receivers Orientation Separation (cm) DOI (cm) Frequency (Hz) 

Mini Explorer 3 VCP 32 0-24 30 

  VCP 71 0-53  

  VCP 118 0-89  

Mini Explorer 6 HCP 35 0-52 25.17 

Special Edition  HCP 50 0-75  

  HCP 71 0-108  

  HCP 97 0-146  

  HCP 135 0-203  

  HCP 180 0-270  

 240 

Due to the ongoing PatchCROP experiment on small patches with variable cropping systems, it 241 

was not possible to cover the entire field in a single EMI campaign. EMI data were thus collected 242 

in four campaigns conducted between August 2022 and October 2024. During each campaign, the 243 

EMI devices were placed in sleds and warmed up for approximately 30 minutes before use. The 244 
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sleds were then pulled by an all-terrain vehicle (ATV) at a speed of approximately 6 to 8 km/h. 245 

Data collection occurred at a frequency of 0.2 s, resulting in an inline spatial resolution of 0.25 to 246 

0.50 m. A track spacing of ~2.5 m was used within the experimental patches and a track spacing 247 

between 5 to 45 m (typically well below 10 m) was used in the rest of the field. A Real Time 248 

eXtended (RTX) center point differential global positioning system (DGPS) (Trimble Inc., 249 

Sunnyvale, United States) was used to record the position of the sleds with centimeter accuracy. 250 

For more information about the setup for EMI measurements, the reader is referred to von Hebel 251 

et al. (2018). 252 

 253 

The measured ECa values were filtered using a Python-based method similar to the approach of 254 

von Hebel et al. (2014), which has been successfully applied in several studies (Brogi et al., 2019; 255 

von Hebel et al., 2021; Kaufmann et al., 2020; Schmäck et al., 2022). The first filter removes 256 

values that are deemed too high or too low based on user-defined thresholds (-50 and 50 mS/m in 257 

this study). A second filter divides the data into a user-defined number of bins (20 in this study) 258 

and removes the data from bins with a low fraction of measurements (<1% in this study). In a third 259 

step, a spatial filter is used to identify and discard ECa values that deviate from adjacent positions 260 

more than a given amount (1 mS/m in this study) to avoid unrealistically high lateral ECa 261 

variations. After the application of these three filters, ~5% of the measured ECa values were 262 

removed although this value varied between measurement campaigns.  263 

 264 

Given that the EMI data were acquired in four campaigns with different environmental conditions 265 

(e.g. soil water content, soil temperature), each EMI acquisition campaign was separately 266 

normalized by using a standardized z-score normalization method as used by Rudolph et al. (2015):  267 
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 268 

𝐸𝐶𝑎𝑧,𝑖 = (𝐸𝐶𝑎𝑖 − 𝜇𝑖) 𝜎𝑖⁄          (1) 269 

      270 

where 𝐸𝐶𝑎𝑧,𝑖 is the normalized 𝐸𝐶𝑎 value for the i-th campaign, 𝐸𝐶𝑎𝑖 is the measured ECa value 271 

for the i-th campaign, 𝜇𝑖 is the mean ECa value of the i-th campaign, and 𝜎𝑖 is standard deviation 272 

of ECa values for the i-th campaign. Following normalization, manual cleaning was conducted in 273 

ArcMap v10.8.2 (ESRI, Redlands CA, USA) to remove points typically occurring at the start and 274 

end of each campaign or in short periods where the EMI system was left stationary. In the final 275 

step, the normalized data for each of the nine coil configurations were interpolated to a regular 3 276 

by 3 m grid using ordinary Kriging with a gaussian semivariogram and merged into a single 277 

multidimensional raster mosaic dataset. 278 

 279 

2.2.23 Remotely sensed NDVI data 280 

High-resolution PlanetScope Level 3B satellite images from the 2019 growing season (winter rye) 281 

were used to obtain NDVI maps. Between 01/01/2019 and 31/07/2019, 48 cloud free images were 282 

available. Seven of these images were selected to represent crop development during the growing 283 

season. PlanetScope image products are pre-processed and have already undergone radiometric 284 

and atmospheric corrections. No additional pre-processing was required. The PlanetScope sensor 285 

captures spectral information in four bands: blue (B1), green (B2), red (B3), and near-infrared 286 

(NIR - B4) with a spatial resolution of 3 m. The normalized difference vegetation index (NDVI) 287 

was calculated using the reflectance in the red (R) and near-infrared bands (NIR): 288 

 289 

𝑁𝐷𝑉𝐼 = (𝑁𝐼𝑅 − 𝑅) (𝑁𝐼𝑅 + 𝑅)⁄         (2) 290 
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 291 

The resulting NDVI values range from -1 to 1, where values close to 1 indicate healthy vegetation, 292 

and values close to zero or negative values generally represent non-vegetated surfaces, senescent, 293 

stressed or unhealthy plants or dry vegetation, or features such as clouds and water that exhibit 294 

lower NIR reflectance (Sishodia et al., 2020). (Wasonga et al., 2021). 295 

 296 

2.2.31 Yield data  297 

Georeferenced yield maps of nine growing seasons (2011-2019) were used. These yield maps were 298 

generated using a yield monitoring system (CLAAS Quantimeter, Hersewinkel, Germany) 299 

mounted on two different combine harvesters. From 2011 to 2013, data were collected using a 300 

CLAAS 580. From 2014 onwards, a CLAAS Lexion 770 TT was used. In the 2011 – 2019 period, 301 

the field was either cultivated with winter rye (2011, 2013, 2014, 2016, 2017, and 2019) or 302 

rapeseed (2012, 2015, and 2018). For additional details on data processing and yield map 303 

generation, readers are referred to Donat et al. (2022). The original yield data from Donat et al. 304 

(2022) were available as georeferenced yield data points with a spacing of ~10 m. These points 305 

were interpolated to a regular grid with 10 m resolution using ordinary kriging.  306 

 307 

2.2.2 Electromagnetic Induction (EMI) measurements 308 

Frequency-domain EMI devices generate a fixed-frequency alternating current in a transmitter 309 

coil, which produces a primary magnetic field. This primary magnetic field induces eddy currents 310 

in the soil, thus generating a secondary magnetic field. The primary and secondary magnetic fields 311 

are sensed by a receiver coil. The quadrature component of the ratio between the primary and 312 

secondary magnetic fields is directly proportional to the apparent electrical conductivity (ECa) of 313 
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the ground (Keller and Frischknecht, 1966; Ward and Hohmann, 1988; McNeill, 1980). The 314 

measured ECa is strongly affected by soil properties such as salinity, water content, clay content 315 

(and thus texture), compaction, and to a lesser degree organic matter content and cation exchange 316 

capacity (Corwin and Lesch, 2005; Robinet et al., 2018). The depth sensitivity of EMI 317 

measurements depends on coil spacing and coil orientation. Larger spacing results in increased 318 

depths of investigation (DOI), while the coil orientation influences the sensitivity to shallow or 319 

deep subsurface (Lavoué et al., 2010; Simpson et al., 2009). 320 

 321 

In this study, two EMI devices were used simultaneously: a CMD-Mini Explorer (GF Instruments, 322 

Brno, Czech Republic) with three receiver coils oriented in a vertical coplanar configuration 323 

(VCP), and a custom-made CMD-Mini Explorer – Special Edition equipped with six receiver coils 324 

oriented in a horizontal coplanar configuration (HCP). The VCP configuration is most sensitive to 325 

the shallow subsurface, with decreasing sensitivity as depth increases. In contrast, the HCP 326 

configuration is less sensitive to the shallow subsurface, with sensitivity peaking at a depth of 327 

approximately 0.4 times the coil separation (McNeill, 1980). As a rule of thumb, the DOI for the 328 

VCP setup is approximately 0.75 times the coil separation. For the HCP setup, the DOI is 329 

approximately 1.5 times the coil separation. For the set-up used here, the resulting DOI ranges 330 

from 0-24 to 0-270 cm. Details of the EMI set-up are summarized in Table 1. 331 

 332 

 333 
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 334 

 335 

 336 

 337 

 338 

 339 

 340 

Table 1. Details of the two EMI devices with coil number, orientation, separation, DOI, and 341 

frequency. 342 

EMI device Receivers Orientation Separation (cm) DOI (cm) Frequency (Hz) 

Mini Explorer 3 VCP 32 0-24 30 

  VCP 71 0-53  

  VCP 118 0-89  

Mini Explorer 6 HCP 35 0-52 25.17 

Special Edition  HCP 50 0-75  

  HCP 71 0-108  

  HCP 97 0-146  

  HCP 135 0-203  

  HCP 180 0-270  

 343 

Due to the ongoing PatchCROP experiment on small patches with variable cropping systems, it 344 

was not possible to cover the entire field in a single EMI campaign. EMI data were thus collected 345 

in four campaigns conducted between August 2022 and October 2024. During each campaign, the 346 

EMI devices were placed in sleds and warmed up for approximately 30 minutes before use. The 347 
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sleds were then pulled by an all-terrain vehicle (ATV) at a speed of approximately 6 to 8 km/h. 348 

Data collection occurred at a frequency of 0.2 s, resulting in an inline spatial resolution of 0.25 to 349 

0.50 m. A track spacing of ~2.5 m was used within the experimental patches and a track spacing 350 

between 5 to 45 m (typically well below 10 m) was used in the rest of the field. A Real Time 351 

eXtended (RTX) center point differential global positioning system (DGPS) (Trimble Inc., 352 

Sunnyvale, United States) was used to record the position of the sleds with centimeter accuracy. 353 

For more information about the setup for EMI measurements, the reader is referred to von Hebel 354 

et al. (2018). 355 

 356 

The measured ECa values were filtered using a Python-based method similar to the approach of 357 

von Hebel et al. (2014), which has been successfully applied in several studies (Brogi et al., 2019; 358 

Kaufmann et al., 2020; Schmäck et al., 2022; von Hebel et al., 2021). The first filter removes 359 

values that are deemed too high or too low based on user-defined thresholds (-50 and 50 mS/m in 360 

this study). A second filter divides the data into a user-defined number of bins (20 in this study) 361 

and removes the data from bins with a low fraction of measurements (<1% in this study). In a third 362 

step, a spatial filter is used to identify and discard ECa values that deviate from adjacent positions 363 

more than a given amount (1 mS/m in this study) to avoid unrealistically high lateral ECa 364 

variations. After the application of these three filters, ~5% of the measured ECa values were 365 

removed although this value varied between measurement campaigns.  366 

 367 

Given that the EMI data were acquired in four campaigns with different environmental conditions 368 

(e.g. soil water content, soil temperature), each EMI acquisition campaign was separately 369 

normalized by using a standardized z-score normalization method as used by Rudolph et al. (2015):  370 
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 371 

𝐸𝐶𝑎𝑧,𝑖 = (𝐸𝐶𝑎𝑖 − 𝜇𝑖) 𝜎𝑖⁄          (1) 372 

      373 

where 𝐸𝐶𝑎𝑧,𝑖 is the normalized 𝐸𝐶𝑎 value for the i-th campaign, 𝐸𝐶𝑎𝑖 is the measured ECa value 374 

for the i-th campaign, 𝜇𝑖 is the mean ECa value of the i-th campaign, and 𝜎𝑖 is standard deviation 375 

of ECa values for the i-th campaign. Following normalization, manual cleaning was conducted in 376 

ArcMap v10.8.2 (ESRI, Redlands CA, USA) to remove points typically occurring at the start and 377 

end of each campaign or in short periods where the EMI system was left stationary. In the final 378 

step, the normalized data for each of the nine coil configurations were interpolated to a regular 3 379 

by 3 m grid using ordinary Kriging with a gaussian semivariogram and merged into a single 380 

multidimensional raster mosaic dataset. 381 

 382 

2.2.3 Remotely sensed NDVI data 383 

High-resolution PlanetScope Level 3B satellite images from the 2019 growing season (winter rye) 384 

were used to obtain NDVI maps. Between 01/01/2019 and 31/07/2019, 48 cloud free images were 385 

available. Seven of these images were selected to represent crop development during the growing 386 

season. PlanetScope image products are pre-processed and have already undergone radiometric 387 

and atmospheric corrections. No additional pre-processing was required. The PlanetScope sensor 388 

captures spectral information in four bands: blue (B1), green (B2), red (B3), and near-infrared 389 

(NIR - B4) with a spatial resolution of 3 m. The normalized difference vegetation index (NDVI) 390 

was calculated using the reflectance in the red (R) and near-infrared bands (NIR): 391 

 392 

𝑁𝐷𝑉𝐼 = (𝑁𝐼𝑅 − 𝑅) (𝑁𝐼𝑅 + 𝑅)⁄         (2) 393 
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 394 

The resulting NDVI values range from -1 to 1, where values close to 1 indicate healthy vegetation, 395 

and values close to zero or negative values generally represent non-vegetated surfaces, senescent, 396 

stressed or unhealthy plants or dry vegetation, or features such as clouds and water that exhibit 397 

lower NIR reflectance (Wasonga et al., 2021).  398 

 399 

2.2.4 Soil sampling and data on soil characteristics 400 

Extensive soil sampling campaigns were conducted between 2020 and 2024, focusing on the 401 

experimental patches within the 70 ha field. At 160 locations, soil samples up to 100 cm depth 402 

were obtained using a Pürckhauer soil auger with an 18 mm inner diameter. The soil properties 403 

analyzed in this study included the depth of soil texture transition, defined as the depth (in cm) at 404 

which the sandy top layer ends (EOS layer (end of sandy layer) in the following), as well as the 405 

soil texture (percentages of sand, silt, and clay) of the top sandy layer and the layer below. Soil 406 

texture was determined by using the wet sieving and sedimentation method (ISO, 2002). The 407 

particle size distribution was defined according to the IUSS Working Group 150 WRB guidelines 408 

(IUSS Working Group, 2015). When multiple subsamples for a single layer were available at a 409 

given location, weighted averages of sand, silt, and clay fraction for the whole layer were obtained 410 

using the thickness of each subsample. 411 

 412 

2.3 Clustering for delineation of management zones 413 

Three different data combinations were created and investigated: a) EMI maps, b) time-series of 414 

NDVI maps, and c) a combination of the EMI maps and NDVI maps. Before clustering, a standard 415 

preprocessing step of normalization was applied on each dataset to ensure that variables with 416 
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different ranges and units contribute equally in the classification process. The choice of 417 

normalization method can be particularly important when combining datasets with different scales, 418 

such as EMI and NDVI, to prevent dominance of one dataset over the other and to maintain the 419 

integrity of the input features In this study, a min-max scaling was applied, where all values were 420 

rescaled to a standard range between 0 and 1 (Patro and Sahu, 2015).  421 

 422 

For EMI, a single normalization was applied to the nine ECaz maps. In this case, the min-max 423 

normalization used the minimum (ECaz min) and maximum value (ECaz max) from all nine 9 maps: 424 

 425 

𝐸𝐶𝑎𝑧′ =  
𝐸𝐶𝑎𝑧−𝐸𝐶𝑎𝑧 𝑚𝑖𝑛

𝐸𝐶𝑎𝑧 𝑚𝑎𝑥− 𝐸𝐶𝑎𝑧 𝑚𝑖𝑛
           (3) 426 

 427 

where ECaz is the original value, and ECaz' is the normalized value. For NDVI, each of the seven 428 

NDVI maps was normalized independently:  429 

 430 

𝑁𝐷𝑉𝐼′ 𝑖 =  
𝑁𝐷𝑉𝐼 𝑖− 𝑁𝐷𝑉𝐼 𝑖,𝑚𝑖𝑛

𝑁𝐷𝑉𝐼 𝑖,𝑚𝑎𝑥− 𝑁𝐷𝑉𝐼 𝑖,𝑚𝑖𝑛
          (4) 431 

 432 

where NDVI'i is the normalized value for the i-th map, NDVIi is the original value of NDVI of the 433 

i-th map, NDVIi, min and NDVIi, max are the minimum and maximum values of the i-th NDVI map. 434 

This difference in normalization was necessary to preserve the depth-dependent structure of EMI 435 

data, as ECa represents a bulk measurement where each reading is influenced by adjacent depths. 436 

In contrast, NDVI measurements are independent and acquired at different time points, and thus 437 

reflect temporal variations in vegetation dynamics. 438 

 439 
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In this study, a Self-Organizing Map (SOM), an unsupervised machine learning classification 440 

technique, was used for clustering (Kohonen, 2013). SOM is a centroid-based clustering technique, 441 

similar in some aspects to K-means clustering (Celebi et al., 2013). While K-means clustering 442 

assigns each data point to a cluster based on the minimum distance to the cluster centroid in the 443 

data space, SOM utilizes an artificial neural network to organize and visualize high-dimensional 444 

data (Valentine and Kalnins, 2016). The key distinction lies in how SOM projects the data onto a 445 

two-dimensional grid while preserving the topological relationships of the input data. Each data 446 

vector in SOM is assigned to a numerical cluster, where the cluster centre is representative of all 447 

the data points associated with it. These cluster centres, which have dimensions similar to the input 448 

data vectors, adjust iteratively during the training process to better represent the underlying data 449 

distribution. This approach allows SOM to effectively map complex data patterns while 450 

maintaining the spatial relationships between clusters.  451 

 452 

The Multi-Cluster Average Standard Deviation (MCASD) approach was used to determine the 453 

optimal number of clusters for SOM. This method evaluates the stability of the cluster centres in 454 

the dataspace over multiple clustering attempts as the number of clusters increases. This metric 455 

assumes that an appropriate number of clusters for a dataset is any at which the cluster centres do 456 

not vary significantly when the clustering algorithm is run multiple times. In this study, MCASD 457 

analysis was tested with a maximum number of 20 clusters with 100 SOM clustering runs for each 458 

number of clusters to calculate the MCASD stability metric. The number of clustering runs was 459 

determined during preliminary testing, where it was observed that most datasets stabilized in terms 460 

of variability between 70 and 80 iterations. To ensure consistency and reproducibility, we adopted 461 

100 runs per cluster number. Upon completion of MCASD analysis, the highest number of clusters 462 
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with a low MCASD metric is selected, as this represents the maximum resolution of the spatial 463 

variability that can be obtained through clustering (O’Leary et al., 2023). This clustering process 464 

was performed in MATLAB v2023a (MathWorks, Natick, Massachusetts, USA). 465 

 466 

2.4 Statistical analysis 467 

To assess the differences between clusters derived from the three datasets, a one-way analysis of 468 

variance (ANOVA) was conducted in SPSS (IBM, Chicago, IL, United States). This ANOVA 469 

analysis was used to identify whether there were significant differences between clusters in terms 470 

of soil properties or yield using a significance threshold of p < 0.05. Following the ANOVA, a 471 

Tukey's HSD (Honestly Significant Difference) test was used as a post-hoc analysis to determine 472 

which of the clusters were significantly different. In this step, the depth of the sandy layer, the 473 

texture of the overlying layer, the texture of the layer below, and the yield data were used. Thus, 474 

this step is complimentary to the previous cluster selection step with MCASD, which did not 475 

consider soil and yield data. Clusters that did not exhibit significant differences were merged 476 

during a reclassification step, refining the clustering results to ensure that each final cluster was 477 

distinct and statistically meaningful, both in terms of the input datasets and in terms of soil 478 

properties and yield. The latter was confirmed using two tailed t-test between matching layers of 479 

adjacent soil classes in the reclassified map. 480 

 481 

3 Results and Discussion 482 

3.1 ECaz , NDVI ,  and Yield, ECaz, and NDVI maps 483 

The ECaz, NDVI, and yield maps yield, ECaz, and NDVI maps highlight unique aspects of field 484 

heterogeneity and offer insights into subsurface soil properties, above-ground crop performance, 485 
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and their combined effects on productivity. In the following, these input datasets for management 486 

zone delineation are briefly introduced. 487 

 488 

3.1.1 EMI maps 489 

Nine ECa maps with 3 m resolution were obtained from the interpolation of the nine coil 490 

configurations recorded during the EMI measurements. The results for one coil configuration 491 

(HCP 050 cm) are exemplary shown in (Error! Reference source not found.) before and after 492 

normalization. The study area was measured under varying conditions in terms of soil temperature, 493 

soil moisture, and effect of agricultural management. This resulted in differences of average ECa 494 

and spatial patterns (Error! Reference source not found.a). Although it is well known that 495 

temperature affects measured ECa (Pedrera-Parrilla et al., 2016; Vogel et al., 2019), it was not 496 

possible to perform a comprehensive temperature correction in this study due to the lack of 497 

sufficient soil temperature data. Moreover, it has been shown that temperature correction has 498 

limitations compared to normalization methods when the dataset is composed of various depths of 499 

investigation and is affected by multiple agricultural management practices (Brogi et al., 2019; 500 

Rudolph et al., 2015). Thus, Z-score normalization was applied for each measurement campaign 501 

to reduce the differences between data measured on different days. Error! Reference source not 502 

found.b shows the normalized EMI map for the same coil configuration as shown in (Error! 503 

Reference source not found.a). The normalization successfully harmonized the data, minimizing 504 

the influence of varying soil moisture and temperature during acquisition, resulting in more 505 

consistent spatial patterns that better represent subsurface soil properties. However, some localized 506 

artefacts in the normalized maps still persist. For example, areas near the field boundaries or 507 

experimental patches exhibit subtle inconsistencies that may be influenced by edge effects or 508 
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localized disturbances. Despite these minor limitations, the normalized ECa maps provide a robust 509 

foundation for further analysis and management zone delineation. 510 

 511 

 512 

Figure 3. Comparison of apparent electrical conductivity (ECa) maps before and after z-score 513 

normalization for the HCP 050 configuration with (a) the non-normalized ECa map, where the 514 

zoomed-in section highlights the influence of varying environmental conditions such as soil 515 

moisture and temperature leading to inconsistent patterns and (b) the z-score normalized ECa map, 516 

which minimizes the influence of these external factors.  517 

 518 

Error! Reference source not found. shows the nine normalized ECaz maps for the VCP and HCP 519 

configurations. These maps display heterogeneous patterns of ECa, primarily attributed to 520 

variations in soil characteristics in space and with depth. A prominent feature is the elongated 521 

channel extending from the northeast to the southwest of the field, which represents areas with 522 

lower ECaz values. This feature is associated with sandy soils that generally hold less water and 523 

nutrients, indicating a coarse-textured zone with lower electrical conductivity. In contrast, the 524 

northwest and southeast regions of the field exhibit medium to high ECaz values, which may reflect 525 
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areas of higher moisture content and finer soil particles, such as loamy textures. Additionally, in 526 

the northeastern part of the field, a more heterogeneous area with short-scale variations can be 527 

observed where the ECaz values vary considerably between the nine maps. For the shallow VCP 528 

configurations, this area shows low ECaz values, which are indicative of sandy soils or dry 529 

conditions near the surface. For the deeper HCP configurations, this same area shows higher ECaz 530 

values, suggesting an increase in soil moisture or finer soil texture at greater depths. This pattern 531 

highlights the layered soil heterogeneity in this region, with subsurface properties differing 532 

significantly from the surface. Overall, the EMI data reveal a high degree of spatial variability and 533 

provide valuable insights into subsurface soil variability, which is critical for precision agricultural 534 

management. 535 

 536 
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 537 

Figure 4. Normalized apparent electrical conductivity (ECaz) maps derived from electromagnetic 538 

induction (EMI) measurements using multiple coil separations in vertical coplanar (VCP) and 539 

horizontal coplanar (HCP) configurations (see Table 1 for more details). These maps highlight the 540 

spatial variability of subsurface soil properties, with higher ECaz values (red) indicating areas of 541 

higher moisture retention or finer soil textures, and lower ECaz values (blue) corresponding to 542 

sandy soils with lower conductivity. 543 

 544 

3.1.2 NDVI maps 545 
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All available PlanetScope satellite images for the growing season 2019 (winter rye) were visually 546 

evaluated to assess their usability. Before April 2019, no meaningful patterns in NDVI were 547 

observed due to the relatively short height (10 to 20 cm) and low biomass of winter rye and the 548 

lack of water- or nutrient-induced stress in this early growth stage. Moreover, images from July 549 

2019 were excluded from the analysis as the crop had reached maturity, and no further growth or 550 

development was evident. By this time, the physiological activity of the plants had ceased, and 551 

harvesting was completed on 04/08/2019.  552 

 553 

After this initial analysis, seven NDVI images spanning the period between April and June, hence 554 

from flowering to maturity, were selected for further analysis (Error! Reference source not 555 

found.). The descriptive statistics of the NDVI data are given in Table 2 and show a high degree 556 

of temporal variation. Following crop development during the growing season, the mean NDVI 557 

peaked on 30 April 2019 (221 days after sowing). Afterwards, NDVI values gradually declined as 558 

the crop approached maturity, which is consistent with physiological changes during growth of 559 

winter rye (Hatfield and Prueger, 2010). Error! Reference source not found. illustrates the 560 

temporal development of the spatial variation of NDVI, highlighting the spatial heterogeneity of 561 

crop performance within the field (especially Error! Reference source not found.d-g) where 562 

areas of lower NDVI are associated with poorer crop performance and areas of higher NDVI 563 

indicate healthier crops. Generally, the key patterns in crop performance are in good agreement 564 

with the patterns observed in the EMI maps. Areas with persistently low NDVI values generally 565 

correspond to areas with low ECaz, and areas with high NDVI values mostly correspond to areas 566 

with high ECaz. However, differences between patterns in NDVI and EMI can also be found. This 567 

is expected given that the dynamic changes in crop vigour and vegetation health shown by NDVI 568 
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are not solely related to subsurface soil conditions captured by EMI. For example, specific areas 569 

with low NDVI values were observed in regions of medium to high ECaz, possibly reflecting 570 

localized crop stress due to non-soil-related factors such as disease, waterlogging, or nutrient 571 

imbalances. 572 

 573 

Table 2. Summary of remotely sensed NDVI imagery and corresponding dates after sowing. 574 

Date of acquisition Days after sowing Mean NDVI Max NDVI Min NDVI 

05 April 2019 196 0.67 0.78 0.42 

16 April 2019 207 0.72 0.85 0.46 

30 April 2019 221 0.76 0.88 0.38 

11 May 2019 232 0.61 0.71 0.34 

30 May 2019 251 0.58 0.66 0.41 

12 June 2019 263 0.49 0.65 0.31 

24 June 2019 276 0.49 0.71 0.30 

 575 
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 576 

Figure 5. Seven NDVI maps derived from PlanetScope satellite imagery representing the temporal 577 

variability in vegetation development during the 2019 growing season. The images, dated from 578 

05-04-2019 to 24-06-2019, capture critical crop growth stages, including flowering and maturity. 579 

 580 

3.1.31 Yield maps 581 

Figure 2Figure 3 presents nine years (2011–2019) of yield maps interpolated at a 10 m resolution 582 

to represent spatial variability across the field. The maps illustrate distinct patterns of high and low 583 

productivity areas. Yield variability is consistent across multiple years, although variations in 584 

Formatted: Font: Not Italic



 

33 
 

measured yield can be observed between years. The years 2012 and 2013 show lower quality yield 585 

data due to incomplete datasets (Donat et al., 2022) caused by equipment issues and environmental 586 

challenges during data collection. Despite these limitations, they were retained for spatial context 587 

as they still exhibited consistent patterns with other years and the maps successfully capture the 588 

general spatial yield trends and heterogeneity of the field. These years were not weighted differently 589 

during validation analyses, and the potential influence of this lack of weighting was mitigated by 590 

evaluating multi-year trends and conducting year-by-year comparisons in the validation stage (see 591 

Section 3.4). the maps successfully capture the general spatial yield trends and heterogeneity of 592 

the field. The high and low yield zones align with known intrinsic field characteristics, such as soil 593 

texture, moisture retention, and nutrient availability (Grahmann et al., 2024). These yield patterns 594 

will serve as validation for comparing the management zones derived from EMI and NDVI data, 595 

as both datasets aim to explain the variability in productivity. 596 

 597 
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 598 

Figure 32: Nine interpolated yield maps (2011–2019) for the patchCROP field showing spatial 599 

variability of crop yield at a 10 m resolution. The maps illustrate yield distributions for winter rye 600 

(2011, 2013, 2014, 2016, 2017, 2019) and rapeseed (2012, 2015, 2018). High-yield areas (green) 601 

and low-yield areas (red) reflect the inherent field heterogeneity. Variability is observed both 602 

within and across years, influenced by crop type, management practices, and environmental 603 

conditions. The yield range for each year is provided in decitonnes per hectare (dt/ha). 604 
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 605 

3.1.2 EMI maps 606 

Nine ECa maps with 3 m resolution were obtained from the interpolation of the nine coil 607 

configurations recorded during the EMI measurements. The results for one coil configuration 608 

(HCP 050 cm) are exemplary shown in Fig. 3 before and after normalization. The study area was 609 

measured under varying conditions in terms of soil temperature, soil moisture, and effect of 610 

agricultural management. This resulted in differences of average ECa and spatial patterns (Fig. 611 

3a). Although it is known that temperature affects measured ECa (Pedrera-Parrilla et al., 2016; 612 

Vogel et al., 2019), it was not possible to perform a comprehensive temperature correction in this 613 

study due to the lack of sufficient soil temperature data. Moreover, it has been shown that 614 

temperature correction has limitations compared to normalization methods when the dataset is 615 

composed of various depths of investigation and is affected by multiple agricultural management 616 

practices (Brogi et al., 2019; Rudolph et al., 2015). Thus, Z-score normalization was applied for 617 

each measurement campaign to reduce the differences between data measured on different days. 618 

Figure 3b shows the normalized EMI map for the same coil configuration as shown in Fig. 3a. The 619 

normalization successfully harmonized the data, minimizing the influence of varying soil moisture 620 

and temperature during acquisition, resulting in more consistent spatial patterns that better 621 

represent subsurface soil properties. However, some localized artefacts in the normalized maps 622 

still persist. For example, areas near the field boundaries or experimental patches exhibit subtle 623 

inconsistencies that may be influenced by edge effects or localized disturbances. Despite these 624 

minor limitations, the normalized ECa maps provide a robust foundation for further analysis and 625 

management zone delineation. 626 

 627 
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 628 

Figure 3. Comparison of apparent electrical conductivity (ECa) maps before and after z-score 629 

normalization for the HCP 050 configuration with (a) the non-normalized ECa map, where the 630 

zoomed-in section highlights the influence of varying environmental conditions such as soil 631 

moisture and temperature leading to inconsistent patterns and (b) the z-score normalized ECa map, 632 

which minimizes the influence of these external factors.  633 

 634 

Figure 4 shows the nine normalized ECaz maps for the VCP and HCP configurations. These maps 635 

display heterogeneous patterns of ECa, primarily attributed to variations in soil characteristics in 636 

space and with depth. A prominent feature is the elongated channel extending from the northeast 637 

to the southwest of the field, which represents areas with lower ECaz values. This feature is 638 

associated with sandy soils that generally hold less water and nutrients, indicating a coarse-639 

textured zone with lower electrical conductivity. In contrast, the northwest and southeast regions 640 

of the field exhibit medium to high ECaz values, which may reflect areas of higher moisture content 641 

and finer soil particles, such as loamy textures. Additionally, in the northeastern part of the field, 642 

a more heterogeneous area with short-scale variations can be observed where the ECaz values vary 643 

considerably between the nine maps. For the shallow VCP configurations, this area shows low 644 
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ECaz values, which are indicative of sandy soils or dry conditions near the surface. For the deeper 645 

HCP configurations, this same area shows higher ECaz values, suggesting an increase in soil 646 

moisture or finer soil texture at greater depths. This pattern highlights the layered soil 647 

heterogeneity in this region, with subsurface properties differing significantly from the surface. 648 

Overall, the EMI data reveal a high degree of spatial variability and provide valuable insights into 649 

subsurface soil variability, which is critical for precision agricultural management. 650 

 651 
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 652 

Figure 4. Normalized apparent electrical conductivity (ECaz) maps derived from electromagnetic 653 

induction (EMI) measurements using multiple coil separations in vertical coplanar (VCP) and 654 

horizontal coplanar (HCP) configurations. These maps highlight the spatial variability of 655 

subsurface soil properties, with higher ECaz values (red) indicating areas of higher moisture 656 

retention or finer soil textures, and lower ECaz values (blue) corresponding to sandy soils with 657 

lower conductivity. 658 

659 
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3.1.3 NDVI maps 660 

All available PlanetScope satellite images for the growing season 2019 (winter rye) were 661 
visually evaluated to assess their usability. Before April 2019, no meaningful patterns in NDVI 662 
were observed due to the relatively short height (10 to 20 cm) and low biomass of winter rye and 663 
the lack of water- or nutrient-induced stress in this early growth stage. Moreover, images from 664 
July 2019 were excluded from the analysis as the crop had reached maturity, and no further 665 
growth or development was evident. By this time, the physiological activity of the plants had 666 
ceased, and harvesting was completed on 04 August 2019.  667 

 668 

After this initial analysis, seven NDVI images spanning the period between April and June, 669 
hence from flowering to maturity, were selected for further analysis. The descriptive statistics of 670 
the NDVI data are given in Table 2 and show a high degree of temporal variation. The NDVI 671 
maps shown in Fig. 5 strongly resemble those of the yield maps, especially towards the end of 672 
the growing season. Following crop development during the growing season, the mean NDVI 673 
peaked on 30 April 2019 (221 days after sowing). Afterwards, NDVI values gradually declined 674 
as the crop approached maturity, which is consistent with physiological changes during growth 675 
of winter rye (Hatfield and Prueger, 2010). Figure 5 also illustrates the temporal development of 676 
the spatial variation of NDVI, again pointing to the spatial heterogeneity of crop performance 677 
within the field (especially Figure 5d-g) where areas of lower NDVI are associated with poorer 678 
crop performance and areas of higher NDVI indicate healthier crops. Generally, the key patterns 679 
in crop performance are in good agreement with the patterns observed in the EMI maps. Areas 680 
with persistently low NDVI values generally correspond to areas with low ECaz, and areas with 681 
high NDVI values mostly correspond to areas with high ECaz. However, differences between 682 
patterns in NDVI and EMI can also be found. This is expected given that the dynamic changes in 683 
crop vigour and vegetation health shown by NDVI are not solely related to subsurface soil 684 
conditions captured by EMI. For example, specific areas with low NDVI values were observed 685 
in regions of medium to high ECaz, possibly reflecting localized crop stress due to non-soil-686 
related factors such as disease, waterlogging, or nutrient imbalances. 687 

 688 

Table 2. Summary of remotely sensed NDVI imagery and corresponding dates after sowing. 689 

Date of acquisition Days after sowing Mean NDVI Max NDVI Min NDVI 

05 April 2019 196 0.67 0.78 0.42 

16 April 2019 207 0.72 0.85 0.46 

30 April 2019 221 0.76 0.88 0.38 

11 May 2019 232 0.61 0.71 0.34 

30 May 2019 251 0.58 0.66 0.41 

12 June 2019 263 0.49 0.65 0.31 

24 June 2019 276 0.49 0.71 0.30 

 690 
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 691 

Figure 5. Seven NDVI maps derived from PlanetScope satellite imagery representing the 692 
temporal variability in vegetation development during the 2019 growing season. The images, 693 
dated from 05/04/2019 to 24/06/2019, capture critical crop growth stages, including flowering 694 
and maturity.  695 

 696 

3.2 Clustering of EMI and NDVI 697 

The MCASD analysis for the three datasets provided a robust method to determine the optimal 698 

number of clusters (Figure 7. 6). The analysis suggested a maximum of five clusters for the EMI 699 

data (Figure. 76b). These clusters reflect differences in subsurface properties such as soil texture, 700 

moisture, and compaction. Cluster 1 corresponds to areas with the highest ECaz values, which 701 
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gradually decrease with each subsequent cluster. Cluster 5 represents the lowest ECaz values. For 702 

NDVI (Figure. 76e), a maximum of four clusters was selected. While a five-cluster solution was 703 

initially identified as viable for NDVI, increasing the number of clusters beyond four did not 704 

significantly reduce variability. This made the four-cluster solution more practical and efficient for 705 

representing spatial variability in the NDVI data. Cluster 1 identifies areas with relatively high 706 

NDVI values, indicative of healthy, dense vegetation and higher crop performance. NDVI values 707 

progressively decrease with higher cluster numbers, with cluster 4 showing the lowest values, 708 

representing stressed or less productive areas. The combined EMI and NDVI dataset resulted in 709 

four clusters (Figure. 76h). Visual inspection suggests that both the EMI- and NDVI-based patterns 710 

are preserved in the combined dataset, likely due to the min-max scaling applied to standardize 711 

each dataset before MCASD analysis (see Appendix A). Clusters 1 and 2 represent areas with high 712 

values for both ECaz and NDVI, while cluster 4 identifies zones with low values for both variables, 713 

integrating both above-ground and subsurface variability effectively.  714 

 715 
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 716 

Figure 46. Clustering results for the PatchCROP experimental site. (a) MCASD analysis showing 717 

appropriate cluster numbers for EMI data. (b) Spatial distribution of original EMI clusters (ESRI, 718 

2020). (c) Spatial distribution of refined EMI clusters after post-hoc analysis. (d) MCASD analysis 719 

for NDVI data. (e) Spatial distribution of original NDVI clusters. (f) Spatial distribution of refined 720 

NDVI clusters after post-hoc analysis. (g) MCASD analysis for the combined (EMI + NDVI) 721 

dataset. (h) Spatial distribution of the original clusters based on the EMI and NDVI data. (i) Spatial 722 

distribution of the refined clusters for the combined dataset after post-hoc analysis.  723 

 724 

 725 

 726 
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3.3 Post-Hoc analysis 727 

Starting from the optimal number of clusters identified with MCASD, a post-hoc analysis based 728 

on the nine available yield maps and the point-scale soil samples was conducted. The aim was to 729 

verify that the cluster are not only statistically separated in terms of the input data (i.e., EMI, NDVI 730 

or a combination of EMI and NDVI), but also in terms of yield and soil characteristics (i.e., texture 731 

of the first and second layers, depth to the second layer). For the EMI-based clusters, 18 soil 732 

sampling locations were within Cluster 4 and only four of these had an EOS layer within 100 cm 733 

depth. The other 14 locations had EOS layer below the sampling depth of 100 cm and thus no 734 

textural values for the lower layer. Thus, the EOS layer depth of Cluster 4 was assumed to be below 735 

100 cm and the texture of the lower layer was excluded from further analysis to have a more 736 

consistent characterization of the prevailing soil characteristics.  737 

 738 

Post-hoc analysis indicated that not all clusters were significantly different from each other, either 739 

in terms of yield or soil characteristics., for all three datasets. Based on the results of the post-hoc 740 

analysis, clusters were either left separated when yield or soil characteristics were statistically 741 

different (p < 0.05) or grouped together when no statistical separation was identified. For example, 742 

Clusters 1, 2, and 3 in the EMI-based classification clusters, Clusters 1, 2, and 3 had at least one 743 

significant difference in texture, EOS layer, or yield. On the contrary, cluster 4 and 5 did not show 744 

statistically significant differences for any of the investigated properties. Thus, Cluster 4 and 5 745 

were merged together and the resulting EMI-based cluster map had four clusters with statistically 746 

significant separation of input data (i.e., EMI), yield, and soil characteristics. A more detailed 747 

breakdown of this post-hoc analysis and the resulting merging decisions is provided in Appendix 748 

B. 749 
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 750 

After this post-hoc analysis, Tthe resulting refined maps (Figure. 76c, f and i) now have clusters 751 

that are statistically separated in terms of the input dataset (i.e., EMI and NDVI) but also in terms 752 

of the target variables, which are yield and soil characteristics. Therefore, they are referred to as 753 

management zones instead of clusters from this point onwards. These management zones maps 754 

appear to be a simplification of the original clustered maps (Figure . 67b, e and h), but they now 755 

provide a more holistic understanding of the field by integrating below-ground (EMI) and above-756 

ground (NDVI) information with yield and soil data.  757 

 758 

3.4 Assessment of management zones derived from different datasets 759 

For each management zone of the maps derived from EMI, NDVI, and a combination of EMI-760 

NDVI, Table 3 shows the average yield between 2011 and 2019 and average soil characteristics, 761 

specifically the depth of soil texture transition EOS, and the textural fractions (percentages of sand, 762 

silt, and clay) of two layers up to 100 cm depth. The average yields of Table 3 vary considerably 763 

between different years and follow a general trend of decreasing yields with increasing cluster 764 

number. Thus, yields decrease with decreasing ECaz and NDVI.  765 

 766 

 767 

 768 

 769 

 770 
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Table 3. Average values of yield (dt/ha) and soil properties for the management zones (MZs) 771 

derived from EMI, NDVI, and a combination of EMI and NDVI. 772 

   EMI NDVI EMI-NDVI 

Y
ie

ld
 

 MZs 1 2 3 4 1 2 3 1 2 3 

 2011 49.5 44.7 46.5 31.7 55.9 41.1 27.5 50.7 33.1 25.7 

 2012 53.4 53.1 52.6 38 57.9 52.2 34.4 56.2 41.2 32.6 

 2013 106.3 105.6 106.5 98.1 111.1 104.9 94.49 108.8 99.1 93.4 

 2014 86.4 83.9 86.3 72.5 95.3 78.5 69.0 89.3 72.5 67.8 

 2015 55.1 53.7 51.0 28.5 62.9 50.1 22.2 59.1 31.1 20.5 

 2016 94.0 93.1 90.2 62.3 108.5 85.2 53.4 101 61.4 53.0 

 2017 78.7 76.0 73.7 47.9 89.4 69.4 41.0 83.3 48.5 39.5 

 2018 40.3 39.6 38.8 26.9 44.8 37.6 23.7 42.6 29.0 21.9 

 2019 71.0 69.1 67.2 48.1 80.2 62.5 43.1 74.6 47.7 42.2 

S
o

il
 c

h
a

ra
ct

er
is

ti
cs

 L
a

y
er

 1
 

(a
b

o
v

e 
E

O
S

) Sand % 68.2 72.4 78.1 86.2 68.6 79.5 87.2 69.8 88.4 85.2 

Silt % 23.3 20.0 16.1 9.6 23.0 15.2 8.9 22.2 8.1 10.4 

Clay % 8.5 6.9 5.7 4.1 8.0 5.2 3.8 7.7 3.4 4.3 

 

Depth 

(cm) 

54.0 66.9 73.1 100 62.7 71.0 87.4 63.8 77.0 100 

L
a

y
er

 2
 

(b
el

o
w

 E
O

S
) Sand % 58.3 58.0 60.6 NA 58.1 57.8 66.1 58.1 64.9 NA 

Silt % 23.0 23.2 21.9 NA 23.1 23.1 19.3 23.1 19.9 NA 

Clay % 18.6 18.7 17.5 NA 18.7 19.0 14.5 18.8 15.1 NA 

 773 

Figure 5Figure 7 shows the variation in rye yield (dt/ha) for the management zones derived from 774 

different data sources for the year 2019, which is considered representative for most previous years 775 

while also allowing a direct comparison with the NDVI data for the 2019 growing season. For the 776 

EMI-based management zones (Figure. 87a), the yield distributions for the zones 1-3 are relatively 777 

similar, with overlapping interquartile ranges and medians. This indicates that, in the investigated 778 

area, EMI-based management zones are more reflective of subsurface soil properties than yield 779 
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variability. However, zone 4 showed significantly lower yields, corresponding to sandy soils with 780 

poor moisture retention (see Table 3). The NDVI-based management zones (Figure. 87b) 781 

demonstrate stronger differentiation in yield distribution and a more consistent decline in yield 782 

between zones, reflecting the ability of NDVI to capture above-ground vegetation vigour and crop 783 

health. In particular, zone 2 reflects an intermediate yield zone between zone 1 and 3, showcasing 784 

the ability of NDVI to differentiate changes in crop performance. The management zones derived 785 

from combining EMI and NDVI (Figure. 87c) offer narrower interquartile ranges, particularly in 786 

zone 2, compared to NDVI-based management zones. This indicates that the integration of EMI 787 

and NDVI provides a more consistent and stable representation of yield variability, combining 788 

subsurface soil properties with above-ground dynamics. Although NDVI alone offers slightly more 789 

pronounced yield differentiation, the combined dataset balances both subsurface and vegetation-790 

related factors effectively, making it a robust approach for management zone delineation. Similar 791 

boxplots for additional years are provided in Appendix C. 792 

 793 
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 794 

Figure 57. Boxplots illustrating rye yield (dt/ha) for 2019 across management zones (MZs) 795 

derived from (a) EMI, (b) NDVI, and (c) a combination of EMI and NDVI datasets. 796 

 797 

The refined management zones can be associated with a typical soil profile based on the average 798 

soil characteristics (Figure. 98). The soil profiles show the textural properties of the first two soil 799 

layers and the depth of the interface between these layers (EOS) up to a depth of 100 cm. In some 800 

profiles, the EOS layer reaches 100 cm, and thus the textural properties of the second layer are not 801 
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available. In case of the EMI-based zones (Fig. 8a-b), zone 1 is characterized by generally higher 802 

ECaz values, and identifies areas with a substantial average clay content, especially in the second 803 

soil layer (18.6%). Moreover, the sandier top layer is rather shallow and starts at around 54 cm 804 

depth. Moving from zone 1 to zone 4, ECaz generally decreases. At the same time, the depth of the 805 

EOS layer becomes deeper while the clay and silt content of the soil decreases and the sand content 806 

increases. In zone 4, the average clay content up to 100 cm is 4.1%, while the sand content is 807 

86.2%. In the case of the NDVI-based management zones (Figure. 98c-d), the three zones appear 808 

to be more indicative of crop development, which results in typical soil profiles with differences 809 

that seem less pronounced compared to the case of EMI-based zonation. In this case, NDVI is 810 

generally higher in Cluster 1 and lowest in Cluster 3. The change in soil characteristics between 811 

zones follows a similar trend compared to that of EMI-based zones. The depth of the interface 812 

between soil layer 1 and 2 increases from 62.7 to 87.4 cm from zone 1 to 3, while the sand content 813 

of both layers also increases (from 68.6 to 87.2 % and 58.1 to 66.1 %, respectively). The 814 

management zones derived from the combined EMI-NDVI dataset (Figure. 98e-f) have typical 815 

soil profiles that are similar to those based on NDVI. Also, the sand, silt, and clay content of the 816 

first soil layer appear to be rather similar. However, the range of the depth of the interface between 817 

soil layer 1 and 2 is higher for the EMI-NDVI clustered map (63.8 to 100 cm) compared to that of 818 

NDVI-based profiles (62.7 to 87.4 cm). At the same time, the difference in texture between the 819 

second soil layer of Clusters 1 and 2 is stronger in the profiles based on a combination of EMI and 820 

NDVI data (see Table 3). These two factors show that the management zones from EMI and NDVI 821 

have a relatively high variation between soils of different management zones, which is an 822 

improvement compared to the case of the NDVI-based management zones. 823 
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 824 

Figure 68. Final management zone maps derived from (a) EMI, (c) NDVI, and (e) a combination 825 

of EMI and NDVI datasets. Each zone represents areas with similar subsurface and/or above-826 

ground characteristics. (b, d, f) Corresponding soil profiles for each management zone, detailing 827 

soil texture (sand-silt-clay %), dotted lines between zones indicate depth of textural change (Layer 828 

1: above EOS; Layer 2: below EOS) and error bar represents the standard error. The soil profiles 829 

illustrate significant variability between zones, providing critical insights for field management. 830 

 831 
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In a final step, statistical validation of the management zones was conducted using pairwise t-tests 832 

to evaluate the degree of significant differences in yield and soil properties across consecutive 833 

zones. The results are summarized in Table 4. A pairwise t-test for neighbouring zones derived 834 

from EMI indicated that the yield of 2012, 2013, and 2016 was not significantly different between 835 

zone 1 and zone 2 (p = 0.603, 0.060, 0.253) while the yield of 2012 was not significantly different 836 

between zone 2 and 3 (p = 0.209). All other pairwise comparisons indicated significant differences 837 

in mean yield. The textural composition of layer 1 was significantly different between all EMI-838 

derived zones. On the contrary, the depth of top layer was not significantly different between zone 839 

2 and 3 (p = 0.167). In addition, the composition of soil layer 2 was not significantly different 840 

between zone 1 and 2 (p of 0.498 for sand, 0.636 for silt, and 0.805 for clay).  841 

 842 

The pairwise t-test for between neighbouring zones based on NDVI indicated that differences in 843 

yield among all investigated years were statistically significant. On the contrary, both the depth of 844 

the top layer and the composition of soil layer 2 were not significantly different between zone 1 845 

and 2 (p of 0.147 for depth, 0.558 for sand, 0.986 for silt, and 0.627 for clay). These results show 846 

that EMI-based zones subdivided the area in one additional class and provided a more 847 

comprehensive representation of soil properties up to 100 cm compared to the NDVI-based zones 848 

for the investigated field. At the same time, the NDVI-based zones offered a better representation 849 

of yield from 2011 to 2019. Nonetheless, both the maps based on EMI and on NDVI offer valuable 850 

information. 851 

 852 

The pairwise t-test between neighbouring zones based on the combined EMI-NDVI dataset 853 

showed that the three zones were significantly different for both yield and soil characteristics. This 854 
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indicates that integrating EMI and NDVI datasets allows for the delineation of zones that are robust 855 

in representing both yield variability and soil heterogeneity. Moreover, a visual inspection of the 856 

management zones maps of (Figure 9)Fig.8 shows that both maps based solely on EMI or NDVI 857 

are affected by West-East oriented patterns due to measurement direction for EMI and tractor lines 858 

in NDVI. These features are not present in the management zone map that integrates EMI and 859 

NDVI, suggesting that it also provides a representation of the field that is less affected by external 860 

factors. These results underscore the added value of integrating complementary datasets to capture 861 

the full spectrum of variability within the field, supporting more informed and effective precision 862 

agriculture practices. 863 

 864 

 865 

 866 

 867 

 868 

 869 

 870 

 871 

 872 

 873 
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Table 4. Results of the pairwise t-tests for yield and soil properties between management zones 874 

derived from EMI, NDVI, and EMI-NDVI. Bold font indicates significant differences. 875 

   EMI NDVI EMI - NDVI 

  Cluster 1vs2 2vs3 3vs4 1vs2 2vs3 1vs2 2vs3 

Y
ie

ld
 

2011 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

2012 0.603 0.209 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

2013 0.060 0.008 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

2014 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

2015 0.007 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

2016 0.253 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

2017 < 0.001 0.002 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

2018 0.039 0.007 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

2019 0.002 0.003 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

S
o

il
 

L
a

y
er

 1
 

(a
b

o
v

e 
E

O
S

) Sand % < 0.001 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

Silt % < 0.001 0.006 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

Clay % < 0.001 0.014 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

 Depth 

(cm) 

0.004 0.167 NA 0.147 0.004 0.002 NA 

L
a

y
er

 2
 

(b
el

o
w

 E
O

S
) Sand % 0.498 0.010 NA 0.558 < 0.001 < 0.001 NA 

Silt % 0.636 0.009 NA 0.986 0.004 0.003 NA 

Clay % 0.805 0.056 NA 0.627 < 0.001 < 0.001 NA 

 876 

 877 

3.5 Limitations and perspectives for future work 878 

This study successfully demonstrated the integration of EMI and NDVI datasets for the delineation 879 

of management zones, but some limitations are still present and should be addressed in future 880 

research. The EMI data were collected during different campaigns under varying environmental 881 

conditions (e.g., soil temperature and moisture), and thus required z-score normalization to 882 
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minimize variability. While effective in this study, this approach may not fully account for certain 883 

external factors such as the impact of different management practices in different parts of the field. 884 

Similarly, the NDVI dataset was limited to the 2019 growing season as a) PlanetScope imagery 885 

became accessible for this region only in 2019 and b) the subdivision of the field in differently 886 

cultivated patches from 2020 prevented the use of later satellite products. Nonetheless, the choice 887 

of PlanetScope imagery (3 m resolution) enabled to capture detailed within-field variability in NDVI, 888 

which was particularly important in our study area due to the spatial heterogeneity introduced by soil 889 

variation and the patchCROP experiment. If coarser-resolution imagery such as Sentinel-2 (10 m) 890 

were used instead, smaller-scale patterns in crop development or soil-related variation would have 891 

been less detectable due to spatial averaging. This could reduce the effectiveness of the SOM 892 

clustering in identifying distinct management zones. However, for more homogeneous or large-scale 893 

fields, Sentinel-2 could be a practical and freely accessible alternative (Kaya et al., 2025). Another 894 

limitation of this study is that the 2019 dataset was considered to be representative of the 895 

investigated area. However, a single season of NDVI data may not fully capture interannual 896 

variability driven by climatic conditions or crop management practices (Scudiero et al., 2018).  897 

 898 

Furthermore, the field was subdivided into smaller experimental patches after 2019, complicating 899 

data consistency for subsequent years. While the 2019 dataset is representative of the investigated 900 

area, relying on a single season of NDVI data may not fully capture interannual variability driven 901 

by climatic conditions or crop management practices. Incorporating NDVI data from multiple 902 

years in future studies couldwould enable a more comprehensive analysis of temporal dynamics 903 

and their impact on management zone delineation to capture yield and soil variability.  904 

 905 
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A further Another limitation of the study wasis the distribution of soil sampling locations. Although 906 

the 160 sampling points provided valuable insights, leveraging EMI-based maps to guide targeted 907 

soil sampling could improve spatial representativeness. Additionally, while EMI in this study had 908 

a depth of investigation of up to 270 cm, soil sampling was limited to 100 cm depth, potentially 909 

missing soil heterogeneity that can affect crops.  910 

 911 

Another factor was the data normalization before clustering, which was essential for obtaining 912 

meaningful results in this study (see Appendix A).Regarding data process, min-max scaling was a 913 

suitable method in this study due to the relatively smooth and filtered input data, both for EMI and 914 

NDVI. However, this scaling approach is known to be sensitive to outliers and data range extremes 915 

(Pedregosa et al., 2011). For datasets with greater variability or different preprocessing methods, 916 

alternative scaling approaches such as standardization or robust scaling could be more appropriate 917 

(de Amorim et al., 2023). Another factor was the proper application of  data normalization prior to 918 

clustering, which was essential for obtaining meaningful results in this study (see Appendix A). 919 

Future studies should assess the impact of different scaling and normalization strategies on 920 

clustering outcomes, especially in settings with noisier or unfiltered sensor data. 921 

  922 

In this study, clustering relied on a combination of Multi-Cluster Average Standard Deviation 923 

(MCASD) to determine the optimal number of clusters and self-organized maps (SOM). Without 924 

adequate scaling, one data source can dominate the final product and render the other data sources 925 

less useful. This seems especially important in precision agriculture applications where datasets 926 

typically originate from diverse sources. While cluster variability was addressed using the Multi-927 

Cluster Average Standard Deviation (MCASD) across 100 SOM runs to a large extent, future 928 

Formatted: Not Highlight

Formatted: Font: (Default) Times New Roman, 12 pt,

Font color: Text 1



 

55 
 

studies may benefit from incorporating additional stability metrics such as the Adjusted Rand 929 

Index (ARI) or cluster overlap measures to better assess classification consistency. The availability 930 

of yield and soil data supported the refinement of SOM-based clusters, enabling the merging of 931 

groups that were not agronomically distinct. These datasets helped to ensure that the final 932 

management zones were both data-driven and interpretable. However, in scenarios where such 933 

ground-truth data are limited or unavailable, the initial clusters may still offer useful insights, albeit 934 

with greater uncertainty in their agronomic interpretation. Thus, the presented post-hoc validation 935 

step added confidence in the results, but is not strictly required. 936 

 937 

The SOM algorithm and the statistical methods used in this study (ANOVA, Tukey’s HSD, and t-938 

tests) do not explicitly account for spatial autocorrelation, which is inherently present in the 939 

interpolated geospatial datasets used here. This may influence statistical outcomes or lead to less 940 

spatially coherent clusters in some cases. For instance, kriging interpolation introduces a spatial 941 

structure that may challenge the assumption of independence underlying post-hoc statistical tests. 942 

However, the use of multi-year yield trends and high-resolution soil data helped reduce uncertainty 943 

in post-hoc validation. Future studies may benefit from incorporating spatially explicit methods, 944 

such as spatially constrained clustering, variogram-based diagnostics, or spatial ANOVA, to better 945 

account for spatial dependence during both classification and validation stages. In addition to these 946 

methodological considerations, future studies should focus on improving the temporal consistency 947 

of data collection and increasing the density and depth of soil sampling. The quantification of 948 

uncertainty in management zone delineation could be also investigated, for example through 949 

ensemble clustering or by incorporating uncertainty from spatial inputs such as EMI interpolation. 950 

Finally, long-term monitoring using datasets from multiple years could provide insights into the 951 

temporal stability of management zones and their relationship with yield.  952 
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 953 

The detailed management zone maps complemented with soil characterization obtained in this 954 

study should in a next step be integrated into agroecosystem models. This well enable to simulate 955 

and predict the impact of different management strategies under future environmental and climatic 956 

conditions, and thus help to optimize irrigation, fertilization, and other field management practices, 957 

further supporting decision-making for sustainable and resource-efficient agriculture.  958 

 959 

Long-term monitoring using datasets from multiple years could provide insights into the temporal 960 

stability of management zones and their relationship with yield. Additionally, the outputs of this 961 

study, such as detailed management zone maps and soil characterization data, can be integrated 962 

into agroecosystem models to simulate and predict the impact of different management strategies 963 

under future environmental and climatic conditions. These models could help optimize irrigation, 964 

fertilization, and other field management practices, further supporting decision-making for 965 

sustainable and resource-efficient agriculture.  966 

 967 

4 Conclusions 968 

This study integrated proximal soil sensing (EMI) and remote sensing (NDVI) data to delineate 969 

high-resolution management zones in a 70 ha agricultural field. Self-Organizing Maps (SOM), an 970 

advanced unsupervised machine learning technique, were combined with statistical validation 971 

methods to identify spatial areas with similar above- and below-ground properties. Historical yield 972 

maps and detailed soil information up to a depth of 100 cm were used to refine and validate the 973 

clustering results, ensuring both their accuracy and practical applicability.  974 

 975 
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To address the variability introduced by environmental conditions during data collection, EMI 976 

measurements from multiple campaigns were standardized using z-score normalization, ensuring 977 

consistent input for further analysis of the investigated field. Similarly, NDVI data from the 2019 978 

growing season were selected as they represented an uninterrupted crop cycle prior to the 979 

subdivision of the investigated field in multiple patches. Before clustering, data was appropriately 980 

normalized. The Multi-Cluster Average Standard Deviation (MCASD) method was applied to 981 

determine the optimal number of clusters for different datasets. The optimal number of clusters 982 

was determined to be five using the EM data, four for the NDVI date, and four for the combination 983 

of EMI and NDVI datasets. However, statistical validation through Tukey’s post-hoc analysis 984 

using independent yield maps and soil samples reduced the clusters number to 4, 3, and 3, 985 

respectively. This ensured that the clusters were not only computationally distinct with respect to 986 

the input data, but also significantly different in terms of soil characteristics and yield data, thereby 987 

increasing their practical relevance in precision agriculture. Finally, a two-tailed t-test was 988 

performed to compare the effectiveness of the management zones maps obtained with EMI, NDVI, 989 

and EMI-NDVI datasets. 990 

 991 

Results showed that EMI-based management zones provided a better representation of subsurface 992 

properties, particularly soil texture and the depth at which textural changes occur, which underlines 993 

the utility of EMI for guiding soil management practices. In comparison, NDVI-based 994 

management zones aligned more closely with topsoil characteristics and yield maps, effectively 995 

capturing above-ground variability. In general, the integration of EMI and NDVI datasets provided 996 

a more comprehensive representation of the spatial variability of both soil characteristics and yield, 997 

resulting in management zones that linked both subsurface soil conditions and above-ground 998 
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vegetation performance. These combined zones effectively explained productivity patterns by 999 

bridging the gap between soil properties and crop health. 1000 

 1001 

The product of this study is a high-resolution management zonation map which would provide a 1002 

significant added value in precision and sustainable agriculture. Moreover, it can help in setting-1003 

up of agroecosystem models for the simulation of crop performance and yield and in guiding future 1004 

soil sampling campaigns. Finally, the workflow proposed in this study can provide a robust 1005 

blueprint for unsupervised clustering of proximal soils sensing and remote sensing data in 1006 

agriculture, and future studies should explore the scalability of this methodology in different 1007 

climatic conditions or other crop systems, as well as investigate additional data sources to further 1008 

enhance its representation of within-field heterogeneity in soil and crops.  1009 
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Appendix A: Influence of data normalization  1010 

Figure A1Figure A1 shows a visual comparison of management zone delineation using different 1011 

normalization approaches. These are: a) EMI-based clustering of ECaz maps, b) combined EMI-1012 

NDVI clustering with dataset-wise normalization (i.e., normalized by using the minimum and 1013 

maximum values for all the available data), and c) combined EMI-NDVI clustering with dataset-1014 

wise normalization of EMI data and separate column-wise normalization of NDVI data. As 1015 

apparent in Figure A1Figure A1b, the EMI measurements dominate the clustering results when an 1016 

inappropriate normalization is used. On the contrary, the normalization strategy used here (Figure 1017 

A1Figure A1c) provides a clustering result where both EMI and NDVI meaningfully contribute.  1018 

 1019 

Figure A1. Comparison of management zone delineation using different normalization approaches 1020 

(a) EMI-based clustering without normalization, (b) Combined EMI and NDVI clustering with 1021 

dataset-wise normalization, (c) Combined EMI and NDVI clustering with individual 1022 

normalization, where EMI data were normalized as a dataset, while NDVI data were normalized 1023 

column-wise. 1024 

 1025 

 1026 



 

60 
 

Appendix B: Additional results for post-hoc analysis 1027 

For the EMI dataset (VCP + HCP, 9 coils), the MCASD analysis suggested five clusters. The 1028 

results of the post-hoc analysis are shown in Table B1Table B1. Statistically significant differences 1029 

between two clusters are indicated by an O whereas an X indicates no significant differences. When 1030 

two clusters have no statistically significant difference for any of the evaluated properties, they are 1031 

merged. Therefore, clusters 4 and 5 were merged into a new cluster 4. For the NDVI dataset, the 1032 

MCASD analysis suggested 4 clusters and the results of the post-hoc analysis (Table B2) merged 1033 

clusters 3 and 4 into a new cluster 3. For the combined dataset (EMI + NDVI), the MCASD 1034 

analysis suggested 4 clusters and the results of the post-hoc analysis (Table B3) merged clusters 1 1035 

and 2 into a new cluster 1. 1036 

 1037 

Table B1. Post-hoc analysis of soil characteristics and yield for the EMI-based clusters leading to 1038 

cluster merging. Statistically significant (O) or non-significant differences (X) are provided 1039 

between clusters for soil texture, EOS layer, and yield. 1040 

Clusters 1vs2 2vs3 3vs4 4vs5 

End of sandy layer (Depth cm) O X O X 

Layer 1 (above EOS) Sand X O O X 

Silt X O O X 

Clay X O O X 

Layer 2 (below EOS) Sand X X O X 

Silt X X O X 

Clay X X O X 

Yield  X X O X 

 1041 
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Table B2. Post-hoc analysis of soil characteristics and yield for the NDVI-based clusters leading 1042 

to cluster merging. Statistically significant (O) or non-significant differences (X) are provided 1043 

between clusters for soil texture, EOS layer, and yield. 1044 

Clusters 1vs2 2vs3 3vs4 

End of sandy layer (depth cm) X O X 

Layer 1 (above EOS) Sand O O X 

Silt O O X 

Clay O O X 

Layer 2 (below EOS) Sand X O X 

Silt X O X 

Clay X O X 

Yield  X O X 

 1045 

Table B3. Post-hoc analysis of soil characteristics and yield for the clusters based on EMI and 1046 

NDVI leading to cluster merging. Statistically significant (O) or non-significant differences (X) 1047 

are provided between clusters for soil texture, EOS layer, and yield. 1048 

Clusters 1vs2 2vs3 3vs4 

End of sandy layer (depth cm) X O O 

Layer 1 (above EOS) Sand X O O 

Silt X O O 

Clay X O O 

Layer 2 (below EOS) Sand X O X 

Silt X O X 

Clay X O X 

Yield  X O X 

 1049 
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Appendix C: Differences in yield between derived management zones for two years 1050 

Figure C1Figure C1 presents boxplots illustrating yield variability (dt/ha) for Rye 2017 (Fig. C1a) 1051 

and Rapeseed 2018 (Fig. C1b) across management zones derived from three clustering approaches: 1052 

EMI-based (left), NDVI-based (middle), and combined EMI + NDVI (right). These two years were 1053 

selected as representative examples, as the overall yield variation across the full nine-year dataset 1054 

followed the same trend. In the EMI-based management zones, yield distribution is relatively 1055 

similar across the first three zones, with a noticeable drop in the fourth zone. In contrast, NDVI-1056 

based and EMI + NDVI zones show a progressive decline in yield across clusters, indicating a 1057 

clearer trend of decreasing productivity.  1058 

 1059 

 1060 

Figure C1. Yield distribution across final management zones based on EMI, NDVI, and 1061 

combined EMI-NDVI datasets. 1062 

 1063 
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