Preprints
https://doi.org/10.5194/egusphere-2025-3270
https://doi.org/10.5194/egusphere-2025-3270
16 Jul 2025
 | 16 Jul 2025

On a simplified solution of climate-carbon dynamics in idealized flat10MIP simulations

Victor Brovkin, Benjamin M. Sanderson, Noel G. Brizuela, Tomohiro Hajima, Tatiana Ilyina, Chris D. Jones, Charles Koven, David Lawrence, Peter Lawrence, Hongmei Li, Spencer Liddcoat, Anastasia Romanou, Roland Séférian, Lori T. Sentman, Abigail L. S. Swann, Jerry Tjiputra, Tilo Ziehn, and Alexander J. Winkler

Abstract. Idealized experiments with coupled climate-carbon Earth system models (ESMs) provide a basis for understanding the response of the carbon cycle to external forcing and for quantifying climate-carbon feedbacks. Here, we analyze globally-averaged results from idealized esm-flat10 experiments and show that most models exhibit a quasi-linear relationship between cumulative carbon uptake on land and in the ocean during a period of constant fossil fuel emissions of 10 PgC/yr. We hypothesize that this relationship does not depend on emission pathways. Further, as a simplification, we quantify the relationship between cumulative ocean carbon uptake and changes in ocean heat content using a linear approximation. In this way, changes in oceanic heat content and atmospheric CO2 concentration become interdependent variables, reducing the coupled temperature-CO2 system to just one differential equation. The equation can be solved analytically or numerically for the atmospheric CO2 concentration as a function of fossil fuel emissions. This approach leads to a simplified description of global carbon and climate dynamics, which could be used for applications beyond existing analytical frameworks.

Competing interests: At least one of the (co-)authors is a member of the editorial board of Earth System Dynamics.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this paper. While Copernicus Publications makes every effort to include appropriate place names, the final responsibility lies with the authors. Views expressed in the text are those of the authors and do not necessarily reflect the views of the publisher.
Share
Victor Brovkin, Benjamin M. Sanderson, Noel G. Brizuela, Tomohiro Hajima, Tatiana Ilyina, Chris D. Jones, Charles Koven, David Lawrence, Peter Lawrence, Hongmei Li, Spencer Liddcoat, Anastasia Romanou, Roland Séférian, Lori T. Sentman, Abigail L. S. Swann, Jerry Tjiputra, Tilo Ziehn, and Alexander J. Winkler

Status: final response (author comments only)

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2025-3270', Vivek Arora, 15 Aug 2025
  • RC2: 'Comment on egusphere-2025-3270', Anonymous Referee #2, 27 Aug 2025
Victor Brovkin, Benjamin M. Sanderson, Noel G. Brizuela, Tomohiro Hajima, Tatiana Ilyina, Chris D. Jones, Charles Koven, David Lawrence, Peter Lawrence, Hongmei Li, Spencer Liddcoat, Anastasia Romanou, Roland Séférian, Lori T. Sentman, Abigail L. S. Swann, Jerry Tjiputra, Tilo Ziehn, and Alexander J. Winkler
Victor Brovkin, Benjamin M. Sanderson, Noel G. Brizuela, Tomohiro Hajima, Tatiana Ilyina, Chris D. Jones, Charles Koven, David Lawrence, Peter Lawrence, Hongmei Li, Spencer Liddcoat, Anastasia Romanou, Roland Séférian, Lori T. Sentman, Abigail L. S. Swann, Jerry Tjiputra, Tilo Ziehn, and Alexander J. Winkler

Viewed

Total article views: 730 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
678 39 13 730 17 20
  • HTML: 678
  • PDF: 39
  • XML: 13
  • Total: 730
  • BibTeX: 17
  • EndNote: 20
Views and downloads (calculated since 16 Jul 2025)
Cumulative views and downloads (calculated since 16 Jul 2025)

Viewed (geographical distribution)

Total article views: 728 (including HTML, PDF, and XML) Thereof 728 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 15 Sep 2025
Download
Short summary
Idealized experiments with Earth system models provide a basis for understanding the response of the carbon cycle to emissions. We show that most models exhibit a quasi-linear relationship between cumulative carbon uptake on land and in the ocean and hypothesize that this relationship does not depend on emission pathways. We reduce the coupled system to only one differential equation, which represents a powerful simplification of the Earth system dynamics as a function of fossil fuel emissions.
Share