Preprints
https://doi.org/10.5194/egusphere-2025-265
https://doi.org/10.5194/egusphere-2025-265
12 Mar 2025
 | 12 Mar 2025
Status: this preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).

The MATS satellite: Limb image data processing and calibration

Linda Megner, Jörg Gumbel, Ole Martin Christensen, Björn Linder, Donal Patrick Murtagh, Nickolay Ivchenko, Lukas Krasauskas, Jonas Hedin, Joachim Dillner, Gabriel Giono, Georgi Olentsenko, Louis Kern, and Jacek Stegman

Abstract. MATS (Mesospheric Airglow/Aerosol Tomography and Spectroscopy) is a Swedish satellite mission designed to investigate atmospheric gravity waves. In order to observe wave patterns MATS observes structures in the O2 atmospheric band airglow (light emitted by oxygen molecules in the Mesosphere and Lower Thermosphere), as well as structures in noctilucent clouds which form around the Mesopause. The main instrument is a telescope that continuously captures high-resolution images of the atmospheric limb. Using tomographic analysis of the acquired images, the MATS mission can reconstruct waves in three dimensions and provide a comprehensive global map of the properties of gravity waves. The data provided by the MATS satellite will thus be 3-dimensional fields of airglow and NLC properties in 200-km-wide strips along the orbit at 70 to 110 km altitude. Adding spectroscopic analysis, by separating light into six distinct wavelength channels, it also becomes possible to derive temperature and microphysical NLC properties. Based on those data fields, further analysis will yield gravity wave parameters, such as wavelengths, amplitudes, phase, and direction of the waves, on a global scale.

The MATS satellite, funded by the Swedish National Space Agency, was launched in November 2022 into a 580 km sun-synchronous orbit with a 17.25 local time of the ascending node (LTAN). This paper accompanies the public release of the level 1b (v. 1.0) data set from the MATS limb imager. The purpose of the paper is to provide background information in order to assist users to correctly and efficiently handle the data. As such, it details the image processing and how instrumental artefacts are handled. It also describes the calibration efforts that have been carried out on the basis of laboratory and in-flight observations, and it discusses uncertainties that affect the dataset.

Competing interests: JG is a member of the editorial board of Atmospheric Measurement Techniques.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share
Linda Megner, Jörg Gumbel, Ole Martin Christensen, Björn Linder, Donal Patrick Murtagh, Nickolay Ivchenko, Lukas Krasauskas, Jonas Hedin, Joachim Dillner, Gabriel Giono, Georgi Olentsenko, Louis Kern, and Jacek Stegman

Status: open (until 16 Apr 2025)

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
Linda Megner, Jörg Gumbel, Ole Martin Christensen, Björn Linder, Donal Patrick Murtagh, Nickolay Ivchenko, Lukas Krasauskas, Jonas Hedin, Joachim Dillner, Gabriel Giono, Georgi Olentsenko, Louis Kern, and Jacek Stegman
Linda Megner, Jörg Gumbel, Ole Martin Christensen, Björn Linder, Donal Patrick Murtagh, Nickolay Ivchenko, Lukas Krasauskas, Jonas Hedin, Joachim Dillner, Gabriel Giono, Georgi Olentsenko, Louis Kern, and Jacek Stegman

Viewed

Total article views: 43 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
36 5 2 43 1 1
  • HTML: 36
  • PDF: 5
  • XML: 2
  • Total: 43
  • BibTeX: 1
  • EndNote: 1
Views and downloads (calculated since 12 Mar 2025)
Cumulative views and downloads (calculated since 12 Mar 2025)

Viewed (geographical distribution)

Total article views: 42 (including HTML, PDF, and XML) Thereof 42 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 18 Mar 2025
Download
Short summary
The MATS satellite mission studies atmospheric gravity waves, crucial for momentum transport between atmospheric layers. Launched in November 2022, MATS uses a limb-viewing telescope to capture high-resolution images of Noctilucent clouds and airglow, visualizing wave patterns in the high atmosphere. This paper accompanies the public release of the level 1b data set, i.e. calibrated limb images. Later products will provide global maps of gravity wave properties, airglow and Noctilucent clouds.
Share