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Abstract 34 

 35 

West Africa is projected to face unprecedented shifts in temperature and extreme precipitation 36 

patterns as a result of climate change. The devastating impacts of river flooding are already 37 

being felt in most West African countries, emphasizing the urgent need for comprehensive 38 

insights into the frequency and magnitude of floods to guide the design of hydraulic 39 

infrastructure for effective flood risk mitigation and water resource management. Despite its 40 

significant socio-economic and environmental impacts, flood hazards remain poorly 41 

documented in West Africa due to the data-related challenges. This study aims to fill this 42 

knowledge gap by providing a large-scale analysis of flood frequency and magnitudes across 43 

West Africa, focusing on how climate change may influence future flood trends. To achieve 44 

this, we have used two large-scale hydrological models driven by five bias-corrected CMIP6 45 

climate models under two Shared Socioeconomic Pathways (SSPs). The Generalized Extreme 46 

Value (GEV) distribution was utilized to analyze trends and detect change points by comparing 47 

multiple non-stationary GEV models across historical and future periods for a set of 58 48 

catchments. Both hydrological models consistently projected increases in flood frequency and 49 

magnitude across West Africa, despite their differences in hydrological processes 50 

representation and calibration schemes. Flood magnitude is projected to increase for 94 % of 51 

the stations, with some locations experiencing increases exceeding 45 % in magnitude. In 52 

addition, the majority of trends are starting from the historical period, under both SSP2-4.5 and 53 

SSP5-8.5.Flood magnitudes are projected to increase at 94% (96%) of stations for the 2-year 54 

(20-year) event in the near-term future, and at 88% (93%) of stations for the 2-year (20-year) 55 

event in the long-term future, with some locations expected to experience increases exceeding 56 

45%. The findings from this study provide regional-scale insights into the evolving flood risks 57 

across West Africa and highlight the urgent need for climate-resilient strategies to safeguard 58 

populations and infrastructure against the increasing threat of flood hazards. 59 

 60 

Keywords: Flood frequency analysis, GEV, GMLE, West Africa, climate change, CMIP, SSP  61 
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1 Introduction 62 

Anthropogenic changes in atmospheric composition and land use have led to climate change 63 

(Houghton et al., 2001; Hansen et al., 2010; Santer et al., 2019; Masson-Delmotte et al., 2021). 64 

Climate change, in turn, amplifies the frequency, intensity, and impact of extreme events, such 65 

as heatwaves, storms, floods, and droughts at the global scale (IPCC, 2021). West Africa is 66 

identified as a hotspot for climate change impacts, as the region is projected to experience 67 

unprecedented shifts in both temperature and extreme precipitation patterns (IPCC, 2021). West 68 

African populations are therefore becoming increasingly vulnerable for floods and droughts 69 

(Tramblay et al., 2020, Rameshwaran et al., 2021). This vulnerability is due to multiple factors such 70 

as the region’s reliance on rainfed agriculture and the dependence of its rural communities on 71 

the natural environment (Krishnamurthy et al., 2012; Totin et al., 2016; Land et al., 2018; Diallo et 72 

al., 2020; De Longueville et al., 2020; Matthew et al., 2020). Additionally, the limited economic and 73 

institutional resources available to manage and adapt to climate change and natural hazards 74 

exacerbate this vulnerability (Roudier et al., 2011; Sultan & Gaetani, 2016; Lalou et al., 2019).  75 

 76 

A potential increase in river flooding risks is one of the most frequently studied impacts of 77 

climate change (Arnell & Gosling, 2016), because of the devastating economic and 78 

environmental impacts it may trigger (EM-DAT, 2015; CRED, 2022; UNDRR, 2023). Such 79 

impacts of climate change are already being felt in many West African countries, which 80 

experienced several catastrophic floods in the past few years, raising concerns for water 81 

management and livelihoods (World Bank, 2021a). It is therefore becoming crucial to develop 82 

efficient adaptation strategies for mitigating the adverse effects of flood hazards on West 83 

African communities and economies. 84 

 85 

Efficient water resources management is essential for sustainable development in West Africa 86 

in a changing climate (UNEP, 2020). However, water management requires comprehensive 87 

insights into the frequency and magnitude of floods to design appropriate hydraulic 88 

infrastructure (Feaster et al., 2023), and quantification of watershed runoff to design reservoirs 89 

for agricultural, industrial, and municipal water use (Song et al., 2022). In West Africa however, 90 

access to hydrometric data remains a challenge, as the number of stations within hydro-91 

monitoring networks has decreased in recent years (Bodian et al., 2020; Tarpanelli et al., 2023). 92 

Existing hydrometric databases, available to estimate design flows, only provide short and 93 

often old records (Agoungbome et al., 2018; Tramblay et al., 2021). Therefore, updating these 94 
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hydrological standards is essential to ensure that they accurately represent the current 95 

hydroclimatic context of the region (Wasko et al., 2021).Therefore, updating these design flood 96 

estimation values (i.e. used to build dams or reservoirs) is essential to ensure that they 97 

accurately represent the current hydroclimatic context of the region (Wasko et al., 2021) 98 

 99 

Global Climate Models (GCMs) outputs from the fifth/sixth Coupled Model Intercomparison 100 

Project (CMIP5/6), which contributed to the fifth and sixth Assessment Report (AR5/6) of the 101 

Intergovernmental Panel on Climate Change (IPCC), have provided opportunities to simulate 102 

future hydrological impacts of climate change worldwide. Indeed, CMIP5/6 models use a range 103 

of scenarios that represent different future trajectories to simulate several climate variables, 104 

which help researchers assess the potential long-term impacts of near-term decisions on 105 

emissions reductions and climate policies (Riahi et al., 2017). To understand future trends in 106 

hydrological extremes, climate models are typically used in combination with hydrological 107 

modelling experiments.  However, the simulations from GCMs cannot be used directly to drive 108 

hydrological models as they are associated with systematic biases relative to observational 109 

datasets (Sillmann et al., 2013). Therefore, downscaling and bias-correction algorithms are 110 

routinely applied to leverage the information from GCM outputs (Ehret et al., 2012). 111 

Nevertheless, large uncertainties remain regarding future climate trends in West Africa, due to 112 

the sensitivity of different climate models contrasting warming in the North Atlantic and 113 

Mediterranean Sea, which are known to influence the West African Monsoon (Bichet et al., 114 

2020; Monerie et al., 2023), and due to contrasting emission scenarios (IPCC, 115 

2021).Nevertheless, large uncertainties remain regarding future climate trends in West Africa, 116 

partly due to differences in how climate models simulate projected warming of the North 117 

Atlantic and Mediterranean Sea, affecting the West African Monsoon and projected rainfall 118 

changes in the region (Bichet et al., 2020; IPCC, 2021; Monerie et al., 2023). 119 

 120 

As climate change may intensify the hydrological cycle (Gudmundsson et al., 2012), 121 

systematically assessing future flood risks and regional-scale hydrological impacts of future 122 

climate change is crucial for developing effective climate adaptation strategies (Huang et al., 123 

2024). Due to their simplicity and computational efficiency, lumped hydrological models have 124 

been widely applied in West Africa (Niel et al., 2003; Bodian et al., 2016; 2018; Kwakye & 125 

Bárdossy, 2020; Koubodana et al., 2021). However, because runoff generation is an inherently 126 

spatial and temporally dynamic process, changing environmental conditions may impact flood 127 

frequencies and water availability (Wilson et al., 1979; Haddeland et al., 2002; Descroix et al., 128 
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2018). Although lumped models often perform comparably or even better than distributed 129 

models at the catchment outlet (Reed et al., 2004), their main limitation lies in evaluating the 130 

overall catchment response simply at the outlet, without accounting for the contributions of 131 

upstream individual sub-basins (Cunderlik, 2003; Pokhrel et al., 2008; Jajarmizad et al., 2012). 132 

The main advantage of distributed models is not necessarily a higher accuracy of runoff 133 

simulations at specific points (e.g., outlet or gauge stations), but rather their broader 134 

applicability and ability to simulate the impacts of spatially varying drivers and scenarios 135 

(Gebremeskel et al., 2005; Tang et al., 2007; Thielen et al., 2009; Chu et al., 2010; Tran et al., 136 

2018). The interest in large-scale hydrological models has increased due to the need to 137 

sustainably manage large river basins and the pervasive global environmental change (Döll et 138 

al., 2008). As global hydrological models can capture the variability of hydrological processes 139 

across different geographical and climatic contexts, large-scale hydrological modelling has 140 

become a key tool for analysing global and regional water resources, assessing climate impacts, 141 

and managing water resources (Kauffeldt et al., 2013; Prudhomme et al., 2024). However, 142 

running physically based large-scale hydrological models requires numerous input variables 143 

that describe the physiographic characteristics of the watersheds (such as soil moisture, land 144 

use/land cover, topography, etc.), along with several meteorological forcings. Thus, this 145 

complexity limits the widespread use of these models. Brunner et al. (2021) have argued that 146 

the limited information on regional flood trends is partly due to the data-related challenges. In 147 

the West African context, several studies have shown the increase in extreme rainfall in 148 

observations (Taylor et al., 2017, Tramblay et al., 2020, Chagnaud et al., 2022) and future 149 

climate scenarios (Dosio et al., 2021, Chagnaud et al., 2023), but very few studies have used 150 

GCMs simulations as forcings to drive grid-based large-scale hydrological models to assess 151 

the potential impacts of climate change on river flows across West Africa (Rameshwaran et al., 152 

2021; Ekolu et al., 2024, https://africa-hydrology.ceh.ac.uk/). The main objective of this study 153 

is to address this gap by assessing the impacts of climate change on floods in the West African 154 

region from two large-scale hydrological models driven by data from five bias-corrected 155 

CMIP6 GCMs under two Shared Socioeconomic Pathways (SSPs; O’Neill et al., 2017). This 156 

article is organised as follows: In Section 2, we describe the study area. Section 3 outlines the 157 

materials and methods, including the data used in the analysis, the CMIP6 models and 158 

hydrological modelling approach, the non-stationary extreme value analysis framework, and 159 

the evaluation of climate change impacts on floods at both local and regional scales. In Section 160 

4, we present and discuss the findings. Finally, main conclusions and perspectives are given in 161 

Section 5. 162 

https://africa-hydrology.ceh.ac.uk/
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 164 

2 Materials and Methods  165 

2.1 Study area description 166 

West Africa covers about one-fifth of the African continent, extending from the Atlantic coast 167 

of Senegal (18°W) to eastern Chad (25°E) and from the Gulf of Guinea (4°N) to the Sahel 168 

(25°N) (Figure 1). The region's climate is governed by the Inter-Tropical Convergence Zone 169 

(ITCZ) or the Inter-Tropical Discontinuity (ITD), which represents the interface at the ground 170 

between moist monsoon air and dry harmattan air with a migratory annual cycle (Pospichal et 171 

al., 2010). The West African region features high climatic diversity (Vintrou, 2012), and covers 172 

a wide range of ecosystems and bioclimatic regions (Nicholson, 2018). The latitudinal and 173 

seasonal oscillation of the Inter-ITCZITCZ divides the region into three main climatic domains, 174 

namely the Sahel, Sudanian and Guinean zones (Sule & Odekunle, 2016). The Sahel zone is a 175 

semi-arid region with a short rainy season and an annual average rainfall not exceeding 600 176 

mm (Figure 1). This domain is highly vulnerable to the adverse effects of climate change (Tian 177 

et al., 2023). The Sudanian zone stretches as a broad belt south of the Sahel, receiving an 178 

average rainfall of 600 to 1200 mm (Srivast et al., 2023). The Guinean zone, known for its 179 

rugged terrain with steep slopes (Orange, 1990), receives abundant rainfall throughout the year, 180 

with an annual average between 1200 and 2200 mm (ECOWREX, 2018). These three climate 181 

zones are characterized by distinct vegetation (Biaou et al., 2023) and rainy season patterns. 182 

The Sahelian and Sudanian domains share a unimodal rainfall pattern, while the Guinean zone 183 

experiences a bimodal rainfall pattern of two rainy seasons, driven by the West African 184 

Monsoon (Rodríguez-Fonseca et al., 2015; Nicholson, 2018). It is worth noting that nearly half 185 

of Africa's continental watersheds are located in West Africa.It is worth noting that nearly half 186 

of African watersheds are located in West Africa. The socioeconomic development 187 

(agriculture, energy production, and livelihoods) of the region relies highly on the water 188 

resources provided by these transboundary basins and aquifers (World Bank, 2021b). 189 

 190 

 191 

2.2 Observational data 192 

2.2 Observational data and climate forcings for hydrological experiments 193 a mis en forme : Police :14 pt, Gras
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Daily streamflow data for the period 1950-2018 were obtained from the African Database of 194 

Hydrometric Indices (Tramblay et al. 2021b, Diop et al., 2025). This database provides 195 

hydrometric indices computed from different data sources, with daily discharge time series that 196 

span at least 10 years. In the ADHI database, the size of the 441 West African catchments 197 

ranges from 95 to 2,150,000 km2, and some stations have daily discharge data spanning over 198 

44 years. Figure 1 shows the spatial distribution of the ADHI stations used in this study. We 199 

only selected watersheds that met the following three criteria: (i) low regulation (see 200 

Supplementary Figure S1), (ii) surface area of less than 150,000 km², and (iii) a daily 201 

streamflow time series covering a minimum of 10 years between the 1950 and 2018. Daily 202 

streamflow data for the period 1950-2018 were obtained from the African Database of 203 

Hydrometric Indices (ADHI) recently developed by Tramblay et al. (2021). This database 204 

provides hydrometric indices computed from different data sources, with daily discharge time 205 

series that span at least 10 years. In the ADHI database, the size of the 441 West African 206 

catchments ranges from 95 to 2,150,000 km2, and some stations have daily discharge data 207 

spanning over 44 years. Figure 1 shows the spatial distribution of the ADHI stations used in 208 

this study, and Supplementary Table S1 gives information on their geographical locations 209 

(longitude and latitude), catchment areas, mean annual catchment-averaged rainfall, mean 210 

annual streamflow, and the range of years over which streamflow data is available. We only 211 

selected watersheds from the ADHI database that met the following three criteria: (i) low 212 

regulation, determined through visual inspection of dam locations relative to watershed outlets 213 

(see Supplementary Figure S1), combined with a year-by-year analysis of annual hydrographs 214 

to assess the impact of dam operations on streamflow, (ii) surface area of less than 150,000 215 

km², and (iii) a daily streamflow time series covering a minimum of 10 years between the 1950 216 

and 2018. To address the challenges associated with missing data in the database, we conducted 217 

a visual inspection of hydrographs at each station as illustrated by Supplementary Figure S2. 218 

Years with data gaps near the flood peak were excluded from the analysis to avoid the risk of 219 

missing the true annual peak flood (Wilcox et al., 2018). Through this careful screening 220 

process, we ensured that no AMF values were derived from periods characterized by  a lot of 221 

missing data. It is important to note that the observational streamflow data are not used to 222 

calibrate or drive the hydrological models. Instead, these observations serve as an independent 223 

benchmark to evaluate the ability of the hydrological models to reproduce key flood statistics 224 

during the historical period. The LISFLOOD model was calibrated using the ERA5 reanalysis 225 

dataset, which provides consistent and high-resolution precipitation and temperature fields. 226 

Moreover, ERA5 was also used as a reference for the bias correction of the five climate models 227 
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from the CMIP6 ensemble that were used to drive the hydrological simulations for both the 228 

historical and future periods (see Section 2.4). 229 

 230 

 231 

Figure 1: Spatial distribution of the stations used in this study, covering the three climatic zones 232 

in the West African region, as delimited by the blue isohyets (600 mm and 1200 mm annual 233 

rainfall) on the map. The color of the circles indicates the record lengths of flood data (in years). 234 

The blue lines represent isohyets delimiting West African climatic regions, and the whitegrey 235 

lines indicate the borders of West African countries (African map from NASA 2005). 236 

 237 

2.3 hydrological models 238 

Two grid-based large-scale hydrological models were used to simulate river flows for the 239 

period from 1950 to 2010: the HMF-WA model (the Hydrological Modelling Framework for 240 

West Africa; Rameshwaran et al., 2021) and the Open Source (OS) LISFLOOD model (Van 241 

Der Knijff et al., 2010), thereafter referred to as LISFLOOD. The HMF-WA model is adapted 242 

from the modular HMF model, and enhanced by Rameshwaran et al. (2021) to include 243 

additional key regional hydrological processes in the region such as wetlands, anthropogenic 244 

water use, and endorheic rivers (Rameshwaran et al., 2021). The HMF-WA simulates spatially 245 
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consistent river flows across West Africa at a 0.1° × 0.1° spatial resolution. Although the HMF-246 

WA model has not yet been specifically calibrated to individual West African catchments using 247 

observed flow data where the model hydrology is configured to local conditions using spatial 248 

datasets of physical and soil properties, its evaluation against observational data indicates that 249 

it performs reasonably well in simulating both daily high and low river flows across most 250 

catchments. The median values of NSE (Nash-Sutcliffe efficiency), NSElog and BIAS are 0.62, 251 

0.82 and 0.06 (6 %), respectively (Rameshwaran et al., 2021). The LISFLOOD model is 252 

developed at the Joint Research Centre (JRC) of the European Commission (https://ec-253 

jrc.github.io/lisflood/). LISFLOOD is a hybrid between a conceptual and fully physically based 254 

distributed rainfall-runoff model, designed for simulating the hydrological processes that occur 255 

in a catchment (Van Der Knijff et al., 2010). It supports a range of applications, including flood 256 

forecasting, water resources management, and climate change impact assessments.  The 257 

LISFLOOD version used in this study (OS LISFLOOD v4.1.3) was calibrated using the 258 

discharge stations data described in the previous section, with a 0.05° (~5 km) resolution in its 259 

quasi-global implementation (-180, 180, 90, -60). This version of the LISFLOOD model, in 260 

combination with the 0.05° implementation maps (v1.1.1 openly available from https://global-261 

flood.emergency.copernicus.eu/), has allowed the generation of the latest Copernicus 262 

Emergency Management Service Global Flood Awareness System (CEMS GloFAS v4.0; 263 

https://www.globalfloods.eu/) reanalysis and forecast datasets. The HMF-WA model is 264 

adapted from the modular HMF model, and is designed for large-scale applications across West 265 

Africa (Rameshwaran et al., 2021). It employs a vertically integrated soil moisture scheme to 266 

simulate runoff production, driven by rainfall and potential evaporation inputs. Runoff 267 

generation considers soil drainage and a spatial probability distribution of soil moisture. 268 

Routing is based on a kinematic wave approach (Bell et al., 2007), with parallel pathways for 269 

surface and subsurface flow. Key enhancements over the classical HMF model include 270 

modules to simulate wetland inundation, endorheic basins, and anthropogenic water 271 

withdrawals, making it well-suited for semi-arid environments with complex hydrology 272 

(Rameshwaran et al., 2021). HMF-WA simulates spatially consistent river flows across West 273 

Africa at a 0.1° × 0.1° spatial resolution. Although it has not yet been specifically calibrated to 274 

individual West African catchments using observed streamflow data where the model 275 

hydrology is configured to local conditions using spatial datasets of physical and soil 276 

properties, HMF-WA model evaluation against observational data indicates that it performs 277 

reasonably well in simulating both daily high and low river flows across most catchments. The 278 
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median values of NSE (Nash-Sutcliffe efficiency), NSElog, and  BIAS are 0.62, 0.82, and 0.06 279 

(6 %), respectively (Rameshwaran et al., 2021). 280 

 281 

The LISFLOOD model, developed by the Joint Research Centre (JRC) of the European 282 

Commission (https://ec-jrc.github.io/lisflood/), is a physical, spatially distributed hydrological 283 

model, designed for simulating several hydrological processes that occur in a catchment (Van 284 

Der Knijff et al., 2010). The LISFLOOD model simulates water processes using a three-layer 285 

soil water balance, along with groundwater and subsurface flow models. It accounts for several 286 

processes such as snow accumulation/melt, infiltration, evapotranspiration, groundwater flow, 287 

surface runoff, etc. Moreover, it supports the integration of human influences such as reservoirs 288 

and water abstraction. The numerical LISFLOOD simulation is driven by meteorological 289 

forcing (precipitation, temperature, and evapotranspiration) combined with high-resolution 290 

spatial data on terrain morphology, soil characteristics, land use, and water demand. This 291 

integrated setup allows the model to simulate runoff processes under diverse climatic and 292 

socio-economic conditions, capturing both natural and anthropogenic influences across 293 

heterogeneous landscapes. The runoff produced at every grid cell within the model domain is 294 

routed through the river network using a kinematic wave approach. The LISFLOOD version 295 

used in this study (OS LISFLOOD v4.1.3) was calibrated with a 0.05° (~5 km) resolution in 296 

its quasi-global implementation covering a longitude range from -180° to 180° and a latitude 297 

range from 90° to -60°, using in-situ discharge gauge stations with at least four years of daily 298 

measurements recorded after 1 January 1982. In this setup, model parameters are linked to 299 

global geospatial datasets describing catchment morphology and river networks, land use, 300 

vegetation characteristics, soil properties, lake distribution, and water demand (Salamon et al., 301 

2024; Choulga et al., 2024). The Distributed Evolutionary Algorithms in Python (DEAP; Fortin 302 

et al., 2012) framework was applied to optimize parameters in gauged catchments, with the 303 

modified Kling-Gupta Efficiency (KGE; Gupta et al., 2009) utilized as the objective function. 304 

Calibration was performed over a continuous simulation period using ERA5 reanalysis 305 

meteorological forcing. Due to the varying length and temporal coverage of the discharge 306 

records used for calibration, model performance was assessed using all available observational 307 

data at each station, rather than splitting the records into separate calibration and validation 308 

periods. The LISFLOOD calibration tool is freely available at https://github.com/ec-309 

jrc/lisflood-calibration. 310 

 311 
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Globally, while both models use a kinematic wave routing scheme, HMF-WA and LISFLOOD 312 

differ significantly in their hydrological process representation. HMF-WA applies a vertically 313 

integrated soil moisture scheme with simplified runoff generation based on spatial soil moisture 314 

distribution. In contrast, LISFLOOD features a more detailed, physically-based three-layer soil 315 

model with an explicit representation of groundwater, snow processes, and anthropogenic 316 

influences. Furthermore, LISFLOOD has been calibrated using in-situ discharge data. 317 

Nevertheless, while calibration can enhance the accuracy of discharge simulations, several 318 

studies have highlighted that uncalibrated global hydrological models often exhibit comparable 319 

sensitivity to climate variability as the regional calibrated hydrological models, particularly 320 

when assessing relative changes in extreme events between future and historical periods 321 

(Gosling et al., 2017; Zhao et al., 2025). Therefore, whether a calibrated hydrological model 322 

offers different climate change projections than an uncalibrated model needs further 323 

investigation (Pechlivanidis et al., 2017). 324 

 325 

2.4 Bias-corrected CMIP6 models and scenarios 326 

The sixth phase of the Coupled Model Intercomparison Project (CMIP6) provides simulations 327 

from GCMs for the preindustrial period (1850–2014) and future climate projections (2015–328 

2100) (Noël et al., 2022). To assess future climate impacts on floods, we have used five (5) 329 

daily GCMs rainfall and temperature outputs from the CMIP6 experiments (https://esgf-330 

node.llnl.gov/search/cmip6). Table 1 gives the institute name and references of the CMIP6 331 

climate models used in this study. These GCMS encompass a range of climate sensitivities, 332 

with Equilibrium Climate Sensitivity (ECS) values ranging from 2.98 to 5.34 (IPCC, 2021). 333 

The GCMs were selected based on their availability for the study area. Due to their 334 

accessibility, these GCMs have been widely used for climate impact assessments in Africa 335 

(Dosio et al., 2019; Almazroui et al., 2020; Klutse et al., 2021; Babaousmail et al., 2023; Nooni 336 

et al., 2023). The Cumulative Distribution Function-transform (CDF-t) (Michelangeli et al., 337 

2009) was used to bias-correct the GCMs outputs. The CDF-t approach involves mapping the 338 

cumulative distribution function (CDF) from a GCM in the historical period to the observed 339 

CDF, then applying the same mapping to the GCM’s future CDF (Flaounas et al., 2013; Pierce 340 

et al., 2015; Famien et al., 2018). The CDF-t method requires high-resolution observational 341 

data to work properly. The EWEMBI dataset (E2OBS, WFDEI, and ERA-I data, bias-corrected 342 

for ISIMIP; Frieler et al., 2017; Lange, 2018, 2019) was used to bias-correct the climate 343 

variables to drive the HMF-WA hydrological model. Similarly, the ERA5-land reanalysis 344 
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(Muñoz-Sabater et al., 2021). was used for bias-correcting the GCMs outputs for the 345 

LISFLOOD model. The EWEMBI dataset was developed to support bias correction of climate 346 

input data used in impact assessments in phase 2b of the Inter-Sectoral Impact Model 347 

Intercomparison Project (ISIMIP2b; Frieler et al., 2017). EWEMBI dataset 348 

(https://dataservices.gfz-potsdam.de/pik/showshort.php?id=escidoc:3928916) provides global 349 

spatial coverage with 0.5° x 0.5° spatial and daily temporal resolutions. It integrates multiple 350 

sources, including ERA-Interim reanalysis data (Dee et al., 2011), the WATCH Forcing Data 351 

methodology applied to ERA-Interim (WFDEI; Weedon et al., 2014), the eartH2Observe 352 

forcing dataset (E2OBS; Calton et al., 2016), and the NASA/GEWEX Surface Radiation 353 

Budget data (SRB; Stackhouse Jr. et al., 2011). Meanwhile, the ERA5 dataset is a global 354 

atmospheric reanalysis product developed by the Copernicus Climate Change Service (C3S) at 355 

ECMWF (European Centre for Medium-Range Weather Forecasts ReAnalysis). It is the fifth 356 

generation of atmospheric reanalysis based on 4D-Var (four-dimensional variational) data 357 

assimilation using Cycle 41r2 of the ECMWF Integrated Forecasting System (IFS) (Hersbach 358 

et al., 2020). ERA5 replaces the now outdated ERA-Interim reanalysis (Dee et al., 2011), and  359 

provides global spatial coverage from 1979 until the present, with a finer spatial and temporal 360 

resolution of 0.25° x 0.25° and 1 hour, respectively. The bias-corrected simulations are post-361 

processed onto the 0.1° x 0.1° (~10 km x 10 km) HMF-WA model grid (Rameshwaran et al., 362 

2021, 2022), and onto the 0.05° x 0.05° (~5 km x 5 km) LISFLOOD model grid for the period 363 

1950-2100. CMIP6 models use five Shared Socioeconomic Pathways (SSPs). SSPs are an 364 

updated framework of climate scenarios, building upon the CMIP5 Representative 365 

Concentration Pathways (RCPs) while maintaining consistency in the 2100 radiative forcing 366 

levels. SSPs describe the socioeconomic factors (population growth, economic development, 367 

technological advancements, and governance) which can influence greenhouse gas emissions 368 

and adaptation strategies (O’Neill et al., 2017). Two Shared Socioeconomic Pathways (SSPs) 369 

are analysed in this study: the SSP2-4.5 (Middle of the Road) and the SSP5-8.5 (Fossil-Fueled 370 

Development). Rather than including the full range of SSPs, we focus on SSP2-4.5 and SSP5-371 

8.5 narratives, which represent moderate and high emission trajectories, respectively. SSP2-372 

4.5 is considered as a “middle-of-the-road” scenario, that is consistent with current national 373 

policies and moderate progress towards emission reduction commitments (). In contrast, SSP5-374 

8.5 represents a high emissions pathway, allowing us to explore the upper limits of potential 375 

impacts under continued fossil fuel dependence and minimal climate policy intervention. While 376 

SSP5-8.5 has been criticized as an "overly pessimistic" narrative (Pielke & Ritchie, 2021), it 377 

https://www.zotero.org/google-docs/?SIKZiN
https://www.zotero.org/google-docs/?5lPXW5
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remains widely used in climate impact assessments to evaluate the vulnerability of socio-378 

environmental systems under a “no-climate policy” world. 379 

Table 1: Bias-corrected CMIP6 climate models used in this study 380 

Institute Climate Model References 

Max Planck Institute for Meteorology (Germany) MPI-ESM1-2-HR (Mauritsen et al., 2019) 

Meteorological Research Institute (Japan) MRI-ESM2-0 (Yukimoto et al., 2019) 

Institute Pierre-Simon Laplace (France) IPSL-CM6A-LR (Boucher et al., 2020) 

Met Office Hadley Centre (UK) UKESM1-0-LL (Mulcahy et al., 2020) 

Geophysical Fluid Dynamics Laboratory (USA) GFDL-ESM4 (Dunne et al., 2020) 

 381 

2.5 Evaluation of hydrological models 382 

The two hydrological models are evaluated over the period 1950-2014, which represents a 383 

compromise between the period covered by the ADHI database and the historical CMIP6 GCM 384 

simulations. To achieve this, we use the two-sample Anderson-Darling (AD) test at the 0.05 385 

significance level (Scholz & Stephens, 1986) to compare the distributions of extreme values 386 

observed and simulated by the hydrological models. The null hypothesis of the AD test assumes 387 

that the simulated and observed AMF follow the same statistical distribution. The Block-388 

Maxima approach (Gumbel, 1958) is used to construct extreme value time series, by extracting 389 

the annual maximum flow (AMF) from the daily discharge time series over the period 1950-390 

2014. Unlike the Kolmogorov-Smirnov (KS) test (Berger & Zhou, 2014), which measures the 391 

maximum distance between two cumulative distribution functions (CDFs), the AD test assesses 392 

the overall distance between these CDFs, giving more weight to the tails of distributions. As a 393 

result, the AD test is more sensitive than the KS test in the tails of distributions and is therefore 394 

more suitable for comparing extreme values distributions (Engmann & Cousineau, 2011). That 395 

said, the AD test also has a limitation as the reliability of an empirical CDF can be affected by 396 

small sample sizes, particularly in the tails of the distribution. The performance of each 397 

hydrological model is given here by the proportion of CMIP6 simulations (among the 5) for 398 

which the AD test has failed. It is important to note that the AD test is only used herein to 399 

assess regional-scale performance of hydrological models, and not as a filtering criterion for 400 

inclusion or exclusion of models or stations. 401 
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 402 

2.6 Extremes Values Analysis Framework 403 

2.6.1 The Generalized Extreme Value Distribution 404 

According to the theory of extreme values, based on the Fisher–Tippett theorem, the 405 

Generalized Extreme Value (GEV) is the limiting distribution of independent and identically 406 

distributed random variables (Coles, 2001). The GEV is among the most frequently used 407 

distributions for extreme value analysis. It is a continuous three-parameter distribution that can 408 

account for non-stationarity, which refers to changes in statistical properties over time. This is 409 

achieved by allowing the parameters to vary as a function of time or other covariates (Hamdi 410 

et al., 2018; Wilcox et al., 2018). We, therefore, used the GEV to model the AMF series from 411 

each hydrological model simulations forced with the five CMIP6 climate models at each 412 

catchment. There are three parameters (location, scale and shape) in the GEV distribution 413 

(Hossain et al., 2021). In flood frequency analysis, each GEV parameter plays a distinct role in 414 

understanding and projecting flood behaviour, thus guiding effective flood risk management 415 

(Lawrence, 2020; Wasko et al, 2021). The location parameter (μ) indicates the central tendency 416 

of flood magnitudes, with higher values suggesting a shift towards more frequent or severe 417 

floods. The scale parameter (σ) measures the variability or dispersion of the distribution, with 418 

larger values indicating greater uncertainty and a broader range of flood magnitudes. The shape 419 

parameter (ξ) governs the tail behaviour of the distribution, with heavier tails suggesting an 420 

increased probability of extreme flooding events. This parameter is crucial for assessing the 421 

risk of rare floods and informing the design infrastructure to withstand such extremes.The 422 

shape parameter (ξ) governs the tail behaviour of the GEV distribution, which encompasses 423 

three types of extreme value distributions (Coles, 2001): (i) a positive  shape parameter (ξ > 0) 424 

indicates a heavy-tailed Fréchet case (Fréchet, 1927), suggesting an increased probability of 425 

extreme flooding events, (ii) a null shape parameter (ξ = 0) suggests a light-tailed Gumbel class 426 

(Gumbel, 1958), and (iii) a negative shape parameter (ξ < 0) indicates a short-tailed or 427 

(bounded) negative-Weibull distribution (Weibull, 1951). This parameter is crucial for 428 

assessing the risk of rare floods and informing the design infrastructure to withstand such 429 

extremes. Equation (1) presents the cumulative distribution function (CDF) of the GEV (Coles, 430 

2001).  431 

 
𝐹(𝑥; 𝑢, 𝛼, 𝜉) = 𝑒𝑥𝑝 {− [1 − 𝜉

(𝑥−𝑢)

𝛼
]

1/𝜉

}     𝜅 ≠ 0 
(1) 
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 𝐹(𝑥; 𝜉, 𝛼) = 𝑒𝑥𝑝 {−𝑒𝑥𝑝 [−
(𝑥−𝑢)

𝛼
]}            𝜅 = 0   

 432 

Where 𝑥, 𝑢, 𝛼, et 𝜉 are the data, location, scale, and shape parameters respectively, and (𝑢 +433 

𝛼/𝜉) ≤ 𝑥 < ∞  if  𝜉 < 0 ;  −∞ < 𝑥 < ∞  if 𝜉 = 0 ;  −∞ < 𝑥 ≤ (𝑢 + 𝛼/𝜉) if𝜅 > 0. 434 

 435 

Efficiently estimating the GEV parameters is crucial for the precise characterization and 436 

analysis of extreme events (Rai et al., 2024). We have used the Generalized (Penalized) 437 

Maximum Likelihood Estimation (GMLE) method (Martins & Stedinger, 2000) to estimate the 438 

GEV parameters in a non-stationary context.We have used the Generalized (Penalized) 439 

Maximum Likelihood Estimation (GMLE) method (Martins & Stedinger, 2000) to estimate the 440 

GEV parameters in a non-stationary context, by allowing the model parameters to vary with 441 

time (Coles, 2001). The GMLE method overcomes the limitations of the well-known MLE 442 

(Fisher, 1992) method for small sample size (Hossain et al., 2021). To achieve this, Martins & 443 

Stedinger (2000) used a beta distribution (with shape parameters p = 6 and q = 9) as a prior to 444 

constraint the values of the GEV shape parameter in the interval [-0.5, +0.5], avoiding large 445 

negative values of the shape parameter. This approach has been used in several studies to 446 

estimate the GEV parameters in both stationary and non-stationary contexts (El Adlouni et al., 447 

2007; Panthou et al., 2013; Tramblay et al., 2024). However, the original prior distribution 448 

from Martins & Stedinger (2000) is not well-suited for West Africa, as it results in shape 449 

parameter estimates below -0.5 for several stations, as illustrated in Supplementary Figure S32. 450 

Here, we therefore use a normal distribution as a prior for the GMLE method. This normal 451 

distribution is fitted to the GEV shape parameter values estimated on 98 AMF series spanning 452 

a minimum of 20 years over the period 1950-2018 from the ADHI database Tramblay et al. 453 

(2021) using the L-moments method (Hosking, 1990). The newly developed regional prior, 454 

modelled as a normal distribution, has a mean of -0.24 and a standard deviation of 0.16 (see 455 

Supplementary Figure S2).The newly developed regional prior, modelled as a normal 456 

distribution, has a mean of -0.24 and a standard deviation of 0.16 (see Supplementary Figure 457 

S3), and is used to fit the GEV distribution to the historical and projected annual peak flood 458 

time series generated by hydrological models driven by the CMIP6 GCMs. 459 

 460 

 461 

2.6.2 Determining magnitude and direction of changes in flood events 462 
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To analyse future changes in floods, we compare two 30-year future periods (a near-term future 463 

[2031–2060] and a long-term future [2071–2100]) to a reference historical period (1985-2014) 464 

at stations where there is a good fit between observed (OBS) AMF series and hydrological 465 

models simulations (HIST) according to the Anderson-Darling (AD) test (at 0.05 level), and 466 

also in stations at which the null hypothesis of the AD test is rejected. We have chosen to work 467 

with the 2-year and 20-year floods to analyse the impacts of climate change in West Africa. 468 

The 2-year return period indicates relatively frequent flood events, and this information is 469 

essential for understanding and managing risks associated with flooding. The 20-year flood 470 

event is frequently used for comparative purposes in various studies, as it balances the rarity of 471 

extreme events (data length limitations) and the uncertainty in the estimated return levels 472 

(Dawson et al., 2005; Tramblay & Somot, 2018; Han et al., 2022). Thus, the 2- and 20-year flood 473 

quantiles are computed at each station for the three 30-year periods using the GEV model fitted 474 

to the AMF series by the GMLE method. Changes in flood are quantified in this study by 475 

computing the ratio of the difference between the future flood quantile (Qfuture) and the 476 

historical flood quantile (Qhist) to Qhist itself. To assess the statistical significance of the 477 

differences between the historical and future flood quantiles, we have used the parametric 478 

bootstrapping approach. After estimating the GEV distribution parameters, we have generated 479 

2500 simulations of annual peak floods for each subperiod (with each simulation representing 480 

a sample of 30 data points). We have then recomputed the 2-year and 20-year flood quantiles 481 

for each simulation. The significance of the differences between the quantiles was evaluated at 482 

the 0.05 level. It is crucial to consider the degree of consensus among multiple climate models 483 

to reduce the potential noise in the projections and reach robust conclusions (Awotwi et al., 2021; 484 

Dosio et al., 2021). Here we have computed a multi-model index of agreement (MIA) as 485 

introduced by Tramblay & Somot (2018), to present the results in terms of the proportion of 486 

CMIP6 models projecting significant change for each station. The MIA allows the assessment 487 

of the robustness of climate model projections, ensuring cross-catchment comparability due to 488 

its standardised scale ranging from -1 to 1, according to the direction of change (i.e., MIA = 1 489 

(-1) if all models project an increasing (decreasing) trend). 490 

𝑀𝐼𝐴 =
1

𝑛
(∑ 𝑖𝑚

𝑛
𝑖=𝑚 )                                                           (2) 491 

From equation (6), for a given CMIP6 model (m), im = 1 for regionally significant upward 492 

trends, im = -1 for significant negative trends, and im = 0 when no significant trends are detected, 493 

across n climate simulations. 494 
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 495 

2.6.3 Determining temporal functions for GEV parameters and modelling of non-496 

stationary extreme values 497 

While the previous section focused on the magnitude and direction of changes in flood events 498 

under different scenarios, this section describes the methodology used to identify when these 499 

changes began. Understanding how the parameters of the GEV distribution might shift under 500 

future climate scenarios is a critical question that needs to be addressed given the accelerating 501 

impacts of global warming on environmental conditions. Answering this question can inform 502 

a more reliable modelling process to estimate flood quantiles. Several studies have suggested 503 

that both the location and scale parameters of the GEV distribution should be adjusted 504 

proportionally to account for the effects of climate change (Stedinger & Griffis, 2011; 505 

Prosdocimi & Kjeldsen, 2021; Jayaweera et al., 2024). Here, to determine the appropriate 506 

temporal function for the non-stationary GEV, the trends in GEV parameters are detected using 507 

the non-parametric Mann-Kendall test (Mann, 1945; Kendall, 1975). As the test is applied to 508 

parameters estimated over moving windows, it is important to note that temporal correlation is 509 

introduced, which can bias the results of the original Mann-Kendall test, as it assumes 510 

independence of observations. To address this, we have applied a modified version of the test 511 

based on the Hamed & Rao (1998) variance correction approach, specifically adapted for 512 

serially correlated data. A window size of 30 years has been selected to ensure sufficient data 513 

to fit the SGEVstationary GEV model (SGEV), with a total of 121 windows. For each window, 514 

each hydrological model (LISFLOOD and HMF-WA) and each climate scenario (SSP2-4.5 515 

and SSP5.8-5), the SGEV is fitted to AMF series from the averaged hydrological simulations 516 

driven by data from the CMIP6 models. The Mann-Kendall test is then applied to the series of 517 

estimated parameters at the 0.05 significance level. 518 

 519 

Based on the results of the trend analysis of the GEV parameters, the location (µ) and scale (σ) 520 

parameters are expressed as linear functions of time, denoted as µ(t) and σ(t), while the shape 521 

parameter remains constant. Thus, the non-stationary GEV model involves a vector 522 

ψ=[μ0;μ1;σ0:σ1:ξ] of five unknown parameters. We have decided to keep the shape parameters 523 

constant because it is uncommon for researchers to model all three GEV parameters as 524 

covariate-dependent functions. Indeed, adding this level of complexity can significantly 525 

complicate the model parameters estimation, particularly the shape parameter (Katz, 2013; 526 
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Papalexiou & Koutsoyiannis, 2013). Allowing any starting date (year t0) of a possible 527 

significant trend in the GEV location and scale parameter, we have considered three cases of 528 

the non-stationary GEV (NSGEV; cf. Equations 3-5):  529 

 530 

● Case 1 (GEV1): a linear trend with no breakpoint (i.e., a single trend over the entire 531 

record for both the location and scale parameters): 532 

      μ(t) = μ0 + μ1t ; σ(t) = σ0 + σ1t                            for    t ≤ t0 (3) 

 533 

● Case 2 (GEV2): a linear trend after a breakpoint (i.e., the location and scale parameters 534 

are constant before the year t0 and linearly dependent on time after t0): 535 

μ(t) = μ0 ; σ(t) = σ0                                              for    t ≤ t0 

μ(t) = μ0 + μ1(t-t0) ; σ(t)  = σ0 + σ1(t-t0)              for    t ≥ t0 
(4) 

 536 

● Case 3 (GEV3): both trends before and after a breakpoint are considered (i.e., a linear 537 

trend before and after year t0 for both location and scale parameters): 538 

μ(t) = μ0 + μ1(t0-t) ; σ(t) = σ0 + σ1(t0-t)              for    t ≤ t0 

μ(t) = μ0 + μ1(t-t0) ; σ(t) = σ0 + σ1(t-t0)              for    t ≥ t0 
(5) 

 539 

Unlike in Wilcox et al. (2018), where breakpoints are defined independently for μ(t) and σ(t), 540 

in the present study, we assume a common breakpoint for both parameters. This means that 541 

both μ(t) and σ(t) change simultaneously at the same point in time. To ensure that the NSGEV 542 

model is fitted with sufficient data, the first start year is set no earlier than 20 years after the 543 

beginning of the time series (1950) and the last start year is set no later than 20 years before 544 

the end of the time series (2100). Thus, the possible starting years of change (t0) fall between 545 

1970 and 2070. There are as many NSGEV models as there are breakpoints or starting years, 546 

and the non-stationary model with the highest log-likelihood is selected (see Supplementary 547 

Figure S43). The procedure described above is inspired by several studies that focused on 548 

detecting trends in hydroclimatic time series using non-stationary GEV (Hawkins & Sutton, 549 

2012; Panthou et al., 2013; Blanchet et al., 2018; Hamdi et al., 2018; Tramblay & Somot, 2018; 550 

Wilcox et al., 2018). 551 

 552 

Once the best breakpoint has been determined for each time-varying GEV model based on the 553 

log-likelihood profile, the trend models (GEV1, GEV2 and GEV3) are compared with each 554 
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other using the Akaike information criterion (AIC; Akaike, 1974). The AIC criterion is widely 555 

used to compare multiple statistical models by assessing their goodness-of-fit. It accounts for 556 

the trade-off between a model's fit to the data and its complexity, by penalising for more 557 

complex models. While a more complex model may provide a better fit, it often does not 558 

provide sufficient improvement to justify the addition of extra parameters (Wilcox et al., 2018). 559 

Thus, the AIC is well-suited for evaluating the performance of non-stationary GEV models. 560 

Furthermore, a deviance test (D) based on likelihood ratio (LR; Coles, 2001) is performed at 561 

the 0.05 significance level between the best GEV trend model selected previously based on the 562 

AIC criterion and the stationary GEV model (SGEV). The LR test allows us to determine the 563 

best model between two competing nested models by comparing the D-statistic given by 564 

Equation (6) to the chi-square (ꭙ2) distribution. 565 

D = 2{log(MLNSGEV) - log(MLSGEV)}                                                    (6) 566 

From Equation (6), D represents the deviance test statistic value (referred to as D-statistic 567 

above), log(MLNSGEV) and log(MLSGEV) are the maximised log-likelihood functions of the 568 

NSGEV and the SGEV, respectively. Letting c⍺ be the (1 - ⍺) quantile of the chi-square 569 

distribution (where ⍺ represents the level of significance), with υ degrees of freedom equal to 570 

the difference in the number of model parameters between the non-stationary and stationary 571 

models, the non-stationary GEV is accepted at the level ⍺ if the D-statistic is greater than c⍺, 572 

meaning a significant trend in the data.  573 

To reduce Type 1 errors (Mudge et al., 2012) that could arise from the deviance test based on 574 

the likelihood ratio and assess the field significance of the detected local trends, the False 575 

Discovery Rate (FDR) procedure is implemented (Hochberg & Benjamini, 1995). The FDR 576 

procedure aims to reduce the proportion of false positives among the null hypothesis local 577 

rejections by adjusting the vector of p-values from the set of at-site tests (Wilks, 2006). The 578 

FDR approach has been used in many studies of hydroclimatic variables due to its advantages 579 

over other methods, such as dealing with spatial autocorrelation (Khaliq et al., 2009). For 580 

consistency with local deviance and MK tests, the FDR procedure is computed at 0.05 global 581 

significance level (αglobal). The FDR test rejects the local null hypothesis when the 582 

corresponding p-value is lower than αglobal. If the null hypothesis is rejected at least once within 583 

the study area, field significance is then declared (Wilks, 2016).The null hypothesis of the 584 

deviance test assumes that the stationary GEV model provides a better fit to the data than the 585 

non-stationary model, indicating that there is no significant trend in the AMF. However, the 586 
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presence of spatial cross-correlations across stations may bias the results of simultaneous 587 

multiple local tests by increasing the likelihood of detecting false positives (Farris et al., 2021). 588 

To assess the field significance of local trends detected in AMF series in the study area, we 589 

implement the False Discovery Rate (FDR) procedure (Hochberg & Benjamini, 1995). The 590 

FDR’s null hypothesis assumes that none of the stations across the region exhibits a significant 591 

trend in AMF (i.e., all local null hypotheses are actually true). The FDR aims to reduce Type 592 

1 errors (Mudge et al., 2012), by adjusting the vector of p-values from the set of at-site tests 593 

(Wilks, 2006). Due to its advantages over other methods, such as dealing with spatial 594 

autocorrelation, the FDR approach has been used in many studies of hydroclimatic variables 595 

(Khaliq et al., 2009). For consistency with local deviance and MK tests, the FDR procedure is 596 

computed at 0.05 global significance level (αglobal). The FDR test rejects the local null 597 

hypothesis when the corresponding FDR-adjusted p-value is lower than αglobal. Field 598 

significance is declared if the local null hypothesis is rejected at least once within the study 599 

area (Wilks, 2016). 600 

 601 

 602 

3 Results and discussions 603 

3.1 Assessing the performance of hydrological models 604 

The two hydrological models' performance is assessed over the period 1950-2014 by applying 605 

the two-sample Anderson-Darling (AD). The results of the statistical evaluation of the two 606 

hydrological models are shown in Figure 2. The performance of each model at each station is 607 

assessed based on the proportion of CMIP6 models that fail the Anderson-Darling test at the 608 

0.05 significance level. Specifically, if more than two out of five CMIP6 simulations fail the 609 

test at a given station, the hydrological model is considered to perform poorly at that station. 610 

Considering this evaluation criterion, the LISFLOOD hydrological model performs well at 64 611 

% of the stations, while the HMF-WA model performs satisfactorily at only 24 % of the stations 612 

(Figure 2). Although both models are semi-physically based and spatially distributed, the 613 

LISFLOOD model outperforms the HMF-WA model in simulating extreme flows in West 614 

Africa (Figure 2). This difference in performance can be attributed to several factors: (i) the 615 

LISFLOOD model was run at a finer resolution (0.05° x 0.05°) compared to the coarser 616 

resolution of 0.1° x 0.1° used by the HMF-WA model (Rameshwaran et al., 2021); (ii) the 617 

HMF-WA model includes fewer meteorological forcings and only a limited number of 618 
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hydrological processes (specifically wetlands, anthropogenic water use, and endorheic rivers), 619 

whereas the LISFLOOD model can incorporate over 70 different processes depending on the 620 

target application (i.e., rainfall-runoff transformation, flood and drought forecasting) and the 621 

required level of configuration (more detailed information on the configuration of LISFLOOD 622 

can be found at https://ec-jrc.github.io/lisflood-model; and (iii) the HMF-WA model has not 623 

been calibrated to individual west African catchment conditions with observed flow data 624 

(Rameshwaran et al., 2021). In contrast, the LISFLOOD model, in its quasi-global 625 

implementation, has been calibrated using in-situ discharge observations covering several river 626 

basins worldwide, including most West African basins, and with discharge time series spanning 627 

at least four years after 01 January 1980. Consequently, while the distributed nature of the 628 

HMF-WA model aims to improve the understanding of regional climate change impacts in a 629 

spatially coherent manner across West Africa, it does not necessarily lead to better modelling 630 

of extreme flows in the various climates and socioeconomic contexts of the region without 631 

calibration. Although both models are semi-physically based and spatially distributed, the 632 

LISFLOOD model outperforms the HMF-WA model in simulating extreme flows in West 633 

Africa (Figure 2). These findings are consistent with those of Ekolu et al. (2025), who reported 634 

that the LISFLOOD model effectively simulates the hydrological cycle and captures the 635 

specific characteristics of hydrological droughts and floods in West Africa. This difference in 636 

performance can be attributed to several factors: (i) the LISFLOOD model was run at a finer 637 

resolution (0.05° x 0.05°) compared to the coarser resolution of 0.1° x 0.1° used by the HMF-638 

WA model (Rameshwaran et al., 2021); (ii) the HMF-WA model includes fewer 639 

meteorological forcings and only a limited number of hydrological processes (specifically 640 

wetlands, anthropogenic water use, and endorheic rivers), whereas the LISFLOOD model can 641 

incorporate over 70 different processes depending on the target application (i.e., rainfall-runoff 642 

transformation, flood and drought forecasting) and the required level of configuration (more 643 

detailed information on the configuration of LISFLOOD can be found at https://ec-644 

jrc.github.io/lisflood-model; and (iii) the HMF-WA model has not been calibrated to individual 645 

west African catchment conditions with observed flow data, and its performance depends on 646 

the accuracy of spatial datasets of physical and soil properties (e.g., wetlands, anthropogenic 647 

water use, and endorheic rivers) used to configure the model’s hydrology to local conditions 648 

(Rameshwaran et al., 2021). In contrast, the LISFLOOD model has been regionally calibrated 649 

using in-situ discharge observations, with discharge time series spanning at least four years 650 

after 01 January 1982. Consequently, while the distributed nature of the HMF-WA model aims 651 

to improve the understanding of regional climate change impacts in a spatially coherent manner 652 
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across West Africa, it does not necessarily lead to better modelling of extreme flows in the 653 

various climates and socioeconomic contexts of the region without calibration. Runoff 654 

generation is inherently a spatially distributed process. As such, the spatial resolution of a 655 

distributed hydrological model can significantly affect its ability to capture spatial variability 656 

of key watershed characteristics, such as topographic features, land cover heterogeneity, and 657 

precipitation gradients (Wolock & Price, 1994; Haddeland et al., 2002). A coarser spatial 658 

resolution limits the level of detail that can be represented in hydrological simulations, 659 

potentially overlooking important small-scale processes. Furthermore, as hydrological models 660 

are simplified representations of complex watershed processes, a calibration phase is often 661 

necessary to compensate for limited information on spatial variability of physiographical and 662 

meteorological catchments attributes, and to improve model performance in simulating the 663 

watershed's hydrological cycle (Bruneau et al., 1995). However, many river basins in West 664 

Africa have a limited number of in situ observational networks to provide the current state of 665 

hydrological information (Ndehedehe, 2019). This limits the optimal parameterization of large-666 

scale hydrological models and may introduce uncertainties in model outputs. In addition, the 667 

satisfactory performance of the LISFLOOD model indicates that, although a flood-centered 668 

calibration approach could potentially improve its ability to capture extreme flows and their 669 

trends (Wasko et al., 2021), the current model setup provides a satisfactory basis for regional-670 

scale flood trend assessments. 671 

 672 
Figure 2: Statistical evaluation of the two hydrological models: a) Two-sample Anderson-673 

Darling (AD) goodness-of-fit (GOF) test at 0.05 statistical significance level at each station 674 

between the AMF of daily OBS from the ADHI database and annual maxima flow of HIST 675 

from LISFLOOD daily simulations forced with the five CMIP6 GCMs (GFDL, IPSL, MPI, 676 

MRI, and UKESM) over the period 1950-2014. b) same as a) but using HMF-WA as 677 

hydrological model. The Performance of each hydrological model is given by the proportion 678 

of CMIP6 simulations for which the AD test has failed. The circles show stations where 60-679 
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100 % of CMIP6 models fail the test, and squares represent stations where 0–20 % of CMIP6 680 

models fail the AD test. 681 

 682 

 683 

Figure 2: Statistical evaluation of the two hydrological models: a) Two-sample Anderson-684 

Darling (AD) goodness-of-fit (GOF) test at 0.05 statistical significance level at each station 685 

between the AMF of daily OBS from the ADHI database and annual maxima flow of HIST 686 

from LISFLOOD daily simulations forced with the five CMIP6 GCMs (GFDL, IPSL, MPI, 687 

MRI, and UKESM) over the period 1950-2014. b) same as a) but using HMF-WA as 688 

hydrological model. The fill color of the markers indicates the proportion of CMIP6 models 689 

(out of five) for which the AD test null hypothesis (i.e., simulated and observed AMF follow 690 

the same statistical distribution) is rejected at the 0.05 significance level. Marker shapes 691 

correspond to binned categories of this proportion, as indicated in the legend.      692 

 693 

To further assess the performance of the hydrological models in capturing extreme flows, we 694 

computed the Relative Bias between the AMF simulated by the LISFLOOD-CMIP6 and HMF-695 

WA-CMIP6 hydrological models and the observed AMF from the ADHI database. This 696 
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comparison was performed over the historical period (1950–2014), focusing on the 697 

climatological characteristics of AMF (median values) rather than on year-to-year 698 

correspondence. This approach allows us to evaluate whether the hydrological models tend to 699 

overestimate or underestimate flood peaks, considering climate models individually. As shown 700 

in Figure 3, the HMF-WA model consistently shows a negative relative bias across all GCMs, 701 

with median values ranging from -52 % (IPSL) to -46 % (UKESM) across the region. These 702 

negative biases suggest a tendency of the HMF-WA model to underestimate peak flow. The 703 

LISFLOOD model, in contrast, shows lower bias than the HMF-WA model, with a mix of 704 

slight underestimations and even overestimations (Figure 3). For instance, the median values 705 

for the LISFLOOD model simulations range from -14 % (MPI) to 7 % (GFDL). Although the 706 

LISFLOOD model also shows negative biases with most GCMs, such as IPSL, MPI, MRI, and 707 

UKESM, the magnitude of these biases is much smaller compared to the HMF-WA model. 708 

Nevertheless, whether a calibrated hydrological model offers more reliable climate change 709 

projections than an uncalibrated model, which may perform less accurately in reproducing 710 

historical conditions (Pechlivanidis et al., 2017), remains questionable. Examining whether 711 

their capacity to simulate hydrological responses to historical climate is influencing projected 712 

trends for climate change impacts remain important, especially considering that most 713 

projections of climate change impacts on African hydrological trends were produced using 714 

uncalibrated models (Davie et al., 2013; Sauer et al., 2021). 715 

 716 

Figure 3: Relative bias (percentages) computed between simulated AMF from LISFLOOD-717 

CMIP6 and HMFWA-CMIP6 hydrological models’ simulations, and observed AMF from the 718 

ADHI database, for the historical period (1950-2014). 719 

 720 

3.2 Magnitude and direction of changes in flood events 721 
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To analyse changes in floods, we have compared two 30-year future periods (a near-term future 722 

[2031–2060] and a long-term future [2071–2100]) to a reference historical period (1985-2014). 723 

To achieve this, we have fitted the GEV distribution the AMF series of each model simulation 724 

using the GMLE method. Then, the 2- and 20-year flood quantiles are computed at each station 725 

for the three 30-year periods. Figure 4 shows the MIA on the direction of changes in the 2-year 726 

and 20-year floods for the near-term and long-term futures, from both LISFLOOD and HMF-727 

WA models simulations under SSP2.4-5 and SSP5.8-5 scenarios. Despite their differences in 728 

terms of hydrological processes representation (model structures) and input data, the two 729 

hydrological models generally projected consistent impacts of climate change on future floods 730 

across the West African region. Both hydrological models consistently project an increase 731 

(positive change) in floods in the near-term and long-term futures across West Africa (Figure 732 

4).  733 

In the near-term future (2031–2060), there is a high level of agreement in projecting positive 734 

changes in the 2-year flood event under both SSP2-4.5 and SSP5-8.5 scenarios. The 735 

simulations of the LISFLOOD and HMF-WA models show strong agreement across the 736 

CMIP6 models. Under SSP2-4.5, the MIA values range from -0.2 to 1 for the LISFLOOD 737 

model (Figure 4a-1), and from -0.2 to 0.8 for the HMF-WA model (Figure 4b-1). This 738 

agreement increases for both hydrological models under SSP5-8.5, with MIA values falling 739 

between -0.2 and 1 for both LISFLOOD (Figure 4a-3) and HMF-WA models (Figure 4b-3). 740 

The consistent climate change impact projections suggest that more frequent flood events are 741 

expected to become increasingly common across the West African region. For the 20-year 742 

flood event, which is less frequent but more severe, MIA values range from -0.2 to 0.8 (-0.2 to 743 

1) and from 0 to 0.8 (0 to 1) under the SSP2-4.5 (SSP5-8.5) for the LISFLOOD (Figure 4a-2 744 

and Figure 4a-4) and HMF-WA (Figure 4b-2 and Figure 4b-4) models, respectively.  745 

 746 

In the long-term future (2071–2100), considering the 2-year flood, MIA values range from -747 

0.6 to 1 (-0.6 to 0.8) and from -0.6 to 0.6 (0.4 to 0.8) under the SSP2-4.5 (SSP5-8.5) for the 748 

LISFLOOD (Figure 4a-5 and Figure 4a-7) and HMF-WA (Figure 4b-5 and Figure 4b-7) 749 

models, respectively. For the 20-year flood, model agreement in projecting the positive changes 750 

in flood magnitude remains relatively high, with MIA values ranging from -0.4 to 0.6 (-0.4 to 751 

0.8) and from 0 to 0.6 (-0.2 to 0.8) under the SSP2-4.5 (SSP5-8.5) for the LISFLOOD (Figure 752 

4a-6 and Figure 4a-8) and HMF-WA (Figure 4b-6 and Figure 4b-8) models, respectively. It is 753 

also worth noting that negative changes are projected in the 2-year flood in the long-term future 754 
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in a few sets of catchments located in the western part of the region (Figure 4a-5, 4a-7, 4b-5 755 

and 4b-7). This area is also projected to experience a decrease in annual rainfall when looking 756 

at the full CMIP6 ensemble (IPCC, 2021). However, the agreement between the CMIP6 models 757 

remains very weak, indicating a lower confidence in the robustness of these negative changes 758 

compared to the regional pattern. Overall, the agreement between the CMIP6 and the 759 

hydrological models is higher for the near-future than for the long-term future, reflecting 760 

increased uncertainty as the projection timeline extends. 761 

 762 

 763 

Figure 4: Spatial distribution of the multi-model index of agreement (MIA) on the direction of 764 

changes in 2-year and 20-year flood events for the near-term (2031-2060) and long-term (2071-765 

2100) futures, compared to the historical reference period (1985-2014). This analysis combines 766 

simulations from: (a) LISFLOOD and (b) HMF-WA hydrological models, forced with five 767 

bias-corrected CMIP6 models (GFDL, IPSL, MPI, MRI, and UKESM), under the SSP2.4-5 768 

(a1 to a4 and b1 to b4) and SSP5.8-5 (a5 to a8 and b5 to b8) scenarios. Flood quantiles are 769 

estimated using the GEV distribution fitted with the GMLE method. Negative change (decrease 770 

in flood quantiles) is represented by shades of blue, and positive change (increase in flood 771 

quantiles) is represented by shades of red. 772 

 773 

Figure 5 summarises the projected climate impacts on floods in the near-term (2031-2060) and 774 

long-term (2071-2100) futures in West Africa across the different CMIP6 models (GFDL, 775 

IPSL, MPI, MRI, and UKESM). Both hydrological models' simulations consistently suggest 776 
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strong changes in floods, with most median values falling above the zero-change baseline.  777 

Considering the CMIP6 models' projections individually in the near-future, under both SSP2-778 

4.5 (Figure 5a) and SSP5-8.5 (Figure 5b) scenarios, the most pronounced changes are obtained 779 

for both hydrological models when forced with IPSL, MRI, and UKESM models. These near-780 

term projections highlight the potential for more frequent extreme flood events, leading to 781 

increased flood risks and greater socioeconomic vulnerability in the West African region. In 782 

the long-term future, the distribution of flood trends is quite consistent between the two 783 

hydrological models, and the variability stems only from GCMs. For instance, under SSP2-4.5, 784 

the variability between the different CMIP6 models is very pronounced, with most projections 785 

showing relatively modest changes compared to the SSP5-8.5 scenario, where most of the 786 

GCM agree for a positive change in floods magnitudes. 787 

 788 

Figure 5: Synthesis of the projected changes in the 2-year and 20-year floods in West Africa 789 

from the LISFLOOD (black boxplots) and HMF-WA (grey boxplots) model simulations forced 790 

with the five CMIP6 GCMs (GFDL, IPSL, MPI, MRI, and UKESM), under both SSP2-4.5 791 

(top row) and SSP5-8.5 (bottom row) climate scenarios, for the near-term (2031-2060) and the 792 

long-term (2071-2100) futures. The climate signal (y-axis) refers to the relative change in flood 793 

magnitude, computed as the difference between the future flood quantile (Qfuture) and the 794 

historical flood quantile (Qhist), normalized by Qhist. The black dotted line represents the zero-795 

change baseline. 796 

 797 

To further assess the agreement between the two hydrological models, Figure 6 shows the 798 

scatter plots illustrating how projected changes (Δ Flood) in floods compares between 799 
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LISFLOOD and HMF-WA model simulations. Overall, both models project positive change 800 

in floods in West Africa regardless of the climate scenario considered. Indeed, most data points 801 

fall above the zero-change baseline, indicating a global positive change in floods from both 802 

hydrological model simulations (Figure 6). To confirm the agreement between the two models, 803 

we have computed the Spearman coefficient (ρ) between the projected multi model mean 804 

changes in floods (Δ Flood) from the simulations of the LISFLOOD and HMF-WA models.To 805 

further assess the agreement between the two hydrological models, Figure 7 displays how the 806 

projected multi model mean changes in floods (ΔFlood) compares between LISFLOOD and 807 

HMF-WA model simulations. Overall, both models project positive change in floods in West 808 

Africa regardless of the considered SSP scenario. Indeed, most data points fall above the zero-809 

change baseline, indicating a global positive change in floods from both hydrological model 810 

simulations (Figure 7). To confirm the agreement between the two models, we have computed 811 

the Spearman coefficient (ρ) between the ΔFlood from the simulations of the LISFLOOD and 812 

HMF-WA models. Supplementary Table S1 gives the Spearman coefficient (ρ) values for the 813 

2-year and the 20-year floods, under the SSP2-4.5 and SSP5-8.5 scenarios. The correlation 814 

analysis shows that the agreement between the two models is particularly pronounced. under the SSP5-815 

8.5 scenario, suggesting a stronger influence of climatic changes under the high emissions 816 

scenario. In the near-term future, the Spearman correlation coefficient is 0.75 (0.64) for the 2-817 

year (20-year) floods. In the long-term future, the correlation remains high, with 0.72 (0.70) 818 

for the 2-year (20-year) floods, suggesting that the models continue to show strong agreement, 819 

even for long-term projections. These results indicate a relatively high level of consistency 820 

between the two hydrological models for projecting future flood changes, despite the 821 

systematic biases in HMF-WA model over the reference historical period. Thus, using both 822 

models, the climate forcing has more importance than the hydrological representation itself. 823 
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 824 

Figure 6: Comparison of projected multi model mean changes in flood (Δ Flood) between 825 

LISFLOOD and HMF-WA hydrological models, under SSP2.4-5 and SSP5.8-5 scenarios, for 826 

the near-term (2031-2060) and the long-term futures (2071-2100), compared to the historical 827 

reference period (1985-2014). The gray dashed lines represent the zero-change baseline and 828 

the red diagonal line represents the theoretical 1:1 line where projected changes from both 829 

hydrological models would be identical. 830 

 831 

Figure 6: Comparison of projected multi model mean changes in flood (ΔFlood) between 832 

LISFLOOD and HMF-WA hydrological models, under SSP2.4-5 (top row) and SSP5.8-5 833 

(bottom row) scenarios, for the near-term (2031-2060) and the long-term futures (2071-2100), 834 

compared to the historical reference period (1985-2014). The blue dashed lines represent the 835 

zero-change baseline and the red diagonal line represents the theoretical 1:1 line where 836 

projected changes from both hydrological models would be identical. 837 
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The relative magnitude of change in floods was also analysed by computing the mean relative 838 

change. (i.e., ratio of the difference between the flood quantiles of the future periods and the 839 

reference historical period) across CMIP6 models for each hydrological model. The spatial 840 

distribution of the magnitude of changes, as simulated with the LISFLOOD and HMF-WA 841 

hydrological models under both SSP2-4.5 and SSP5-8.5, is shown in Figure 7a and Figure 7b, 842 

respectively. Supplementary Table S32 summarises the overall mean relative change in floods 843 

across the region from both hydrological model’s simulations. The two hydrological models 844 

consistently project an increase in future floods across the West African region, with flood 845 

magnitudes at most sites exceeding 50 %, particularly under SSP5-8.5 (Figure 7a-3, 7a-4, 7a-846 

7, 7a-8, 7b-3, 7b-4, 7b-7, and 7b-8). These results are consistent with previous studies that 847 

argued for the ongoing rising trend in extreme streamflow across the West African catchments 848 

(Nka et al., 2015; Aich et al., 2016; Wilcox et al., 2018; Ekolu et al., 2025). However, a 849 

common limitation of most previous studies is their reliance on a relatively small sample of 850 

watersheds and a limited spatial coverage, which may overlook local hydrographic variability 851 

and limit regional applications. In addition, most impact studies in West Africa are based on 852 

conceptual hydrological models at catchment scales. The study differs from previous studies 853 

by covering an unprecedented set of catchments, and utilizing state-of-the-art bias-corrected 854 

CMIP6 climate models, two large-scale hydrological models and robust statistical methods to 855 

assess both the magnitude and field significance of future flood changes. As such, the findings 856 

from this work provide regional-scale insights into the evolving flood risks in West Africa. 857 

Furthermore, the findings from the studies of Almazroui et al. (2020), Dosio et al. (2021) and 858 

Dotse et al. (2023) have shown that CMIP6 models contain a robust signal of the intensification 859 

of the rainfall regime in West Africa. The increasing trend in floods across the region may be 860 

partly explained by the trends in extreme precipitations, as their variability influences the 861 

hydrological dynamics of the region (Panthou et al., 2013; Wilcox et al., 2018; Elagib et al., 862 

2021). 863 
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 864 

Figure 7: Mean relative changes in the 2-year and 20-year Floods in West Africa for Near-term 865 

(2031-2060) and Long-term (2071-2100) futures, based on simulations from the LISFLOOD 866 

(a-1 to a-8) and HMF-WA (b-1 to b-8) hydrological models, under SSP2-4.5 and SSP5-8.5 867 

scenarios. 868 

 869 

3.3 Onset of changes in AMF series 870 

3.3.1 Observed trends in GEV Parameters 871 

As the climate and environment change (Lee et al., 2023), it is essential to examine how these 872 

changes affect the parameters of GEV distributions. Figure 8 shows the spatial distribution of 873 

trends detected by the Mann-Kendall test on GEV parameters estimated on multi model mean 874 

streamflow GEV parameters estimated on multi models mean AMF over 30-year moving 875 

windows from 1950 to 2100. Both hydrological models project upward trends in the location 876 

and scale parameters across the West African region with a strong agreement between the two 877 

hydrological models (see Figure 8). All local trends are field significant at 0.05 level according 878 

to the FDR procedure. The simulated upward trends in both parameters, observed across 879 

various watersheds and emission scenarios, emphasize the importance of accounting for 880 
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temporal variability in GEV parameters to reliably model future flood risks. An increase in the 881 

location parameter suggests more frequent and severe floods, while an upward trend in the 882 

scale parameter indicates greater variability in flood magnitudes. In contrast, the "mixed" 883 

trends observed in the shape parameter, with no distinct spatial patterns, support the decision 884 

to model it as constant over time, as there is no strong regional evidence of consistent temporal 885 

changes in its behaviour across the region. 886 

 887 

Figure 8: Direction of significant trends detected using the Mann-Kendall trend test (at the 0.05 888 

significance level) for GEV parameters: location (top row), scale (middle row), and shape 889 

(bottom row). The GEV parameters are estimated based on multi-model mean streamflow over 890 

30-year moving windows. Panels (a-1) and (b-1) display the results for the LISFLOOD model 891 

under SSP2-4.5 and SSP5-8.5, respectively, while panels (a-2) and (b-2) show the results for 892 

the HMF-WA model under SSP2-4.5 and SSP5-8.5, respectively. The red upward triangles 893 

indicate significant upward trends, and the blue downward triangles indicate significant 894 

downward trends, both at the 0.05 significance level. Gray rectangles represent cases where no 895 

significant trends are detected. The pie charts summarize the proportion of stations showing 896 

significant positive trends (red), significant negative trends (blue), and non-significant trends 897 

(gray).  898 

 899 

 900 

3.3.2 Selection of the best-suited GEV trend model 901 

Using non-stationary GEV models, we analyse temporal shifts in floods by fitting time-902 

dependent GEV parameters to the AMF series from both hydrological model’s simulations. To 903 

detect the onset of significant trends in flood events, we have allowed any starting year (t0) of 904 

a possible trend in the GEV location μ(t) and scale σ(t) parameter between 1970 and 2070. To 905 

select the best non-stationary GEV model for each site, we have compared the goodness-of-fit 906 
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of three different time-varying GEV models. The models evaluated are: (1) a linear trend for 907 

both the μ(t) and σ(t) parameters without a breakpoint (GEV1); (2) a linear trend for μ(t) and 908 

σ(t) starting after a specific breakpoint (GEV2); and (3) linear trends for μ(t) and σ(t) both 909 

before and after a breakpoint (GEV3). Figure 9 shows the GEV trend model selected at each 910 

station according to the AIC criterion and the deviance test for the LISFLOOD-CMIP6 and 911 

HMFWA-CMIP6 simulations under both SSP2-4.5 and SSP-8.5 scenarios. Although both 912 

hydrological models project an increase in floods (Figure 5), they simulate slightly different 913 

trend patterns across the study area. Considering the LISFLOOD model (Figure 9a), the GEV3 914 

(double linear trend) is constantly best suited at most stations, with a high agreement between 915 

the CMIP6 models. For instance, under the SSP2-4.5 scenario, the GEV3 distribution 916 

outperforms other models at 66 %, 79 %, 76 %, when the LISFLOOD model is driven by the 917 

GFDL (Figure 9a-1), IPSL (Figure 9a-2) and MPI (Figure 9a-3) climate models, respectively. 918 

A similar trend is observed under the SSP5-8.5 where the GEV3 is best suited when the 919 

LISFLOOD is forced with the MPI (62 %), MRI (77 %), IPSL (78 %), and UKESM (66 %) 920 

models (Figure 9a-7, 9a-8, 9a-9 and 9a-10). The HMF-WA simulations show a mixed spatial 921 

pattern between the GEV2 and GEV3 models (Figure 9b). For both hydrological models, the 922 

single linear trend model (GEV1) is selected at very few stations (less than 5 %). Meanwhile, 923 

the stationary behaviour observed at few sites under SSP2-4.5 suggests that certain river basins 924 

may experience little to no change in their hydrological extremes under moderate emissions 925 

pathways. 926 

 927 

 928 
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Figure 9: Best-fitting GEV trend models at each station, determined using the AIC criterion 929 

and the deviance test, based on simulations from (a) LISFLOOD-CMIP6 (top rows) and (b) 930 

HMF-WA-CMIP6 (bottom rows) simulations under SSP2-4.5 and SSP5-8.5 scenarios. The 931 

green points represent stations best modelled by GEV1, which assumes a linear trend over the 932 

entire record. The orange points indicate stations best modelled by GEV2, which assumes 933 

stationarity before a breakpoint followed by a linear trend after the breakpoint. The blue points 934 

denote stations best modelled by GEV3, which assumes a double linear trend. The grey points 935 

represent stations where all non-stationary GEV models are rejected based on the deviance test. 936 

 937 

 938 

Figure 9: Best-fitting GEV trend models at each station, determined using the AIC criterion 939 

and the deviance test, based on simulations from (a) LISFLOOD-CMIP6 (top rows) and (b) 940 

HMF-WA-CMIP6 (bottom rows) simulations under SSP2-4.5 and SSP5-8.5 scenarios. The 941 

green points represent stations best modelled by GEV1, which assumes a linear trend over the 942 

entire record. The orange points indicate stations best modelled by GEV2, which assumes 943 

stationarity before a breakpoint followed by a linear trend after the breakpoint. The blue points 944 

denote stations best modelled by GEV3, which assumes a double linear trend. The grey points 945 

represent stations where all non-stationary GEV models are rejected based on the deviance test. 946 

The pie charts summarize the proportion of stations at which the stationary GEV model (grey), 947 

or one of the non-stationary models, GEV1 (green), GEV2 (orange), or GEV3 (blue), is 948 

identified as the best-suited for fitting the AMF series. 949 

 950 

3.3.3 Starting years of trends in flood hazards 951 
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The spatial distribution of the starting years of significant flood trends detected with the GEV 952 

trend models are shown in Figure 10. The projections from the two hydrological models are 953 

spatially coherent, and the temporal variability on the start of flood trends in the region seems 954 

to depend on climate models. Overall, under both SSP2-4.5 and SSP5-8.5, the majority of 955 

significant trends are identified almost on the whole record, from the 1980s onward, in 956 

agreement with long-term trends observed in this region (Tramblay et al., 2020), particularly 957 

with the GFDL, IPSL, MPI, and UKESM models. This consistent pattern of early starting years 958 

suggests that West African communities are already facing high flood risks, and are likely to 959 

experience exacerbated conditions in the near-future. On the two linear trends in the GEV3 960 

model, as shown in Supplementary Figure S5, the predominant spatial pattern is a transition 961 

from decreasing flood trends before the breakpoint to increasing trends after. Persistent 962 

increases, characterized by positive slopes before and after the breakpoint, are also observed at 963 

several sites, particularly with the GFDL, IPSL, and UKESM climate models. 964 

 965 

Figure 10: Spatial distribution of the starting years of significant flood trends projected by (a) 966 

LISFLOOD and (b) HMF-WA hydrological models, forced with CMIP6 models (GFDL, IPSL, 967 

MPI, MRI, and UKESM), under SSP2-4.5 and SSP5-8.5 scenarios. The color gradient indicates 968 

the years of significant breakpoints in flood trends, ranging from 1970 (purple) to 2070 969 

(yellow). Circular markers represent sites where trends began at the start of the time series 970 

(before 1970). Triangular markers indicate sites where trends emerged after 1970 (the linear 971 

trend GEV2 case). 972 
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 973 

 974 

Figure 10: Spatial distribution of the starting years of significant flood trends projected by (a) 975 

LISFLOOD and (b) HMF-WA hydrological models, forced with CMIP6 models (GFDL, 976 

IPSL,MPI, MRI, and UKESM), under SSP2-4.5 and SSP5-8.5 scenarios. The color gradient 977 

indicates the starting year of a significant flood trend, ranging from 1970 (purple) to 2070 978 

(yellow). Circular markers represent sites where trends began at the start of the time series 979 

(before 1970). Triangular markers indicate sites where trends emerged after 1970 (the linear 980 

trend GEV2 case). 981 

 982 

 983 

Conclusions 984 

This study has assessed the regional-scale hydrological impacts of climate change in West 985 

Africa, specifically focusing on floods, from two large-scale hydrological models (HMF-WA 986 

and LISFLOOD) driven by five bias-corrected CMIP6 climate models under SSP2-4.5 and 987 

SSP5-8.5 scenarios. A multi-model index of agreement (MIA) was used to assess the 988 

robustness of the projections from the hydrological model. The statistical evaluation of the two 989 

hydrological models, performed using the two-sample Anderson-Darling test between the 990 

annual maximum flows observed from the ADHI database and those simulated by the 991 

hydrological models, revealed that the LISFLOOD model outperforms the HMF-WA model in 992 

simulating extreme flows in West Africa. The GEV distribution was used to analyse trends and 993 
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detect change points by fitting and comparing multiple GEV models to the AMF series, 994 

covering both the historical and future periods. Two 30-year future periods (a near-term future 995 

[2031–2060] and a long-term future [2071–2100]) were compared to a reference historical 996 

period (1985-2014).  Despite differences in hydrological processes representation, model 997 

architectures and calibration, the two hydrological models generally projected consistent 998 

impacts of climate change on future floods across the West African region with a relatively 999 

high level of consistency. This agreement between the two hydrological models suggests that 1000 

the climate forcing has more importance than the hydrological representation itself, and un-1001 

calibrated models can provide reliable scenarios in this region. An increase in floods (2-year 1002 

and 20-year) is observed at more than 94 % of the stations, with some locations experiencing 1003 

flood magnitudes exceeding 45 %. The results of the comparison between GEV trend models 1004 

show that the double-linear trend GEV model with both location and scale parameters 1005 

expressed as time-dependent is the best suited for most stations. The analysis of the starting 1006 

years of significant flood trends revealed that most shifts in extreme flood patterns occurred 1007 

early in the time series, as early as the 1970s in several basins. 1008 

 1009 

The use of the GCM outputs to drive hydrological models introduces uncertainties in 1010 

hydrological simulations. Indeed, the outputs of General Circulation Models (GCMs) are 1011 

characterised by uncertainties, arising from several factors such as the simplified representation 1012 

of complex Earth system interactions and atmospheric processes, the uncertain socioeconomic 1013 

pathways, the coarse spatial resolution of these models, along with challenges related to model 1014 

parameterization (Hawkins & Sutton, 2009). In addition, the performance of large-scale 1015 

hydrological models is influenced by the driving inputs, the representation of the hydrological 1016 

process, and the model parameterization (Andersson et al., 2015). Current models also have 1017 

difficulties in reproducing hydrological processes in arid regions (Heinicke et al., 2024). It 1018 

would therefore be interesting to explore in more details the main sources of uncertainties in 1019 

hydrological projections in West Africa to improve the realism of such modelling approaches 1020 

in the future. 1021 

 1022 

Code availability 1023 

The codes used in this study are available upon request. The implementation of these codes 1024 

primarily relies on the R extRemes library (https://www.jstatsoft.org/article/view/v072i08). 1025 
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      1026 

Data availability 1027 

The ADHI dataset containing the observed annual maximum time series is available at: 1028 

https://doi.org/10.23708/LXGXQ9, and annual maximum dataset from the HMF-WA 1029 

simulations is available at:  https://doi.org/10.5285/346124fd-a0c6-490f-b5af-eaccbb26ab6b. 1030 
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