Preprints
https://doi.org/10.5194/egusphere-2025-130
https://doi.org/10.5194/egusphere-2025-130
04 Mar 2025
 | 04 Mar 2025
Status: this preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).

Climate change impacts on floods in West Africa: New insight from two large-scale hydrological models

Serigne Bassirou Diop, Job Ekolu, Yves Tramblay, Bastien Dieppois, Stefania Grimaldi, Ansoumana Bodian, Juliette Blanchet, Ponnambalam Rameshwaran, Peter Salamon, and Benjamin Sultan

Abstract. West Africa is projected to face unprecedented shifts in temperature and extreme precipitation patterns as a result of climate change. The devastating impacts of river flooding are already being felt in most West African countries, emphasizing the urgent need for comprehensive insights into the frequency and magnitude of floods to guide the design of hydraulic infrastructure for effective flood risk mitigation and water resource management. Despite its significant socio-economic and environmental impacts, flood hazards remain poorly documented in West Africa due to the data-related challenges. This study aims to fill this knowledge gap by providing a large-scale analysis of flood frequency and magnitudes across West Africa, focusing on how climate change may influence future flood trends. To achieve this, we have used two large-scale hydrological models driven by five bias-corrected CMIP6 climate models under two Shared Socioeconomic Pathways (SSPs). The Generalized Extreme Value (GEV) distribution was utilized to analyze trends and detect change points by comparing multiple non-stationary GEV models across historical and future periods for a set of 58 catchments. Both hydrological models consistently projected increases in flood frequency and magnitude across West Africa, despite their differences in hydrological processes representation and calibration schemes. Flood magnitude is projected to increase for 94 % of the stations, with some locations experiencing increases exceeding 45 % in magnitude. In addition, the majority of trends are starting from the historical period, under both SSP2-4.5 and SSP5-8.5. The findings from this study provide regional-scale insights into the evolving flood risks across West Africa and highlight the urgent need for climate-resilient strategies to safeguard populations and infrastructure against the increasing threat of flood hazards.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share
Serigne Bassirou Diop, Job Ekolu, Yves Tramblay, Bastien Dieppois, Stefania Grimaldi, Ansoumana Bodian, Juliette Blanchet, Ponnambalam Rameshwaran, Peter Salamon, and Benjamin Sultan

Status: open (until 16 Apr 2025)

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
Serigne Bassirou Diop, Job Ekolu, Yves Tramblay, Bastien Dieppois, Stefania Grimaldi, Ansoumana Bodian, Juliette Blanchet, Ponnambalam Rameshwaran, Peter Salamon, and Benjamin Sultan
Serigne Bassirou Diop, Job Ekolu, Yves Tramblay, Bastien Dieppois, Stefania Grimaldi, Ansoumana Bodian, Juliette Blanchet, Ponnambalam Rameshwaran, Peter Salamon, and Benjamin Sultan

Viewed

Total article views: 136 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
112 20 4 136 24 2 3
  • HTML: 112
  • PDF: 20
  • XML: 4
  • Total: 136
  • Supplement: 24
  • BibTeX: 2
  • EndNote: 3
Views and downloads (calculated since 04 Mar 2025)
Cumulative views and downloads (calculated since 04 Mar 2025)

Viewed (geographical distribution)

Total article views: 130 (including HTML, PDF, and XML) Thereof 130 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 22 Mar 2025
Download
Short summary
West Africa is very vulnerable to rivers floods. Current flood hazards are poorly understood due to limited data. This study is filling this knowledge gap using recent databases and two regional hydrological models to analyze changes in flood risk under two climate scenarios. Results show that most areas will see more frequent and severe floods, with some increasing by over 45 %. These findings stress the urgent need for climate-resilient strategies to protect communities and infrastructure.
Share