Preprints
https://doi.org/10.5194/egusphere-2025-1913
https://doi.org/10.5194/egusphere-2025-1913
18 Jun 2025
 | 18 Jun 2025
Status: this preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).

Understanding extreme-wave hazards on high-energy coasts requires a standardised approach to field data collection: Analysis and recommendations

Rónadh Cox, Mary C. Bourke, Max Engel, Andrew B. Kennedy, Annie Lau, Serge Suanez, Sarah J. Boulton, Maria Alexandra Oliveira, Raphaël Paris, Dimitra Salmanidou, Michaela Spiske, Wayne Stephenson, Storm Roberts, Adam D. Switzer, Nadia Mhammdi, Niamh D. Cullen, and Masashi Watanabe

Abstract. Coastal boulder deposits provide vital information on extreme wave events. They are crucial for understanding storm and tsunami impacts on rocky coasts, and for understanding long-term hazard histories. But study of these deposits is still a young field, and growth in investigation has been rapid, without much contact between research groups. Therefore, inconsistencies in field data collection among different studies hinder cross-site comparisons and limit the applicability of findings across disciplines. This paper analyses field methodologies for coastal boulder deposit measurement based using an integrated database (ISROC-DB), demonstrating inconsistencies in current approaches. We use the analysis as a basis for outlining protocols to improve data comparability and utility for geoscientists, engineers, and coastal planners. Using a standardised and comprehensive set of measurements, with due attention to precision and reproducibility, will help ensure complete data retrieval in the field. Applying these approaches will further ensure that data collected at different times and/or locations, and by different groups, is useful not just for the study being undertaken, but for other researchers to analyse and reuse. This is fosters development of the large, internally consistent datasets that are the basis for fruitful meta-analysis; and is particularly timely given increasing focus on longitudinal monitoring of coastal change. By recommending a common set of measurements, adaptable to available equipment and personnel, this work aims to support accurate and thorough coastal boulder deposit documentation, enabling broader applicability and future-proofed datasets. Field protocols described and recommended here also apply as best practices for coastal geomorphology field work in general.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share
Rónadh Cox, Mary C. Bourke, Max Engel, Andrew B. Kennedy, Annie Lau, Serge Suanez, Sarah J. Boulton, Maria Alexandra Oliveira, Raphaël Paris, Dimitra Salmanidou, Michaela Spiske, Wayne Stephenson, Storm Roberts, Adam D. Switzer, Nadia Mhammdi, Niamh D. Cullen, and Masashi Watanabe

Status: open (until 13 Aug 2025)

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2025-1913', Giovanni Scardino, 11 Jul 2025 reply
Rónadh Cox, Mary C. Bourke, Max Engel, Andrew B. Kennedy, Annie Lau, Serge Suanez, Sarah J. Boulton, Maria Alexandra Oliveira, Raphaël Paris, Dimitra Salmanidou, Michaela Spiske, Wayne Stephenson, Storm Roberts, Adam D. Switzer, Nadia Mhammdi, Niamh D. Cullen, and Masashi Watanabe
Rónadh Cox, Mary C. Bourke, Max Engel, Andrew B. Kennedy, Annie Lau, Serge Suanez, Sarah J. Boulton, Maria Alexandra Oliveira, Raphaël Paris, Dimitra Salmanidou, Michaela Spiske, Wayne Stephenson, Storm Roberts, Adam D. Switzer, Nadia Mhammdi, Niamh D. Cullen, and Masashi Watanabe

Viewed

Total article views: 224 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
179 34 11 224 15 6 11
  • HTML: 179
  • PDF: 34
  • XML: 11
  • Total: 224
  • Supplement: 15
  • BibTeX: 6
  • EndNote: 11
Views and downloads (calculated since 18 Jun 2025)
Cumulative views and downloads (calculated since 18 Jun 2025)

Viewed (geographical distribution)

Total article views: 220 (including HTML, PDF, and XML) Thereof 220 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 15 Jul 2025
Download
Short summary
Coastal boulder deposits record extreme wave events, both storm and tsunami. Fully understanding hazards as recorded in these deposits requires high-quality data for comparison among sites and over time. We analysed methodologies and constructed a comprehensive set of field measurements to improve data consistency and reproducibility. We aim to help geomorphologists produce of data that can be widely shared and used to build extensive analytic understanding of coastal boulder deposits.
Share