
 

Reviewer #1 

This manuscript presents an interesting analysis of possible future flood hazard in West Africa under 

climate change. Overall, the manuscript is well written and the material is well presented. It contains a 

few typos that I have not listed here, but I have listed a few spots below where I ask for clarification. 

The manuscript builds on a range of methods that are mostly well established in the scientific literature. 

Thus, its methodological novelty is limited. However, I don’t see this as reason for concern here. The 

authors have developed a meaningful workflow, integrating a rather wide range of methods. In 

particular, I like the systematic approach of section 2.6.3 where they determine the appropriate temporal 

function for the non-stationary GEV – in most papers that use the non-stationary GEV, the choice of 

the temporal function is based on ad-hoc decisions. 

The manuscript provides important data for a region which is highly vulnerable to flooding and is 

characterized by data-scarcity. Hence, I would like to see this study being published. 

We thank the reviewer for his overall positive evaluation of our manuscript and his constructive 

feedback. We are grateful that he found our study compelling and acknowledged the clarity and 

organization of the manuscript.  Our responses to the reviewer's comments are provided below. 

Major comments: 

Line 243: The study uses 2 SSPs, namely SSP2-4.5 and SSP5-8.5. Is this really a good choice? 

Please justify why you have selected (only) 2 SSPs, and particularly these 2 SSPs. Specifically, 

SSP5-8.5 is often criticised for being overly pessimistic. 

We thank the reviewer for this pertinent comment. We have added in the revised manuscript, lines 371-

379: “... Rather than including the full range of SSPs, we focus on SSP2-4.5 and SSP5-8.5 narratives, 

which represent moderate and high emission trajectories, respectively. SSP2-4.5 is considered as a 

“middle-of-the-road” scenario, that is consistent with current national policies and moderate progress 

towards emission reduction commitments (Riahi et al., 2017). In contrast, SSP5-8.5 represents a high 

emissions pathway, allowing us to explore the upper limits of potential impacts under continued fossil 

fuel dependence and minimal climate policy intervention. While SSP5-8.5 has been criticized as an 

"overly pessimistic" narrative (Pielke & Ritchie, 2021), it remains widely used in climate impact 

assessments to evaluate the vulnerability of socio-environmental systems under a “no-climate policy” 

world. …” 

It is also important to note that the modelling work carried out here is very substantial, with 2 

hydrological models applied for a large number of basins, so we have adapted the experimental plan to 

the available computing capacity and chosen the two most common scenarios in the literature to 

facilitate comparisons. 

Line 299: If I understand correctly, you use the flood time series of the region to first estimate the 

distribution of the GEV shape parameter via L-moments, assuming a normal distribution. Then 

you use this result as prior for fitting the GEV to the same flood time series.  In that way, you 

seem to the use the same data for estimating the prior and the posterior distribution. But does 

this approach not violate the principle that the prior should represent information independent 

of the observed data? Please clarify this point. 

https://www.zotero.org/google-docs/?SIKZiN
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We thank the reviewer for raising this important point. It is correct that we estimate the regional 

distribution of the GEV shape parameter using L-moments applied to the observed AMF data, under 

the assumption of a normal distribution. However, we would like to clarify that this regional distribution 

is not used as a prior distribution to re-fit the GEV model to the same observational data. Instead, the 

derived distribution serves as a prior for fitting the GEV model to a separate and independent dataset, 

i.e., the historical and projected annual peak flood series generated by hydrological models driven by 

CMIP6 GCMs. This way, the prior encapsulates regional information derived from observations, but it 

is applied in a different modeling context. We have clarified this point in the revised manuscript (page 

15, lines 456-459): “... The newly developed regional prior, modelled as a normal distribution, has a 

mean of -0.24 and a standard deviation of 0.16 (see Supplementary Figure S2), and is used to fit the 

GEV distribution to the historical and projected annual peak flood time series generated by hydrological 

models driven by the CMIP6 GCMs.” 

Line 422: I feel that the paragraph on the field significance and FDR requires a bit more 

explanation to be easily followed. For example, it should be made very clear that here you look at 

the significance of trends when you look at all stations in your region. Also, explain what the local 

null hypotheses and the global null hypotheses are. 

We thank the reviewer for this valuable comment. We have updated the manuscript, lines 584-600, to 

provide a clearer explanation of the FDR procedure: “The null hypothesis of the deviance test assumes 

that the stationary GEV model provides a better fit to the data than the non-stationary model, indicating 

that there is no significant trend in the AMF. However, the presence of spatial cross-correlations across 

stations may bias the results of simultaneous multiple local tests by increasing the likelihood of 

detecting false positives (Farris et al., 2021). To assess the field significance of local trends detected in 

AMF series in the study area, we implement the False Discovery Rate (FDR) procedure (Hochberg & 

Benjamini, 1995). The FDR’s null hypothesis assumes that none of the stations across the region 

exhibits a significant trend in AMF (i.e., all local null hypotheses are actually true). The FDR aims to 

reduce Type 1 errors (Mudge et al., 2012), by adjusting the vector of p-values from the set of at-site 

tests (Wilks, 2006). Due to its advantages over other methods, such as dealing with spatial 

autocorrelation, the FDR approach has been used in many studies of hydroclimatic variables (Khaliq et 

al., 2009; Chun et al., 2021). For consistency with local deviance and MK tests, the FDR procedure is 

computed at 0.05 global significance level (αglobal). The FDR test rejects the local null hypothesis when 

the corresponding FDR-adjusted p-value is lower than αglobal. Field significance is declared if the local 

null hypothesis is rejected at least once within the study area (Wilks, 2016).” 

Line 462: I would like to see a more detailed discussion about the causes of the difference in 

performance of the 2 models. The manuscript nicely lists 3 possible reasons, but it is unclear what 

the contribution of these reasons is. I understand that it may not be possible (within the scope of 

this manuscript) to estimate these contributions, but it would be helpful for the reader to better 

understand how important spatial resolution vs hydrological processes vs calibration is. 

We thank the reviewer for this insightful comment. We have expanded the discussion in the revised 

manuscript (page 21-22, lines 632-671) to better clarify the potential influence of each factor and the 

relation between these factors. Now it reads: “... Although both models are semi-physically based and 

spatially distributed, the LISFLOOD model outperforms the HMF-WA model in simulating extreme 

flows in West Africa (Figure 2). These findings are consistent with those of Ekolu et al. (2025), who 

reported that the LISFLOOD model effectively simulates the hydrological cycle and captures the 

specific characteristics of hydrological droughts and floods in West Africa. This difference in 
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performance can be attributed to several factors: (i) the LISFLOOD model was run at a finer resolution 

(0.05° x 0.05°) compared to the coarser resolution of 0.1° x 0.1° used by the HMF-WA model 

(Rameshwaran et al., 2021); (ii) the HMF-WA model includes fewer meteorological forcings and only 

a limited number of hydrological processes (specifically wetlands, anthropogenic water use, and 

endorheic rivers), whereas the LISFLOOD model can incorporate over 70 different processes depending 

on the target application (i.e., rainfall-runoff transformation, flood and drought forecasting) and the 

required level of configuration (more detailed information on the configuration of LISFLOOD can be 

found at https://ec-jrc.github.io/lisflood-model; and (iii) the HMF-WA model has not been calibrated 

to individual west African catchment conditions with observed flow data, and its performance depends 

on the accuracy of spatial datasets of physical and soil properties (e.g., wetlands, anthropogenic water 

use, and endorheic rivers) used to configure the model’s hydrology to local conditions (Rameshwaran 

et al., 2021). In contrast, the LISFLOOD model has been regionally calibrated using in-situ discharge 

observations, with discharge time series spanning at least four years after 01 January 1983. 

Consequently, while the distributed nature of the HMF-WA model aims to improve the understanding 

of regional climate change impacts in a spatially coherent manner across West Africa, it does not 

necessarily lead to better modelling of extreme flows in the various climates and socioeconomic 

contexts of the region without calibration. Runoff generation is inherently a spatially distributed 

process. As such, the spatial resolution of a distributed hydrological model can significantly affect its 

ability to capture spatial variability of key watershed characteristics, such as topographic features, land 

cover heterogeneity, and precipitation gradients (Wolock & Price, 1994; Haddeland et al., 2002). A 

coarser spatial resolution limits the level of detail that can be represented in hydrological simulations, 

potentially overlooking important small-scale processes. Furthermore, as hydrological models are 

simplified representations of complex watershed processes, a calibration phase is often necessary to 

compensate for limited information on spatial variability of physiographical and meteorological 

catchments attributes, and to improve model performance in simulating the watershed's hydrological 

cycle (Bruneau et al., 1995). However, many river basins in West Africa have a limited number of in 

situ observational networks to provide the current state of hydrological information (Ndehedehe, 2019). 

This limits the optimal parameterization of large-scale hydrological models and may introduce 

uncertainties in model outputs.” 

Line 613: The authors find that their “… results are consistent with previous studies that argued 

for the ongoing rising trend in extreme streamflow across the West African catchments ...”. I 

assume that the current manuscript goes well beyond the papers cited that have already argued 

that extreme streamflow is rising. It would be good to add some explanation in what regard the 

current manuscript goes beyond existing studies. 

We appreciate the reviewer's insightful suggestion on adding  some explanation in what regard the 

current manuscript goes beyond existing studies. We have added in the revised manuscript (lines 838-

846): “... However, a common limitation of most previous studies is their reliance on a relatively small 

sample of watersheds and a limited spatial coverage, which may overlook local hydrographic variability 

and limit regional applications. In addition, most impact studies in West Africa are based on conceptual 

hydrological models at catchment scales. The study differs from previous studies by covering an 

unprecedented set of catchments, and utilizing state-of-the-art bias-corrected CMIP6 climate models, 

two large-scale hydrological models and robust statistical methods to assess both the magnitude and 

field significance of future flood changes. As such, the findings from this work provide regional-scale 

insights into the evolving flood risks in West Africa.” 

Line 631 and Figure 8: Why do you use here mean streamflow? Shouldn’t you use AMF series? 

https://ec-jrc.github.io/lisflood-model
https://www.zotero.org/google-docs/?wHAPoN
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We thank the reviewer for pointing this out. The mention of mean streamflow was indeed a 

typographical error. The text has been corrected in the revised manuscript (line 862): “... GEV 

parameters estimated on multi models mean AMF …” 

 

Minor comments: 

Line 91: “ … updating these hydrological standards …”: Please clarify what you mean by 

hydrological standards. Do you mean the databases? 

We thank the reviewer for this helpful remark. In this context, “hydrological standards” refers to the 

design flood estimations derived from existing streamflow databases. We have updated the text in the 

revised manuscript on page 4, lines 96-98: “... Therefore, updating these design flood estimation values 

(i.e. used to build dams or reservoirs) is essential to ensure that they accurately represent the current 

hydroclimatic context of the region (Wasko et al., 2021).” 

Line 108: Please clarify what you mean by “… the sensitivity of different climate models 

contrasting warming in the North Atlantic and Mediterranean Sea, which are known to influence 

the West African Monsoon (Bichet et al., 2020; Monerie et al., 2023), and due to contrasting 

emission scenarios …”: Do you mean that GCMs are sensitive to the warming of both seas, and 

that this warming is differently simulated by different models? 

We thank the reviewer for the insightful interrogation. We mean that the uncertainties across climate 

models arise partly from differences in projected warming of the North Atlantic and Mediterranean Sea, 

explaining  up to 60% of model divergences in projected rainfall changes. We have updated the text 

accordingly (page 4, lines 116-119): “... Nevertheless, large uncertainties remain regarding future 

climate trends in West Africa, partly due to differences in how climate models simulate projected 

warming of the North Atlantic and Mediterranean Sea, affecting the West African Monsoon and 

projected rainfall changes in the region (Bichet et al., 2020; IPCC, 2021; Monerie et al., 2023)…” 

Line 152: What stands the I for in “… Inter-ITCZ …”? 

The term “Inter-ITCZ” is a typo in the manuscript, and we have corrected it to “ITCZ” (Inter-Tropical 

Convergence Zone) in the revised version (line 172). 

Line 164: What do you mean by “… nearly half of Africa's continental watersheds are located in 

West Africa …”? West Africa covers about one-fifth of the African continent, but contains nearly 

half of the watersheds? What do you mean by continental here? 

We agree that the formulation is confusing, and have removed the word “continental” in the revised 

manuscript (see lines 186-187). Now it reads: “... It is worth noting that nearly half of African 

watersheds are located in West Africa. …” 

Line 184: “… the white lines …”: The lines are not really white. 

We have changed the word “white” by “grey” in the wording caption of Figure 1 (page 8): “Figure 1: 

Spatial distribution of the ADHI stations used in this study, covering the three climatic zones in the 

West African region, as delimited by the blue isohyets (600 mm and 1200 mm annual rainfall) on the 

map. The color ramp of the circles indicates the record lengths of flood data (in years). The blue lines 

https://www.zotero.org/google-docs/?8fwfjf
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represent isohyets delimiting West African climatic regions, and the grey lines indicate the borders of 

West African countries.” 

Line 209: These numbers are the longitude, latitude ranges? Please clarify. 

Yes, these numbers refer to the longitude and latitude ranges used in the quasi-global implementation 

of LISFLOOD. We have clarified this in the revised  manuscript on page 10, lines 291-294: “... The 

LISFLOOD version used in this study (OS LISFLOOD v4.1.3) was calibrated with a 0.05° (~5 km) 

resolution in its quasi-global implementation covering a longitude range from -180° to 180° and a 

latitude range from 90° to -60° ...” 

Line 231: What is the reason for using different datasets to bias-correct the GCM output for the 

HMF-WA and the LISFLOOD model? I propose that you also add a bit more explanation about 

these 2 datasets. In which regards are they different? 

The same bias-corrected CMIP6 dataset is used to drive hydrological models, even if the bias-correction 

of the GCM outputs was not conducted within the scope of our study. Regarding the datasets used for 

bias-correction, we have added in the revised manuscript, on page 12, lines 346-361: “... The EWEMBI 

dataset (E2OBS, WFDEI, and ERA-I data, bias-corrected for ISIMIP; Frieler et al., 2017; Lange, 2018, 

2019) was used to bias-correct the climate variables to drive the HMF-WA hydrological model. 

Similarly, the ERA5-land reanalysis (Muñoz-Sabater et al., 2021) was used for bias-correcting the 

GCMs outputs for the LISFLOOD model. The EWEMBI dataset was developed to support bias 

correction of climate input data used in impact assessments in phase 2b of the Inter-Sectoral Impact 

Model Intercomparison Project (ISIMIP2b; Frieler et al., 2017). EWEMBI dataset 

(https://dataservices.gfz-potsdam.de/pik/showshort.php?id=escidoc:3928916) provides global spatial 

coverage with 0.5° x 0.5° spatial and daily temporal resolutions. It integrates multiple sources, including 

ERA-Interim reanalysis data (Dee et al., 2011), the WATCH Forcing Data methodology applied to 

ERA-Interim (WFDEI; Weedon et al., 2014), the eartH2Observe forcing dataset (E2OBS; Calton et al., 

2016), and the NASA/GEWEX Surface Radiation Budget data (SRB; Stackhouse Jr. et al., 2011). 

Meanwhile, the ERA5 dataset is a global atmospheric reanalysis product developed by the Copernicus 

Climate Change Service (C3S) at ECMWF (European Centre for Medium-Range Weather Forecasts 

ReAnalysis). It is the fifth generation of atmospheric reanalysis based on 4D-Var (four-dimensional 

variational) data assimilation using Cycle 41r2 of the ECMWF Integrated Forecasting System (IFS) 

(Hersbach et al., 2020). ERA5 replaces the now outdated ERA-Interim reanalysis (Dee et al., 2011), 

and  provides global spatial coverage from 1979 until the present, with a finer spatial and temporal 

resolution of 0.25° x 0.25° and 1 hour, respectively. …” 

 

Line 277: “… each GEV parameter […] thus guiding effective flood risk management (Lawrence, 

2020)…”. I was triggered by this statement and checked the associated reference (Lawrence). 

However, I could not find any discussion in this reference how different values of the 3 GEV 

parameters would guide risk management. Your following sentences explain the parameters, and 

you give one link between the shape parameter and design, but still I find it hard to speak of “… 

guiding…” in this regard. In case you want to keep this statement, then I propose that you are 

more explicit. For instance, would you increase the freebord of embankments for 

catchments/stations that have a higher scale parameter (and thus uncertainty)? Or what would 

you do for a catchment with a high shape parameter? Only increasing the embankments or also 

invest more in disaster management in contrast to a catchment with a low shape parameter? 

https://www.zotero.org/google-docs/?N0cCLP
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We thank the reviewer for this constructive observation. By the statement "guiding effective flood risk 

management", our intention was to convey that accurate estimation of the GEV parameters enhances 

the reliability of quantile estimation for design flow values, which are essential for risk-informed 

decision-making. However, we agree with the reviewer that Lawrence (2020) does not provide a 

discussion on how specific values of the GEV parameters directly inform particular risk management 

actions. To avoid potential misinterpretation, we have removed this statement from the revised 

manuscript (line 415). Now the revised manuscript (lines 414-416) reads: “... In flood frequency 

analysis, each GEV parameter plays a distinct role in understanding and projecting flood 

behaviour (Lawrence, 2020; Wasko et al, 2021) ...” 

Line 315: “… stations at which the null hypothesis … is rejected …”: Please specify what exactly 

the null hypothesis is. Is it that the simulated annual flood peaks follow the same distribution as 

the observed flood peaks? If yes, does this mean that you use all stations, independent of whether 

the models represent the observed floods well? 

The null hypothesis in the AD test assumes that the simulated and observed annual flood peaks follow 

the same statistical distribution. Thus, we are testing whether the hydrological models are able to 

reproduce the statistical behavior of observed annual maximum flows at each station. We have added 

in the methodological section (section 2.5, lines 387-388): “...The null hypothesis of the AD test 

assumes that the simulated and observed AMF follow the same statistical distribution ...”. Regarding 

the use of all stations, the null hypothesis is more frequently rejected for the non-calibrated HMF-WA 

model. As noted in the original manuscript, “whether a calibrated hydrological model offers more 

reliable climate change projections than an uncalibrated model, which may perform less accurately in 

reproducing historical conditions (Pechlivanidis et al., 2017),  remains questionable”. Moreover, one of 

the objectives of our study is to assess the regional consistency of projections from two structurally 

different hydrological models: one calibrated, the other not. As such, we have decided to keep all 

models and stations to analyze the difference in the projections. 

Line 362: Here SGEV occurs, but this abbreviation is only explained later. 

We thank the reviewer for pointing this out. We have introduced the abbreviation “SGEV” earlier in 

the text, at its first occurrence on line 514: “... to fit the stationary GEV model (SGEV) … ” 

Line 442: What exactly do you mean by “… the hydrological model is considered to perform 

poorly at that station…”? Have you discarded these models? If yes, what does this mean for the 

following analyses and metrics? For instance, then you probably do not have 5 models at each 

station in Figure 2. 

By stating that “... the hydrological model is considered to perform poorly at that station …”, we refer 

to cases where the hydrological model shows a statistically significant mismatch between the simulated 

and observed annual maximum flows. We would like to clarify that the AD test is only used to assess 

regional-scale performance of hydrological models, and not as a filtering criterion for inclusion or 

exclusion of models or stations. For this reason, all model combinations (i.e., hydrological model and 

GCM pairings) are used in the analysis. We have added the following statement in the revised 

manuscript (lines 399-401): “... It is important to note that the AD test is only used herein to assess 

regional-scale performance of hydrological models, and not as a filtering criterion for inclusion or 

exclusion of models or stations.” 
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Figure 2: I find the markers a bit disturbing, and the color not easy to see. Wouldn’t it be easier 

to have filled markers (circles and real squares – not these squares divided into 4 smaller 

squares)? 

We thank the reviewer for his constructive suggestion. We have updated the Figure 2 accordingly (see 

below and page 23 in revised manuscript). 

Line 472: Circles and squares show 60-100% and 0-20%, respectively. How about stations with 

20-40% failure rate? And you do you use these 2 classes? Why not using 6 classes (from 5 out of 

5 models fail to 0 out of 5 models fail)? 

We have updated the Figure 2 to use 6 classes (from 5 out of 5 models fail to 0 out of 5 models fail, as 

suggested by the reviewer (see page 25 in revised manuscript):  

 
Figure 2: Statistical evaluation of the two hydrological models: a) Two-sample Anderson-Darling (AD) 

goodness-of-fit (GOF) test at 0.05 statistical significance level at each station between the AMF of daily 

OBS from the ADHI database and annual maxima flow of HIST from LISFLOOD daily simulations 

forced with the five CMIP6 GCMs (GFDL, IPSL, MPI, MRI, and UKESM) over the period 1950-2014. 

b) same as a) but using HMF-WA as hydrological model. The fill color of the markers indicates the 

proportion of CMIP6 models (out of five) for which the AD test null hypothesis (i.e., simulated and 



 

observed AMF follow the same statistical distribution) is rejected at the 0.05 significance level. Marker 

shapes correspond to binned categories of this proportion, as indicated in the legend. 

Figure 5: Please explain in the figure caption what ‘climate signal’ is – I assume it is the ratio that 

you have introduced in Line 324, but this should be clear. 

We thank the reviewer for this helpful suggestion.  We have updated the caption of Figure 5 to clarify 

the term "climate signal" in the revised manuscript, at page 27: “... The climate signal (y-axis) refers to 

the relative change in flood magnitude, computed as the difference between the future flood quantile 

(Qfuture) and the historical flood quantile (Qhist), normalized by Qhist. …” 

 

 
Figure 5: Synthesis of the projected changes in the 2-year and 20-year floods in West Africa from the 

LISFLOOD (black boxplots) and HMF-WA (grey boxplots) model simulations forced with the five 

CMIP6 GCMs (GFDL, IPSL, MPI, MRI, and UKESM), under both SSP2-4.5 (top row) and SSP5-8.5 

(bottom row) climate scenarios, for the near-term (2031-2060) and the long-term (2071-2100) futures. 

The climate signal (y-axis) refers to the relative change in flood magnitude, computed as the difference 

between the future flood quantile (Qfuture) and the historical flood quantile (Qhist), normalized by 

Qhist. The black dotted line denotes the baseline (i.e., no change). 

Line 579: Delta Flood is mentioned here, but the exact definition follows only a few lines later. 

We have revised the paragraph, on page 27, lines 797-805, to introduce the definition of Delta Flood 

(ΔFlood) upon its first mention: “To further assess the agreement between the two hydrological models, 

Figure 7 displays how the projected multi model mean changes in floods (ΔFlood) compares between 

LISFLOOD and HMF-WA model simulations. Overall, both models project positive change in floods 

in West Africa regardless of the considered SSP scenario. Indeed, most data points fall above the zero-

change baseline, indicating a global positive change in floods from both hydrological model simulations 

(Figure 7). To confirm the agreement between the two models, we have computed the Spearman 

coefficient (ρ) between the ΔFlood from the simulations of the LISFLOOD and HMF-WA models …” 



 

Figure 6: You could add the correlation coefficients in the sub-plots. That would substitute Table 

S1, and the reader would have the summary metrics directly when he/she looks at Figure 6. 

We appreciate this helpful suggestion. We have removed the Table S1 in supplementary material, 

updated Figure 6, and now added the Spearman correlation coefficients (ρ) directly to each subplot (see 

page 29 in the revised manuscript): 

 
Figure 6: Comparison of projected multi model mean changes in flood (ΔFlood) between LISFLOOD 

and HMF-WA hydrological models, under SSP2.4-5 (top row) and SSP5.8-5 (bottom row) scenarios, 

for the near-term (2031-2060) and the long-term futures (2071-2100), compared to the historical 

reference period (1985-2014). The blue dashed lines represent the zero-change baseline and the red 

diagonal line represents the theoretical 1:1 line where projected changes from both hydrological models 

would be identical. 

Figure 9: You could add pie charts in the sub-plots as in Figure 8. That would summarize the 

information for the reader. 

We thank the reviewer for the helpful suggestion We have now added pie charts in each sub-plot of 

Figure 9 (see page 33 in the revised manuscript): 



 

 
Figure 9: Best-fitting GEV trend models at each station, determined using the AIC criterion and the 

deviance test, based on simulations from (a) LISFLOOD-CMIP6 (top rows) and (b) HMF-WA-CMIP6 

(bottom rows) simulations under SSP2-4.5 and SSP5-8.5 scenarios. The green points represent stations 

best modelled by GEV1, which assumes a linear trend over the entire record. The orange points indicate 

stations best modelled by GEV2, which assumes stationarity before a breakpoint followed by a linear 

trend after the breakpoint. The blue points denote stations best modelled by GEV3, which assumes a 

double linear trend. The grey points represent stations where all non-stationary GEV models are rejected 

based on the deviance test. The pie charts summarize the proportion of stations at which the stationary 

GEV model (grey), or one of the non-stationary models, GEV1 (green), GEV2 (orange), or GEV3 

(blue), is identified as the best-suited for fitting the AMF series. 

Figure 10: (1) The GEV1 model shows a linear trend over the entire time period, correct? Then 

its starting year will be in the first year of the time period. Does it really make sense to say there 

is a significant breakpoint? A linear trend has no breakpoint. (2) The GEV3 model has 2 linear 

trends with a breakpoint in-between. Wouldn’t it be more interesting to show the breakpoint in-

between? And I think it would be interesting to understand how these 2 trends look like, for 

example, do we have cases where floods decrease before the breakpoint and increase after it? (3) 

The starting years / colors are not so easy to see. Maybe use filled markers. 

For points (1) and (3), as stated in the methodological section 2.6.3, the GEV1 model represents “a 

linear trend with no breakpoint”. Thus, it does not make sense to refer to a "significant breakpoint" in 

this context since the starting year of significant change in a linear trend will be the first year of the time 

period. We have updated the wording in the caption of Figure 10 accordingly (see page 37 in the revised 

manuscript). Regarding point (3), we have updated Figure 10 using filled markers to improve visual 

clarity in the revised manuscript (page 35): 



 

 

Figure 10: Spatial distribution of the starting years of significant flood trends projected by (a) 

LISFLOOD and (b) HMF-WA hydrological models, forced with CMIP6 models (GFDL, IPSL,MPI, 

MRI, and UKESM), under SSP2-4.5 and SSP5-8.5 scenarios. The color gradient indicates the starting 

year of a significant flood trend, ranging from 1970 (purple) to 2070 (yellow). Circular markers 

represent sites where trends began at the start of the time series (before 1970). Triangular markers 

indicate sites where trends emerged after 1970 (the linear trend GEV2 case). 

 

Regarding point (2), we have added a short paragraph in the revised manuscript, at page 34, lines 945-

949, to describe how the two trends in the GEV3 model behave before and after the breakpoint: “... On 

the two linear trends in the GEV3 model, as shown in Supplementary Figure S5, the predominant spatial 

pattern is a transition from decreasing flood trends before the breakpoint to increasing trends after. 

Persistent increases, characterized by positive slopes before and after the breakpoint, are also observed 

at several sites, particularly with the GFDL, IPSL, and UKESM climate models. …”. This paragraph is 

further supported by Supplementary Figure S5, which shows the spatial distribution of the trend 

directions derived from the non-stationary GEV3 model: 

 



 

 
Figure S5: Spatial distribution of flood trend direction derived from the non-stationary GEV3 model, 

based on annual maximum flood (AMF) series simulated by two hydrological models (LISFLOOD and 

HMF-WA), forced with five CMIP6 GCMs (GFDL, IPSL, MPI, MRI, UKESM) under SSP2-4.5 and 

SSP5-8.5 scenarios. The green downward triangles represent decreasing trends before and after the 

breakpoint, the orange circles indicate decreasing trend before and increasing trend after, the blue 

regular rectangles show increasing trend before and decreasing trend after, and the red upward 

rectangles correspond to increasing trends before and after the breakpoint. 
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Reviewer #2 

This study performed a regional-scale assessment of climate change impacts on flood for Western 

Africa, using two large-scale hydrological models with the bias-corrected CMIP6 climate projections. 

I think the study has high potential to form valuable knowledge base of the likely changes in flood in 

Western Africa, but I have some major concerns on the approach taken in hydrologically modelling, 

which limited my capacity to assess the results presented. As such, I’d like to seek further clarification 

and justification from the authors on their chosen approach, or reconsideration of alternative approach, 

before proceeding to further review of the results. 

We thank the reviewer for his encouraging feedback on the potential contribution of our study. We 

acknowledge the concern regarding the hydrological modelling approach. We have provided additional 

clarification and justification for our methodology in the revised manuscript.  

General comments: 

1. Given the substantial lack of data in the study region, I’m wondering about the value of using 

rather complicated hydrological models (distributed and semi-physical) rather than simpler 

models (e.g., lumped conceptual models)? There is a lack of 1) motivation for exploring 

distributed and semi-physical modeling approach within the study objective (in the Introduction); 

2) justification of modelling approach within Section 2.3 of the Materials and Methods. The start 

of the Introduction also touched on the challenge with data scarcity for the study region, which 

seems to suggest that uncertainties from input data might affect modelling (especially for more 

complex models which has higher data requirement) to some large degree - some assessments 

and/or discussion on this aspect would be useful. 

We agree that model complexity must be balanced against data availability, particularly in data-scarce 

regions such as West Africa. Nevertheless, our primary motivation for utilizing distributed models is to 

account for the spatial heterogeneity of runoff-generating processes such as variations in land use, soil 

properties, and rainfall patterns, which cannot be adequately captured by simple lumped models. It 

should also be noted that in these regions, many studies are based on simple models that rely exclusively 

on calibration, without explicitly taking basin properties into account. Our study proposes an important 

step forward by using process-based models, and in the future these models could also provide a better 

understanding of the complex interactions between climate and land-use changes. We have added in 

the introduction, lines 124-137: “... Due to their simplicity and computational efficiency, lumped 

hydrological models have been widely applied in West Africa (Niel et al., 2003; Bodian et al., 2016; 

2018; Kwakye & Bárdossy, 2020; Koubodana et al., 2021). However, because runoff generation is an 

inherently spatial and temporally dynamic process, changing environmental conditions may impact 

flood frequencies and water availability (Wilson et al., 1979; Haddeland et al., 2002; Descroix et al., 

2018). Although lumped models often perform comparably or even better than distributed models at 

the catchment outlet (Reed et al., 2004), their main limitation lies in evaluating the overall catchment 

response simply at the outlet, without accounting for the contributions of upstream individual sub-basins 

(Cunderlik, 2003; Pokhrel et al., 2008; Jajarmizad et al., 2012). The main advantage of distributed 

models is not necessarily a higher accuracy of runoff simulations at specific points (e.g., outlet or gauge 

stations), but rather their broader applicability and ability to simulate the impacts of spatially varying 

drivers and scenarios (Gebremeskel et al., 2005; Tang et al., 2007; Thielen et al., 2009; Chu et al., 2010; 

Tran et al., 2018). …” 
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2. In the current analyses, the HMF-WA model has not been calibrated, while calibration for 

LISFLOOD seems to be done previously which are not part of this study. This attracts several 

major questions on the modelling approach: 

- The disadvantage of not calibrating HMF-WA is clearly demonstrated in the results (Figure 2), 

the largely unsatisfactory performance of the model suggests that we have low confidence that it 

could even well represent the historical flood events. Although the results is accompanied by brief 

discussion on this issue that ‘projections of climate change impacts on African hydrological trends 

were produced using…’ – the decision to use an uncalibrated model is generally not standard in 

the international literature and require much more justification. 

We partly agree with the reviewer that using an uncalibrated model is uncommon in the international 

literature to provide hydrological scenarios of climate change impacts. One of the most striking 

examples is the use of ISIMIP (Frieler et al., 2017) simulations (large-scale global models that are 

mostly uncalibrated) for numerous hydrological impact studies, including in the journal Science 

(Gudmundsson et al. 2021). Furthermore, most land-surface models used to provide hydrological 

scenarios are also not calibrated. 

One of the core objectives of this study is to evaluate the consistency of climate change signals across 

hydrological models that differ in structure and complexity, and notably to identify whether the use of 

a calibrated model could provide different hydrological projections under climate scenarios. By 

including both a calibrated model (LISFLOOD) and an uncalibrated model (HMF-WA), we aim to 

investigate how model calibration influences the projection of flood trends under changing climatic 

conditions, and to evaluate the potential of uncalibrated hydrological models as a practical alternative 

for addressing data scarcity in poorly gauged regions for climate impact studies. We have added a 

justification in the description of selected hydrological models (Section 2.3, lines 312-319): “... 

Nevertheless, while calibration can enhance the accuracy of discharge simulations, several studies have 

highlighted that uncalibrated global hydrological models often exhibit comparable sensitivity to climate 

variability as the regional calibrated hydrological models, particularly when assessing relative changes 

in extreme events between future and historical periods (Gosling et al., 2017; Zhao et al., 2025). 

Therefore, whether a calibrated hydrological model offers different climate change projections than an 

uncalibrated model needs further investigation (Pechlivanidis et al., 2017). …”. Moreover, our findings 

(line 803 in the revised manuscript) suggest that: “... using both models, the climate forcing has more 

importance than the hydrological representation itself.” 

- On the LISFLOOD model, further justifications and details are required on the calibration 

process, including the input data, objective function, and cross-validation (if any). Such 

information on calibration is necessary for the reviewers/readers to assess the suitability of these 

models for the purpose of the study. 

We thank the reviewer for raising this important point. We have added a detailed description of the 

calibration process of the LISFLOOD model in the revised manuscript, at page 10, lines 291-319): “... 

The LISFLOOD version used in this study (OS LISFLOOD v4.1.3) was regionally calibrated with a 

0.05° (~5 km) resolution, using in-situ discharge gauge stations with at least four years of daily 

measurements recorded after 1 January 1982. In this setup, model parameters are linked to global 

geospatial datasets describing catchment morphology and river networks, land use, vegetation 

characteristics, soil properties, lake distribution, and water demand (Salamon et al., 2024; Choulga et 

al., 2024). The Distributed Evolutionary Algorithms in Python (DEAP; Fortin et al., 2012) framework 
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was applied to optimize parameters in gauged catchments, with the modified Kling-Gupta Efficiency 

(KGE; (Gupta et al., 2009) utilized as the objective function. Calibration was performed over a 

continuous simulation period using ERA5 reanalysis meteorological forcing. Due to the varying length 

and temporal coverage of the discharge records used for calibration, model performance was assessed 

using all available observational data at each station, rather than splitting the records into separate 

calibration and validation periods. The LISFLOOD calibration tool is freely available at 

https://github.com/ec-jrc/lisflood-calibration.” 

- Further, it is not clear whether the LISFLOOD models have been explicitly calibrated/evaluated 

to a flood context. Please see an example of calibration of hydrological models tailored to rarer 

floods, would the models used in this study benefit from a flood-centered calibration? Wasko et 

al., 2023. https://doi.org/10.1016/j.jhydrol.2023.129403 

We thank the reviewer for the relevant reference. Unlike in Wasko et al. (2023), where the GR4J lumped 

rainfall-runoff model was locally calibrated to rare floods using a flood-centered objective function, the 

LISFLOOD model calibration relies on the modified Kling-Gupta Efficiency (KGE; Gupta et al., 2009), 

which is not explicitly designed to prioritize rare or extreme events. Nevertheless, LISFLOOD has 

demonstrated robust performance in simulating daily river discharge across a large number of 

calibration sites worldwide, with a global median KGE of 0.70 

(https://confluence.ecmwf.int/display/CEMS/GloFAS+v4+calibration+hydrological+model+performa

nce). Importantly, LISFLOOD is the core hydrological model used in both the Global Flood Awareness 

System (GLOFAS) which provides an overview on upcoming floods in large world river basins (Alfieri 

et al., 2013; Hirpa et al., 2018; Harrigan et al., 2020; Prudhomme et al., 2024; Silva Peixoto et al., 2024) 

and the European Flood Awareness System (EFAS; Thielen et al., 2009; Matthews et al., 2024) which 

operates on a pan-European scale to provide short-to medium-range flood forecasts (Smith et al., 2016; 

Zábori et al., 2024), under the Copernicus Emergency Management Service (CEMS). Its proven 

applicability to large-scale hydrological forecasting and flood monitoring confirms its suitability for 

simulating floods, especially in large river basins. This is a key reason for its use in the present study. 

In addition, LISFLOOD GloFAS and EFAS set-ups are also used by the CEMS Global and European 

Drought Observatories (GDO, EDO, respectively) for low flow index and soil moisture anomaly 

estimation (e.g. Toreti et al., 2025). LISFLOOD GloFAS set-up also proved to enable adequate 

assessment of total water storage (e.g. Jensen et al., 2025) and is used for various purposes. Therefore, 

a flood-centered objective function was not used in the calibration process. 

Moreover, we have assessed the LISFLOOD model’s ability to simulate flood behavior, by comparing 

the distributions of observed and simulated annual maximum flows using the Anderson-Darling (AD) 

test at the 0.05 significance level (Scholz & Stephens, 1986). The results indicate that LISFLOOD 

reproduces the statistical properties of extreme flows reasonably well at a majority of the gauged 

stations, providing further confidence in its application for flood frequency analysis under historical 

and projected climate conditions. We have added this point into the discussion of the hydrological 

model evaluation results in the revised manuscript (lines 635-639): “... In addition, the satisfactory 

performance of the LISFLOOD model indicates that, although a flood-centered calibration approach 

could potentially improve its ability to capture extreme flows and their trends (Wasko et al., 2021), the 

current model setup provides a satisfactory basis for regional-scale flood trend assessments. …” 

3. Section 2.2 on data: given the substantial challenges in data availability for the study region, I 

think specific attention should be paid to the representativeness of the data to ensure they are not 
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biased towards a specific type of catchment, and/or specific time periods. I think this can be 

achieved by adding the following details: 

- A summary table (possibly in the Supplementary) of the selected study sites, with information 

on their catchment areas, mean annual catchment-averaged rainfall, mean annual streamflow, 

and the range of years over which streamflow data is available. 

We thank the reviewer for this helpful suggestion. We have compiled a summary table of the selected 

gauge stations, providing key characteristics including catchment area, mean annual catchment-

averaged rainfall, mean annual streamflow, and the range of years for which streamflow data are 

available. This table has been added to the Supplementary Material (Table S1). We also added in the 

revised manuscript: “..., and Supplementary Table S1 gives information on their geographical locations 

(longitude and latitude), catchment areas, mean annual catchment-averaged rainfall, mean annual 

streamflow, and the range of years over which streamflow data is available.” 

- The study site selection criteria mentioned ‘a minimum of 10 years streamflow time series 

between 1950 and 2018’ – does this allow for data gaps (i.e., days with missing or low-quality 

streamflow data), and if so, what is the maximum length of gaps allowed? 

As stated, our selection criterion required a minimum of 10 years of continuous available streamflow 

data between 1950 and 2018. This criterion allows for data gaps provided that there are no missing 

values near the potential annual peak flood). We have clarified this aspect in the revised manuscript 

(section 2.2, lines 213-218): “... To address the challenges associated with missing data in the database, 

we conducted a year-by-year visual inspection of hydrographs at each station as illustrated by 

Supplementary Figure S2. Years with data gaps near the flood peak were excluded from the analysis to 

avoid the risk of missing the true annual peak flood (Wilcox et al., 2018). Through this screening 

process, we ensured that no AMF values were derived from periods characterized by  a lot of missing 

data.” 
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Figure S2: Illustration showing the handling of missing data in an annual hydrograph of daily discharge 

measurements. A significant portion of data, particularly around the peak discharge period, is missing 

(highlighted by the red circle). Such a year is excluded from the analysis to ensure the accuracy of the 

annual peak flood sampling. 

- How variable is the land uses in this study region? If they are rather heterogeneous, a summary 

of key land use types in each catchment would also be useful. 

The study area is characterized by a heterogeneous landscape across the different catchments, with 

considerable variability in land use. We have added to the Supplementary Material (Table S2) a 

summary of key land cover types (forest, urban, crop, irrigated crops, grass, shrub, sparse, and 

bare) in each catchment, detailing the dominant land uses and their respective proportions. 

Table S2: Land use distribution across different catchments in the study area. The table shows the 

proportion of each land use type (Forest, Urban, Crop, Irrigated Crops, Grass, Shrub, Sparse, and Bare) 

within the catchments identified by their unique IDs. Each value represents the proportion (percentage) 

of the respective land use type within a given catchment. 

ID Forest Urban Crop Crop Irrig Grass Shrub Sparse Bare 

ADHI_114 0.06 0 0.46 0 0 0.48 0 0 

ADHI_121 0.27 0 0.29 0 0 0.44 0 0 

ADHI_123 0.83 0 0.11 0 0 0.06 0 0 

ADHI_131 0.74 0 0.17 0 0 0.09 0 0 

ADHI_144 0.49 0 0.49 0 0 0.02 0 0 

ADHI_163 0.96 0 0.01 0 0 0.03 0 0 

ADHI_172 0.05 0 0.78 0.01 0.02 0.14 0 0 

ADHI_179 0.27 0.01 0.72 0 0 0 0 0 

ADHI_180 0.31 0 0.67 0 0 0 0 0 

ADHI_183 0.56 0 0.44 0 0 0 0 0 

ADHI_187 0.33 0 0.39 0 0 0.27 0 0 

ADHI_198 0.52 0 0.25 0 0 0.23 0 0 

ADHI_270 0.76 0 0.17 0 0 0.07 0 0 

ADHI_276 0.74 0 0.14 0 0 0.12 0 0 

ADHI_304 0.02 0 0.04 0.03 0.25 0.37 0.26 0.07 

ADHI_315 0.05 0 0.74 0 0 0.2 0 0 

ADHI_316 0.09 0 0.41 0.01 0.11 0.08 0.05 0.25 

ADHI_319 0.14 0 0.38 0.01 0.09 0.11 0.03 0.25 

ADHI_320 0 0 0.62 0.02 0.21 0 0.12 0.03 

ADHI_321 0.33 0 0.51 0 0.01 0.13 0 0 

ADHI_324 0.37 0 0.48 0.01 0 0.14 0 0 

ADHI_325 0.83 0 0.09 0 0.04 0.03 0 0 

ADHI_332 0.39 0 0.02 0 0.58 0.01 0 0 

ADHI_372 0.02 0 0.8 0 0 0.17 0 0 

ADHI_390 0.7 0 0.23 0 0 0.07 0 0 

ADHI_394 0.62 0 0.33 0 0 0.04 0 0 

ADHI_507 0.58 0 0.18 0 0 0.24 0 0 

ADHI_510 0.8 0 0.08 0 0 0.11 0 0 

ADHI_511 0.43 0 0.44 0 0 0.13 0 0 

ADHI_515 0.32 0 0.54 0 0 0.14 0 0 

ADHI_519 0.05 0 0.74 0 0.09 0.11 0 0 

ADHI_531 0.5 0 0.44 0 0 0.05 0 0 

ADHI_548 0.78 0 0.01 0 0 0.2 0 0 

ADHI_550 0 0 0.21 0.01 0.69 0.01 0.05 0.03 



 

ADHI_560 0.08 0 0.38 0.02 0.23 0.2 0.04 0.06 

ADHI_571 0.11 0 0.49 0 0 0.39 0 0 

ADHI_585 0.63 0 0.29 0 0 0.07 0 0 

ADHI_587 0.56 0 0.23 0 0 0.21 0 0 

ADHI_592 0.1 0.01 0.87 0 0 0.02 0 0 

ADHI_595 0.19 0 0.58 0.01 0.01 0.21 0 0 

ADHI_596 0.75 0 0.15 0 0 0.09 0 0 

ADHI_597 0.96 0 0.01 0 0 0.03 0 0 

ADHI_605 0.02 0 0.93 0.01 0 0.05 0 0 

ADHI_607 0.43 0 0.09 0 0 0.48 0 0 

ADHI_612 0.39 0 0.09 0 0 0.52 0 0 

ADHI_613 0.71 0 0.07 0 0 0.21 0 0 

ADHI_617 0.61 0 0.21 0 0 0.18 0 0 

ADHI_639 0.41 0 0.55 0 0 0.04 0 0 

ADHI_640 0.3 0 0.57 0.01 0.01 0.11 0 0 

ADHI_649 0.91 0 0.07 0 0 0.02 0 0 

ADHI_650 0.92 0 0.01 0 0 0.07 0 0 

ADHI_651 0.72 0 0.16 0 0 0.11 0 0 

ADHI_678 0.76 0 0.1 0 0 0.14 0 0 

ADHI_692 0.1 0 0.45 0.03 0.19 0.12 0.04 0.08 

ADHI_1183 0.19 0 0.4 0 0 0.4 0 0 

ADHI_1269 0.71 0.01 0.28 0 0 0.01 0 0 

ADHI_1400 0.07 0 0.8 0 0 0.13 0 0 

ADHI_1401 0.1 0 0.75 0 0 0.15 0 0 

 

- Sources of input data for the hydrological models e.g., rainfall, temperature – it is unclear where 

they are from, it is implied from the later Section 2.5 that rainfall and temperature were from 

GCM rather than observed, but it would be helpful to clarify this earlier in the data section. 

We appreciate the helpful suggestion from the reviewer. In response, we have revised Section 2.2 (lines 

193-229) to clarify the sources of input data for the hydrological models. Updated Section 2.2 reads: 

“2.2 Observational data and climate forcings for hydrological experiments: Daily streamflow data 

for the period 1950-2018 were obtained from the African Database of Hydrometric Indices (ADHI) 

recently developed by Tramblay et al. (2021). This database provides hydrometric indices computed 

from different data sources, with daily discharge time series that span at least 10 years. In the ADHI 

database, the size of the 441 West African catchments ranges from 95 to 2,150,000 km2, and some 

stations have daily discharge data spanning over 44 years. Figure 1 shows the spatial distribution of the 

ADHI stations used in this study. We only selected watersheds from the ADHI database that met the 

following three criteria: (i) low regulation, determined through visual inspection of dam locations 

relative to watershed outlets (see Supplementary Figure S1), combined with a year-by-year analysis of 

annual hydrographs to assess the impact of dam operations on streamflow, (ii) surface area of less than 

150,000 km², and (iii) a daily streamflow time series covering a minimum of 10 years between the 1950 

and 2018. To address the challenges associated with missing data in the database, we conducted a visual 

inspection of hydrographs at each station as illustrated by Supplementary Figure S2. Years with data 

gaps near the flood peak were excluded from the analysis to avoid the risk of missing the true annual 

peak flood (Wilcox et al., 2018). Through this careful screening process, we ensured that no AMF 

values were derived from periods characterized by  a lot of missing data. It is important to note that the 

observational streamflow data are not used to calibrate or drive the hydrological models. Instead, these 

observations serve as an independent benchmark to evaluate the ability of the hydrological models to 
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reproduce key flood statistics during the historical period. The LISFLOOD model was calibrated using 

the ERA5 reanalysis dataset, which provides consistent and high-resolution precipitation and 

temperature fields. Moreover, ERA5 was also used as a reference for the bias correction of the five 

climate models from the CMIP6 ensemble that were used to drive the hydrological simulations for both 

the historical and future periods (see Section 2.4).” 

4. Section 2.3: I understand that the details of the two hydrological models are presented in the 

corresponding papers cited, but I think the readers could benefit from some additional 

background on these models, at least covering the key processes represented in each model on 

converting rainfall to runoff. This information is currently only partly available for the HWF-

WA model (with only the recently added process representations listed) and not communicated 

for the LISFLOOD model. After presenting these, I’d also love to see a quick summary of the key 

differences between the models to justify your point in the Abstract that the two models ‘differ in 

their hydrological process representation’. 

We appreciate the reviewer's suggestion. We have expanded Section 2.3 (lines 264-324) to clarify the 

key hydrological processes in each model and the key differences between the two models. The updated 

section now reads:  “The HMF-WA model is adapted from the modular HMF model, and is designed 

for large-scale applications across West Africa (Rameshwaran et al., 2021). It employs a vertically 

integrated soil moisture scheme to simulate runoff production, driven by rainfall and potential 

evaporation inputs. Runoff generation considers soil drainage and a spatial probability distribution of 

soil moisture. Routing is based on a kinematic wave approach (Bell et al., 2007), with parallel pathways 

for surface and subsurface flow. Key enhancements over the classical HMF model include modules to 

simulate wetland inundation, endorheic basins, and anthropogenic water withdrawals, making it well-

suited for semi-arid environments with complex hydrology (Rameshwaran et al., 2021). HMF-WA 

simulates spatially consistent river flows across West Africa at a 0.1° × 0.1° spatial resolution. Although 

it has not yet been specifically calibrated to individual West African catchments using observed 

streamflow data where the model hydrology is configured to local conditions using spatial datasets of 

physical and soil properties, HMF-WA model evaluation against observational data indicates that it 

performs reasonably well in simulating both daily high and low river flows across most catchments. 

The median values of NSE (Nash-Sutcliffe efficiency), NSElog, and  BIAS are 0.62, 0.82, and 0.06 (6 

%), respectively (Rameshwaran et al., 2021).  

The LISFLOOD model, developed by the Joint Research Centre (JRC) of the European Commission 

(https://ec-jrc.github.io/lisflood/), is a physical, spatially distributed hydrological model, designed for 

simulating several hydrological processes that occur in a catchment (Van Der Knijff et al., 2010). The 

LISFLOOD model simulates water processes using a three-layer soil water balance, along with 

groundwater and subsurface flow models. It accounts for several processes such as snow 

accumulation/melt, infiltration, evapotranspiration, groundwater flow, surface runoff, etc. Moreover, it 

supports the integration of human influences such as reservoirs and water abstraction. The numerical 

LISFLOOD simulation is driven by meteorological forcing (precipitation, temperature, and 

evapotranspiration) combined with high-resolution spatial data on terrain morphology, soil 

characteristics, land use, and water demand. This integrated setup allows the model to simulate runoff 

processes under diverse climatic and socio-economic conditions, capturing both natural and 

anthropogenic influences across heterogeneous landscapes. The runoff produced at every grid cell 

within the model domain is routed through the river network using a kinematic wave approach. The 

LISFLOOD version used in this study (OS LISFLOOD v4.1.3) was regionally calibrated with a 0.05° 

(~5 km) resolution, using in-situ discharge gauge stations with at least four years of daily measurements 
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recorded after 1 January 1982. In this setup, model parameters are linked to global geospatial datasets 

describing catchment morphology and river networks, land use, vegetation characteristics, soil 

properties, lake distribution, and water demand (Salamon et al., 2024; Choulga et al., 2024). The 

Distributed Evolutionary Algorithms in Python (DEAP; Fortin et al., 2012) framework was applied to 

optimize parameters in gauged catchments, with the modified Kling-Gupta Efficiency (KGE; Gupta et 

al., 2009) utilized as the objective function. Calibration was performed over a continuous simulation 

period using ERA5 reanalysis meteorological forcing. Due to the varying length and temporal coverage 

of the discharge records used for calibration, model performance was assessed using all available 

observational data at each station, rather than splitting the records into separate calibration and 

validation periods. The LISFLOOD calibration tool is freely available at https://github.com/ec-

jrc/lisflood-calibration.  

Globally, while both models use a kinematic wave routing scheme, HMF-WA and LISFLOOD differ 

significantly in their hydrological process representation. HMF-WA applies a vertically integrated soil 

moisture scheme with simplified runoff generation based on spatial soil moisture distribution. In 

contrast, LISFLOOD features a more detailed, physically-based three-layer soil model with an explicit 

representation of groundwater, snow processes, and anthropogenic influences. Furthermore, 

LISFLOOD has been calibrated using in-situ discharge data. Nevertheless, while calibration can 

enhance the accuracy of discharge simulations, several studies have highlighted that uncalibrated global 

hydrological models often exhibit comparable sensitivity to climate variability as the regional calibrated 

hydrological models, particularly when assessing relative changes in extreme events between future and 

historical periods (Gosling et al., 2017; Zhao et al., 2025). Therefore, whether a calibrated hydrological 

model offers different climate change projections than an uncalibrated model needs further investigation 

(Pechlivanidis et al., 2017).” 

Specific comments: 

1. Line 51 – it will be clearer if the change in flood magnitude can be summarized specific to the 

flood return period(s) investigated. 

We appreciate the reviewer's suggestion. We now specify the change in flood magnitude by return 

period and future horizon in the abstract (lines 52-55): “... Flood magnitudes are projected to increase 

at 94% (96%) of stations for the 2-year (20-year) event in the near-term future, and at 88% (93%) of 

stations for the 2-year (20-year) event in the long-term future, with some locations expected to 

experience increases exceeding 45%. …” 

2. Figure 1 caption: ‘grey lines’ instead of ‘white lines’? 

We have changed the word “white” by “grey” in the wording caption of Figure 1 (page 8): “Figure 1: 

Spatial distribution of the ADHI stations used in this study, covering the three climatic zones in the 

West African region, as delimited by the blue isohyets (600 mm and 1200 mm annual rainfall) on the 

map. The color ramp of the circles indicates the record lengths of flood data (in years). The blue lines 

represent isohyets delimiting West African climatic regions, and the grey lines indicate the borders of 

West African countries.” 

3. Line 177 – decision on ‘low regulation’ catchments: the Supplementary Fig. 1 suggested that 

this is based on whether there is a dam located near the watershed outlet, with no information 

what defines a dam ‘near’ or ‘far from’ the outlet – was this based on visual inspection, or a 

threshold distance used? If the latter, how was the threshold distance determined? 
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We appreciate the reviewer’s constructive comment regarding the decision on ‘low regulation’ 

catchments. The identification of "low regulation" catchments was based on visual inspection of the 

dam locations relative to the watershed outlet, using both the GRanD database 

(https://www.globaldamwatch.org/grand) and Google maps, combined with a year-by-year analysis of 

the annual hydrographs. This allowed us to verify whether the dam's construction or operational start 

date caused noticeable changes in the streamflow regime. No fixed distance threshold was applied. We 

have clarified this aspect in the description of the observational data, Section 2.2, lines 208-213: “... We 

only selected watersheds from the ADHI database that met the following three criteria: (i) low 

regulation, determined through visual inspection of dam locations relative to watershed outlets (see 

Supplementary Figure S1), combined with a year-by-year analysis of annual hydrographs to assess the 

impact of dam operations on streamflow, (ii) surface area of less than 150,000 km², and (iii) a daily 

streamflow time series covering a minimum of 10 years between the 1950 and 2018. …” 

4. Section 2.6.1 – the introductory section for GEV is very informative, however, I think it could 

benefit from additional information on what positive and negative shape parameters mean, which 

seem to be useful context to the subsequent discussion on the plausible values of the shape 

parameter. 

We thank the reviewer for the insightful suggestion. We have now added information about the 

meaning of shape parameter values, in Section 2.6.1, lines 422-430: “... The shape parameter 

(ξ) governs the tail behaviour of the GEV distribution, which encompasses three types of extreme 

value distributions (Coles, 2001): (i) a positive  shape parameter (ξ > 0) indicates a heavy-tailed Fréchet 

case (Fréchet, 1927), suggesting an increased probability of extreme flooding events, (ii) a null 

shape parameter (ξ = 0) suggests a light-tailed Gumbel class (Gumbel, 1958), and (iii) a negative shape 

parameter (ξ < 0) indicates a short-tailed or (bounded) negative-Weibull distribution (Weibull, 1951). 

This parameter is crucial for assessing the risk of rare floods and informing the design 

infrastructure to withstand such extremes. ...” 

5. Line 293: ‘…estimate the GEV parameters in a non-stationary context’ – can you elaborate a 

bit on what exactly this refers to – is it about fitting multiple GEVs to different periods of the data 

to represent non-stationary conditions? 

We appreciate the reviewer’s suggestion regarding the clarification of the wording "estimate the GEV 

parameters in a non-stationary context." This refers to allowing the GEV distribution parameters to vary 

with time, in order to capture temporal changes in the statistical behavior of annual peak flood time 

series. We have added this clarification in the revised manuscript, at page 15, lines 439-442: “... We 

have used the Generalized (Penalized) Maximum Likelihood Estimation (GMLE) method (Martins & 

Stedinger, 2000) to estimate the GEV parameters in a non-stationary context, by allowing the model 

parameters to vary with time (Coles, 2001). …” 
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