Preprints
https://doi.org/10.5194/egusphere-2025-2602
https://doi.org/10.5194/egusphere-2025-2602
24 Jun 2025
 | 24 Jun 2025

Technical Note: Identifying Biomass Burning Emissions During ASIA-AQ Using Greenhouse Gas Enhancement Ratios

Jason A. Miech, Joshua P. DiGangi, Glenn S. Diskin, Yonghoon Choi, Richard H. Moore, Luke D. Ziemba, Francesca Gallo, Carolyn E. Jordan, Michael A. Shook, Elizabeth B. Wiggins, Edward L. Winstead, Sayantee Roy, Young Ro Lee, Katherine Ball, John D. Crounse, Paul Wennberg, Felix Piel, Stefan Swift, Wojciech Wojnowski, and Armin Wisthaler

Abstract. Biomass burning (BB) is a primary source of atmospheric chemistry reactants, aerosols, and greenhouse gases. Smoke plumes have air quality impacts local to the fire itself and regionally via long distance transport. Open burning of agriculture fields in Southeast Asia leads to frequent seasonal occurrences of regional BB-induced smoke haze and long-range transport of BB particles via the northeast monsoon. The Airborne and Satellite Investigation of Asian Air Quality (ASIA-AQ) campaign visited several areas including the Philippines, South Korea, Thailand, and Taiwan during a time of agricultural burning. This campaign consisted of airborne measurements on the NASA DC-8 aircraft aimed to validate observations from South Korea's Geostationary Environment Monitoring Spectrometer (GEMS) and to address local air quality challenges. We developed a method that used a combination of BB markers to identify ASIA-AQ DC-8 data influenced by BB and flag them. Specifically, we used rolling slope enhancement ratios of CO/CO2 and CH4/CO along with mixing ratios of CH3CN, HCN, and CO, and particle scattering coefficient measurements. The flag was triggered when a combination of these variables exceeded a flight specific threshold. We found varying levels of BB-influence in the areas studied, with data flagged for BB being <1 % for the Philippines and Korea, and <2 % for Taiwan, but 19 % for Thailand. Our method for flagging ASIA-AQ BB-affected data can be used to focus additional analyses of the ASIA-AQ campaign such as pairing with back-trajectories, satellite hotspot products, and microphysical aerosol characteristics.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this paper. While Copernicus Publications makes every effort to include appropriate place names, the final responsibility lies with the authors. Views expressed in the text are those of the authors and do not necessarily reflect the views of the publisher.
Share
Jason A. Miech, Joshua P. DiGangi, Glenn S. Diskin, Yonghoon Choi, Richard H. Moore, Luke D. Ziemba, Francesca Gallo, Carolyn E. Jordan, Michael A. Shook, Elizabeth B. Wiggins, Edward L. Winstead, Sayantee Roy, Young Ro Lee, Katherine Ball, John D. Crounse, Paul Wennberg, Felix Piel, Stefan Swift, Wojciech Wojnowski, and Armin Wisthaler

Status: final response (author comments only)

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2025-2602', Anonymous Referee #1, 09 Sep 2025
  • RC2: 'Comment on egusphere-2025-2602', Anonymous Referee #2, 09 Sep 2025
Jason A. Miech, Joshua P. DiGangi, Glenn S. Diskin, Yonghoon Choi, Richard H. Moore, Luke D. Ziemba, Francesca Gallo, Carolyn E. Jordan, Michael A. Shook, Elizabeth B. Wiggins, Edward L. Winstead, Sayantee Roy, Young Ro Lee, Katherine Ball, John D. Crounse, Paul Wennberg, Felix Piel, Stefan Swift, Wojciech Wojnowski, and Armin Wisthaler
Jason A. Miech, Joshua P. DiGangi, Glenn S. Diskin, Yonghoon Choi, Richard H. Moore, Luke D. Ziemba, Francesca Gallo, Carolyn E. Jordan, Michael A. Shook, Elizabeth B. Wiggins, Edward L. Winstead, Sayantee Roy, Young Ro Lee, Katherine Ball, John D. Crounse, Paul Wennberg, Felix Piel, Stefan Swift, Wojciech Wojnowski, and Armin Wisthaler

Viewed

Total article views: 2,150 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
2,093 44 13 2,150 17 30 45
  • HTML: 2,093
  • PDF: 44
  • XML: 13
  • Total: 2,150
  • Supplement: 17
  • BibTeX: 30
  • EndNote: 45
Views and downloads (calculated since 24 Jun 2025)
Cumulative views and downloads (calculated since 24 Jun 2025)

Viewed (geographical distribution)

Total article views: 2,062 (including HTML, PDF, and XML) Thereof 2,062 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 14 Sep 2025
Download
Short summary
Biomass burning is a significant source of greenhouse gases and airborne pollutants in Asia. Airborne measurements of greenhouse gas enhancement ratios, trace gases, and particle scattering were used to identify air masses impacted by biomass burning over several Asian countries during March and April of 2024. Further analysis using atmospheric transport models and satellite hotspot products was performed to understand the transport history of biomass burning impacted airmasses over Thailand.
Share